source: vendor/python/2.5/Doc/lib/libitertools.tex

Last change on this file was 3225, checked in by bird, 18 years ago

Python 2.5

File size: 18.7 KB
Line 
1\section{\module{itertools} ---
2 Functions creating iterators for efficient looping}
3
4\declaremodule{standard}{itertools}
5\modulesynopsis{Functions creating iterators for efficient looping.}
6\moduleauthor{Raymond Hettinger}{python@rcn.com}
7\sectionauthor{Raymond Hettinger}{python@rcn.com}
8\versionadded{2.3}
9
10
11This module implements a number of iterator building blocks inspired
12by constructs from the Haskell and SML programming languages. Each
13has been recast in a form suitable for Python.
14
15The module standardizes a core set of fast, memory efficient tools
16that are useful by themselves or in combination. Standardization helps
17avoid the readability and reliability problems which arise when many
18different individuals create their own slightly varying implementations,
19each with their own quirks and naming conventions.
20
21The tools are designed to combine readily with one another. This makes
22it easy to construct more specialized tools succinctly and efficiently
23in pure Python.
24
25For instance, SML provides a tabulation tool: \code{tabulate(f)}
26which produces a sequence \code{f(0), f(1), ...}. This toolbox
27provides \function{imap()} and \function{count()} which can be combined
28to form \code{imap(f, count())} and produce an equivalent result.
29
30Likewise, the functional tools are designed to work well with the
31high-speed functions provided by the \refmodule{operator} module.
32
33The module author welcomes suggestions for other basic building blocks
34to be added to future versions of the module.
35
36Whether cast in pure python form or compiled code, tools that use iterators
37are more memory efficient (and faster) than their list based counterparts.
38Adopting the principles of just-in-time manufacturing, they create
39data when and where needed instead of consuming memory with the
40computer equivalent of ``inventory''.
41
42The performance advantage of iterators becomes more acute as the number
43of elements increases -- at some point, lists grow large enough to
44severely impact memory cache performance and start running slowly.
45
46\begin{seealso}
47 \seetext{The Standard ML Basis Library,
48 \citetitle[http://www.standardml.org/Basis/]
49 {The Standard ML Basis Library}.}
50
51 \seetext{Haskell, A Purely Functional Language,
52 \citetitle[http://www.haskell.org/definition/]
53 {Definition of Haskell and the Standard Libraries}.}
54\end{seealso}
55
56
57\subsection{Itertool functions \label{itertools-functions}}
58
59The following module functions all construct and return iterators.
60Some provide streams of infinite length, so they should only be accessed
61by functions or loops that truncate the stream.
62
63\begin{funcdesc}{chain}{*iterables}
64 Make an iterator that returns elements from the first iterable until
65 it is exhausted, then proceeds to the next iterable, until all of the
66 iterables are exhausted. Used for treating consecutive sequences as
67 a single sequence. Equivalent to:
68
69 \begin{verbatim}
70 def chain(*iterables):
71 for it in iterables:
72 for element in it:
73 yield element
74 \end{verbatim}
75\end{funcdesc}
76
77\begin{funcdesc}{count}{\optional{n}}
78 Make an iterator that returns consecutive integers starting with \var{n}.
79 If not specified \var{n} defaults to zero.
80 Does not currently support python long integers. Often used as an
81 argument to \function{imap()} to generate consecutive data points.
82 Also, used with \function{izip()} to add sequence numbers. Equivalent to:
83
84 \begin{verbatim}
85 def count(n=0):
86 while True:
87 yield n
88 n += 1
89 \end{verbatim}
90
91 Note, \function{count()} does not check for overflow and will return
92 negative numbers after exceeding \code{sys.maxint}. This behavior
93 may change in the future.
94\end{funcdesc}
95
96\begin{funcdesc}{cycle}{iterable}
97 Make an iterator returning elements from the iterable and saving a
98 copy of each. When the iterable is exhausted, return elements from
99 the saved copy. Repeats indefinitely. Equivalent to:
100
101 \begin{verbatim}
102 def cycle(iterable):
103 saved = []
104 for element in iterable:
105 yield element
106 saved.append(element)
107 while saved:
108 for element in saved:
109 yield element
110 \end{verbatim}
111
112 Note, this member of the toolkit may require significant
113 auxiliary storage (depending on the length of the iterable).
