1 | \section{\module{itertools} ---
|
---|
2 | Functions creating iterators for efficient looping}
|
---|
3 |
|
---|
4 | \declaremodule{standard}{itertools}
|
---|
5 | \modulesynopsis{Functions creating iterators for efficient looping.}
|
---|
6 | \moduleauthor{Raymond Hettinger}{python@rcn.com}
|
---|
7 | \sectionauthor{Raymond Hettinger}{python@rcn.com}
|
---|
8 | \versionadded{2.3}
|
---|
9 |
|
---|
10 |
|
---|
11 | This module implements a number of iterator building blocks inspired
|
---|
12 | by constructs from the Haskell and SML programming languages. Each
|
---|
13 | has been recast in a form suitable for Python.
|
---|
14 |
|
---|
15 | The module standardizes a core set of fast, memory efficient tools
|
---|
16 | that are useful by themselves or in combination. Standardization helps
|
---|
17 | avoid the readability and reliability problems which arise when many
|
---|
18 | different individuals create their own slightly varying implementations,
|
---|
19 | each with their own quirks and naming conventions.
|
---|
20 |
|
---|
21 | The tools are designed to combine readily with one another. This makes
|
---|
22 | it easy to construct more specialized tools succinctly and efficiently
|
---|
23 | in pure Python.
|
---|
24 |
|
---|
25 | For instance, SML provides a tabulation tool: \code{tabulate(f)}
|
---|
26 | which produces a sequence \code{f(0), f(1), ...}. This toolbox
|
---|
27 | provides \function{imap()} and \function{count()} which can be combined
|
---|
28 | to form \code{imap(f, count())} and produce an equivalent result.
|
---|
29 |
|
---|
30 | Likewise, the functional tools are designed to work well with the
|
---|
31 | high-speed functions provided by the \refmodule{operator} module.
|
---|
32 |
|
---|
33 | The module author welcomes suggestions for other basic building blocks
|
---|
34 | to be added to future versions of the module.
|
---|
35 |
|
---|
36 | Whether cast in pure python form or compiled code, tools that use iterators
|
---|
37 | are more memory efficient (and faster) than their list based counterparts.
|
---|
38 | Adopting the principles of just-in-time manufacturing, they create
|
---|
39 | data when and where needed instead of consuming memory with the
|
---|
40 | computer equivalent of ``inventory''.
|
---|
41 |
|
---|
42 | The performance advantage of iterators becomes more acute as the number
|
---|
43 | of elements increases -- at some point, lists grow large enough to
|
---|
44 | severely impact memory cache performance and start running slowly.
|
---|
45 |
|
---|
46 | \begin{seealso}
|
---|
47 | \seetext{The Standard ML Basis Library,
|
---|
48 | \citetitle[http://www.standardml.org/Basis/]
|
---|
49 | {The Standard ML Basis Library}.}
|
---|
50 |
|
---|
51 | \seetext{Haskell, A Purely Functional Language,
|
---|
52 | \citetitle[http://www.haskell.org/definition/]
|
---|
53 | {Definition of Haskell and the Standard Libraries}.}
|
---|
54 | \end{seealso}
|
---|
55 |
|
---|
56 |
|
---|
57 | \subsection{Itertool functions \label{itertools-functions}}
|
---|
58 |
|
---|
59 | The following module functions all construct and return iterators.
|
---|
60 | Some provide streams of infinite length, so they should only be accessed
|
---|
61 | by functions or loops that truncate the stream.
|
---|
62 |
|
---|
63 | \begin{funcdesc}{chain}{*iterables}
|
---|
64 | Make an iterator that returns elements from the first iterable until
|
---|
65 | it is exhausted, then proceeds to the next iterable, until all of the
|
---|
66 | iterables are exhausted. Used for treating consecutive sequences as
|
---|
67 | a single sequence. Equivalent to:
|
---|
68 |
|
---|
69 | \begin{verbatim}
|
---|
70 | def chain(*iterables):
|
---|
71 | for it in iterables:
|
---|
72 | for element in it:
|
---|
73 | yield element
|
---|
74 | \end{verbatim}
|
---|
75 | \end{funcdesc}
|
---|
76 |
|
---|
77 | \begin{funcdesc}{count}{\optional{n}}
|
---|
78 | Make an iterator that returns consecutive integers starting with \var{n}.
|
---|
79 | If not specified \var{n} defaults to zero.
|
---|
80 | Does not currently support python long integers. Often used as an
|
---|
81 | argument to \function{imap()} to generate consecutive data points.
|
---|
82 | Also, used with \function{izip()} to add sequence numbers. Equivalent to:
|
---|
83 |
|
---|
84 | \begin{verbatim}
|
---|
85 | def count(n=0):
|
---|
86 | while True:
|
---|
87 | yield n
|
---|
88 | n += 1
|
---|
89 | \end{verbatim}
|
---|
90 |
|
---|
91 | Note, \function{count()} does not check for overflow and will return
|
---|
92 | negative numbers after exceeding \code{sys.maxint}. This behavior
|
---|
93 | may change in the future.
|
---|
94 | \end{funcdesc}
|
---|
95 |
|
---|
96 | \begin{funcdesc}{cycle}{iterable}
|
---|
97 | Make an iterator returning elements from the iterable and saving a
|
---|
98 | copy of each. When the iterable is exhausted, return elements from
|
---|
99 | the saved copy. Repeats indefinitely. Equivalent to:
|
---|
100 |
|
---|
101 | \begin{verbatim}
|
---|
102 | def cycle(iterable):
|
---|
103 | saved = []
|
---|
104 | for element in iterable:
|
---|
105 | yield element
|
---|
106 | saved.append(element)
|
---|
107 | while saved:
|
---|
108 | for element in saved:
|
---|
109 | yield element
|
---|
110 | \end{verbatim}
|
---|
111 |
|
---|
112 | Note, this member of the toolkit may require significant
|
---|
113 | auxiliary storage (depending on the length of the iterable).