114\end{funcdesc}
115
116\begin{funcdesc}{dropwhile}{predicate, iterable}
117 Make an iterator that drops elements from the iterable as long as
118 the predicate is true; afterwards, returns every element. Note,
119 the iterator does not produce \emph{any} output until the predicate
120 is true, so it may have a lengthy start-up time. Equivalent to:
121
122 \begin{verbatim}
123 def dropwhile(predicate, iterable):
124 iterable = iter(iterable)
125 for x in iterable:
126 if not predicate(x):
127 yield x
128 break
129 for x in iterable:
130 yield x
131 \end{verbatim}
132\end{funcdesc}
133
134\begin{funcdesc}{groupby}{iterable\optional{, key}}
135 Make an iterator that returns consecutive keys and groups from the
136 \var{iterable}. The \var{key} is a function computing a key value for each
137 element. If not specified or is \code{None}, \var{key} defaults to an
138 identity function and returns the element unchanged. Generally, the
139 iterable needs to already be sorted on the same key function.
140
141 The returned group is itself an iterator that shares the underlying
142 iterable with \function{groupby()}. Because the source is shared, when
143 the \function{groupby} object is advanced, the previous group is no
144 longer visible. So, if that data is needed later, it should be stored
145 as a list:
146
147 \begin{verbatim}
148 groups = []
149 uniquekeys = []
150 for k, g in groupby(data, keyfunc):
151 groups.append(list(g)) # Store group iterator as a list
152 uniquekeys.append(k)
153 \end{verbatim}
154
155 \function{groupby()} is equivalent to:
156
157 \begin{verbatim}
158 class groupby(object):
159 def __init__(self, iterable, key=None):
160 if key is None:
161 key = lambda x: x
162 self.keyfunc = key
163 self.it = iter(iterable)
164 self.tgtkey = self.currkey = self.currvalue = xrange(0)
165 def __iter__(self):
166 return self
167 def next(self):
168 while self.currkey == self.tgtkey:
169 self.currvalue = self.it.next() # Exit on StopIteration
170 self.currkey = self.keyfunc(self.currvalue)
171 self.tgtkey = self.currkey
172 return (self.currkey, self._grouper(self.tgtkey))
173 def _grouper(self, tgtkey):
174 while self.currkey == tgtkey:
175 yield self.currvalue
176 self.currvalue = self.it.next() # Exit on StopIteration
177 self.currkey = self.keyfunc(self.currvalue)
178 \end{verbatim}
179 \versionadded{2.4}
180\end{funcdesc}
181
182\begin{funcdesc}{ifilter}{predicate, iterable}
183 Make an iterator that filters elements from iterable returning only
184 those for which the predicate is \code{True}.
185 If \var{predicate} is \code{None}, return the items that are true.
186 Equivalent to:
187
188 \begin{verbatim}
189 def ifilter(predicate, iterable):
190 if predicate is None:
191 predicate = bool
192 for x in iterable:
193 if predicate(x):
194 yield x
195 \end{verbatim}
196\end{funcdesc}
197
198\begin{funcdesc}{ifilterfalse}{predicate, iterable}
199 Make an iterator that filters elements from iterable returning only
200 those for which the predicate is \code{False}.
201 If \var{predicate} is \code{None}, return the items that are false.
202 Equivalent to:
203
204 \begin{verbatim}
205 def ifilterfalse(predicate, iterable):
206 if predicate is None:
207 predicate = bool
208 for x in iterable:
209 if not predicate(x):
210 yield x
211 \end{verbatim}
212\end{funcdesc}
213
214\begin{funcdesc}{imap}{function, *iterables}
215 Make an iterator that computes the function using arguments from
216 each of the iterables. If \var{function} is set to \code{None}, then
217 \function{imap()} returns the arguments as a tuple. Like
218 \function{map()} but stops when the shortest iterable is exhausted
219 instead of filling in \code{None} for shorter iterables. The reason
220 for the difference is that infinite iterator arguments are typically
221 an error for \function{map()} (because the output is fully evaluated)
222 but represent a common and useful way of supplying arguments to
223 \function{imap()}.
224 Equivalent to:
225
226 \begin{verbatim}
227 def imap(function, *iterables):
228 iterables = map(iter, iterables)
229 while True:
230 args = [i.next() for i in iterables]
231 if function is None:
232 yield tuple(args)
233 else:
234 yield function(*args)
235 \end{verbatim}
236\end{funcdesc}
237
238\begin{funcdesc}{islice}{iterable, \optional{start,} stop \optional{, step}}
239 Make an iterator that returns selected elements from the iterable.
240 If \var{start} is non-zero, then elements from the iterable are skipped
241 until start is reached. Afterward, elements are returned consecutively
242 unless \var{step} is set higher than one which results in items being
243 skipped. If \var{stop} is \code{None}, then iteration continues until
244 the iterator is exhausted, if at all; otherwise, it stops at the specified
245 position. Unlike regular slicing,
246 \function{islice()} does not support negative values for \var{start},
247 \var{stop}, or \var{step}. Can be used to extract related fields
248 from data where the internal structure has been flattened (for
249 example, a multi-line report may list a name field on every
250 third line). Equivalent to:
251
252 \begin{verbatim}
253 def islice(iterable, *args):
254 s = slice(*args)
255 it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
256 nexti = it.next()
257 for i, element in enumerate(iterable):
258 if i == nexti:
259 yield element
260 nexti = it.next()
261 \end{verbatim}
262
263 If \var{start} is \code{None}, then iteration starts at zero.
264 If \var{step} is \code{None}, then the step defaults to one.
265 \versionchanged[accept \code{None} values for default \var{start} and
266 \var{step}]{2.5}
267\end{funcdesc}
268
269\begin{funcdesc}{izip}{*iterables}
270 Make an iterator that aggregates elements from each of the iterables.
271 Like \function{zip()} except that it returns an iterator instead of
272 a list. Used for lock-step iteration over several iterables at a
273 time. Equivalent to:
274
275 \begin{verbatim}
276 def izip(*iterables):
277 iterables = map(iter, iterables)
278 while iterables:
279 result = [it.next() for it in iterables]
280 yield tuple(result)
281 \end{verbatim}
282
283 \versionchanged[When no iterables are specified, returns a zero length
284 iterator instead of raising a \exception{TypeError}
285 exception]{2.4}
286
287 Note, the left-to-right evaluation order of the iterables is guaranteed.
288 This makes possible an idiom for clustering a data series into n-length
289 groups using \samp{izip(*[iter(s)]*n)}. For data that doesn't fit
290 n-length groups exactly, the last tuple can be pre-padded with fill
291 values using \samp{izip(*[chain(s, [None]*(n-1))]*n)}.
292
293 Note, when \function{izip()} is used with unequal length inputs, subsequent
294 iteration over the longer iterables cannot reliably be continued after
295 \function{izip()} terminates. Potentially, up to one entry will be missing
296 from each of the left-over iterables. This occurs because a value is fetched
297 from each iterator in-turn, but the process ends when one of the iterators
298 terminates. This leaves the last fetched values in limbo (they cannot be
299 returned in a final, incomplete tuple and they are cannot be pushed back
300 into the iterator for retrieval with \code{it.next()}). In general,
301 \function{izip()} should only be used with unequal length inputs when you
302 don't care about trailing, unmatched values from the longer iterables.
303\end{funcdesc}
304
305\begin{funcdesc}{repeat}{object\optional{, times}}
306 Make an iterator that returns \var{object} over and over again.
307 Runs indefinitely unless the \var{times} argument is specified.
308 Used as argument to \function{imap()} for invariant parameters
309 to the called function. Also used with \function{izip()} to create
310 an invariant part of a tuple record. Equivalent to:
311
312 \begin{verbatim}
313 def repeat(object, times=None):
314 if times is None:
315 while True:
316 yield object
317 else:
318 for i in xrange(times):
319 yield object
320 \end{verbatim}
321\end{funcdesc}
322
323\begin{funcdesc}{starmap}{function, iterable}
324 Make an iterator that computes the function using arguments tuples
325 obtained from the iterable. Used instead of \function{imap()} when
326 argument parameters are already grouped in tuples from a single iterable
327 (the data has been ``pre-zipped''). The difference between
328 \function{imap()} and \function{starmap()} parallels the distinction
329 between \code{function(a,b)} and \code{function(*c)}.
330 Equivalent to:
331
332 \begin{verbatim}
333 def starmap(function, iterable):
334 iterable = iter(iterable)
335 while True:
336 yield function(*iterable.next())
337 \end{verbatim}
338\end{funcdesc}
339
340\begin{funcdesc}{takewhile}{predicate, iterable}
341 Make an iterator that returns elements from the iterable as long as
342 the predicate is true. Equivalent to:
343
344 \begin{verbatim}
345 def takewhile(predicate, iterable):
346 for x in iterable:
347 if predicate(x):
348 yield x
349 else:
350 break
351 \end{verbatim}
352\end{funcdesc}
353
354\begin{funcdesc}{tee}{iterable\optional{, n=2}}
355 Return \var{n} independent iterators from a single iterable.
356 The case where \code{n==2} is equivalent to:
357
358 \begin{verbatim}
359 def tee(iterable):
360 def gen(next, data={}, cnt=[0]):
361 for i in count():
362 if i == cnt[0]:
363 item = data[i] = next()
364 cnt[0] += 1
365 else:
366 item = data.pop(i)
367 yield item
368 it = iter(iterable)
369 return (gen(it.next), gen(it.next))
370 \end{verbatim}
371
372 Note, once \function{tee()} has made a split, the original \var{iterable}
373 should not be used anywhere else; otherwise, the \var{iterable} could get
374 advanced without the tee objects being informed.
375
376 Note, this member of the toolkit may require significant auxiliary
377 storage (depending on how much temporary data needs to be stored).
378 In general, if one iterator is going to use most or all of the data before
379 the other iterator, it is faster to use \function{list()} instead of
380 \function{tee()}.
381 \versionadded{2.4}
382\end{funcdesc}
383
384
385\subsection{Examples \label{itertools-example}}
386
387The following examples show common uses for each tool and
388demonstrate ways they can be combined.
389
390\begin{verbatim}
391
392>>> amounts = [120.15, 764.05, 823.14]
393>>> for checknum, amount in izip(count(1200), amounts):
394... print 'Check %d is for $%.2f' % (checknum, amount)
395...
396Check 1200 is for $120.15
397Check 1201 is for $764.05
398Check 1202 is for $823.14
399
400>>> import operator
401>>> for cube in imap(operator.pow, xrange(1,5), repeat(3)):
402... print cube
403...
4041
4058
40627
40764
408
409>>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
410 '', 'martin', '', 'walter', '', 'mark']
411>>> for name in islice(reportlines, 3, None, 2):
412... print name.title()
413...
414Alex
415Laura
416Martin
417Walter
418Mark
419
420# Show a dictionary sorted and grouped by value
421>>> from operator import itemgetter
422>>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
423>>> di = sorted(d.iteritems(), key=itemgetter(1))
424>>> for k, g in groupby(di, key=itemgetter(1)):
425... print k, map(itemgetter(0), g)
426...
4271 ['a', 'c', 'e']
4282 ['b', 'd', 'f']
4293 ['g']
430
431# Find runs of consecutive numbers using groupby. The key to the solution
432# is differencing with a range so that consecutive numbers all appear in
433# same group.
434>>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
435>>> for k, g in groupby(enumerate(data), lambda (i,x):i-x):
436... print map(operator.itemgetter(1), g)
437...
438[1]
439[4, 5, 6]
440[10]
441[15, 16, 17, 18]
442[22]
443[25, 26, 27, 28]
444
445\end{verbatim}
446
447
448\subsection{Recipes \label{itertools-recipes}}
449
450This section shows recipes for creating an extended toolset using the
451existing itertools as building blocks.
452
453The extended tools offer the same high performance as the underlying
454toolset. The superior memory performance is kept by processing elements one
455at a time rather than bringing the whole iterable into memory all at once.
456Code volume is kept small by linking the tools together in a functional style
457which helps eliminate temporary variables. High speed is retained by
458preferring ``vectorized'' building blocks over the use of for-loops and
459generators which incur interpreter overhead.
460
461
462\begin{verbatim}
463def take(n, seq):
464 return list(islice(seq, n))
465
466def enumerate(iterable):
467 return izip(count(), iterable)
468
469def tabulate(function):
470 "Return function(0), function(1), ..."
471 return imap(function, count())
472
473def iteritems(mapping):
474 return izip(mapping.iterkeys(), mapping.itervalues())
475
476def nth(iterable, n):
477 "Returns the nth item"
478 return list(islice(iterable, n, n+1))
479
480def all(seq, pred=None):
481 "Returns True if pred(x) is true for every element in the iterable"
482 for elem in ifilterfalse(pred, seq):
483 return False
484 return True
485
486def any(seq, pred=None):
487 "Returns True if pred(x) is true for at least one element in the iterable"
488 for elem in ifilter(pred, seq):
489 return True
490 return False
491
492def no(seq, pred=None):
493 "Returns True if pred(x) is false for every element in the iterable"
494 for elem in ifilter(pred, seq):
495 return False
496 return True
497
498def quantify(seq, pred=None):
499 "Count how many times the predicate is true in the sequence"
500 return sum(imap(pred, seq))
501
502def padnone(seq):
503 """Returns the sequence elements and then returns None indefinitely.
504
505 Useful for emulating the behavior of the built-in map() function.
506 """
507 return chain(seq, repeat(None))
508
509def ncycles(seq, n):
510 "Returns the sequence elements n times"
511 return chain(*repeat(seq, n))
512
513def dotproduct(vec1, vec2):
514 return sum(imap(operator.mul, vec1, vec2))
515
516def flatten(listOfLists):
517 return list(chain(*listOfLists))
518
519def repeatfunc(func, times=None, *args):
520 """Repeat calls to func with specified arguments.
521
522 Example: repeatfunc(random.random)
523 """
524 if times is None:
525 return starmap(func, repeat(args))
526 else:
527 return starmap(func, repeat(args, times))
528
529def pairwise(iterable):
530 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
531 a, b = tee(iterable)
532 try:
533 b.next()
534 except StopIteration:
535 pass
536 return izip(a, b)
537
538def grouper(n, iterable, padvalue=None):
539 "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
540 return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
541
542
543\end{verbatim}
Note: See TracBrowser for help on using the repository browser.