|
---|
114 | \end{funcdesc}
|
---|
115 |
|
---|
116 | \begin{funcdesc}{dropwhile}{predicate, iterable}
|
---|
117 | Make an iterator that drops elements from the iterable as long as
|
---|
118 | the predicate is true; afterwards, returns every element. Note,
|
---|
119 | the iterator does not produce \emph{any} output until the predicate
|
---|
120 | is true, so it may have a lengthy start-up time. Equivalent to:
|
---|
121 |
|
---|
122 | \begin{verbatim}
|
---|
123 | def dropwhile(predicate, iterable):
|
---|
124 | iterable = iter(iterable)
|
---|
125 | for x in iterable:
|
---|
126 | if not predicate(x):
|
---|
127 | yield x
|
---|
128 | break
|
---|
129 | for x in iterable:
|
---|
130 | yield x
|
---|
131 | \end{verbatim}
|
---|
132 | \end{funcdesc}
|
---|
133 |
|
---|
134 | \begin{funcdesc}{groupby}{iterable\optional{, key}}
|
---|
135 | Make an iterator that returns consecutive keys and groups from the
|
---|
136 | \var{iterable}. The \var{key} is a function computing a key value for each
|
---|
137 | element. If not specified or is \code{None}, \var{key} defaults to an
|
---|
138 | identity function and returns the element unchanged. Generally, the
|
---|
139 | iterable needs to already be sorted on the same key function.
|
---|
140 |
|
---|
141 | The returned group is itself an iterator that shares the underlying
|
---|
142 | iterable with \function{groupby()}. Because the source is shared, when
|
---|
143 | the \function{groupby} object is advanced, the previous group is no
|
---|
144 | longer visible. So, if that data is needed later, it should be stored
|
---|
145 | as a list:
|
---|
146 |
|
---|
147 | \begin{verbatim}
|
---|
148 | groups = []
|
---|
149 | uniquekeys = []
|
---|
150 | for k, g in groupby(data, keyfunc):
|
---|
151 | groups.append(list(g)) # Store group iterator as a list
|
---|
152 | uniquekeys.append(k)
|
---|
153 | \end{verbatim}
|
---|
154 |
|
---|
155 | \function{groupby()} is equivalent to:
|
---|
156 |
|
---|
157 | \begin{verbatim}
|
---|
158 | class groupby(object):
|
---|
159 | def __init__(self, iterable, key=None):
|
---|
160 | if key is None:
|
---|
161 | key = lambda x: x
|
---|
162 | self.keyfunc = key
|
---|
163 | self.it = iter(iterable)
|
---|
164 | self.tgtkey = self.currkey = self.currvalue = xrange(0)
|
---|
165 | def __iter__(self):
|
---|
166 | return self
|
---|
167 | def next(self):
|
---|
168 | while self.currkey == self.tgtkey:
|
---|
169 | self.currvalue = self.it.next() # Exit on StopIteration
|
---|
170 | self.currkey = self.keyfunc(self.currvalue)
|
---|
171 | self.tgtkey = self.currkey
|
---|
172 | return (self.currkey, self._grouper(self.tgtkey))
|
---|
173 | def _grouper(self, tgtkey):
|
---|
174 | while self.currkey == tgtkey:
|
---|
175 | yield self.currvalue
|
---|
176 | self.currvalue = self.it.next() # Exit on StopIteration
|
---|
177 | self.currkey = self.keyfunc(self.currvalue)
|
---|
178 | \end{verbatim}
|
---|
179 | \versionadded{2.4}
|
---|
180 | \end{funcdesc}
|
---|
181 |
|
---|
182 | \begin{funcdesc}{ifilter}{predicate, iterable}
|
---|
183 | Make an iterator that filters elements from iterable returning only
|
---|
184 | those for which the predicate is \code{True}.
|
---|
185 | If \var{predicate} is \code{None}, return the items that are true.
|
---|
186 | Equivalent to:
|
---|
187 |
|
---|
188 | \begin{verbatim}
|
---|
189 | def ifilter(predicate, iterable):
|
---|
190 | if predicate is None:
|
---|
191 | predicate = bool
|
---|
192 | for x in iterable:
|
---|
193 | if predicate(x):
|
---|
194 | yield x
|
---|
195 | \end{verbatim}
|
---|
196 | \end{funcdesc}
|
---|
197 |
|
---|
198 | \begin{funcdesc}{ifilterfalse}{predicate, iterable}
|
---|
199 | Make an iterator that filters elements from iterable returning only
|
---|
200 | those for which the predicate is \code{False}.
|
---|
201 | If \var{predicate} is \code{None}, return the items that are false.
|
---|
202 | Equivalent to:
|
---|
203 |
|
---|
204 | \begin{verbatim}
|
---|
205 | def ifilterfalse(predicate, iterable):
|
---|
206 | if predicate is None:
|
---|
207 | predicate = bool
|
---|
208 | for x in iterable:
|
---|
209 | if not predicate(x):
|
---|
210 | yield x
|
---|
211 | \end{verbatim}
|
---|
212 | \end{funcdesc}
|
---|
213 |
|
---|
214 | \begin{funcdesc}{imap}{function, *iterables}
|
---|
215 | Make an iterator that computes the function using arguments from
|
---|
216 | each of the iterables. If \var{function} is set to \code{None}, then
|
---|
217 | \function{imap()} returns the arguments as a tuple. Like
|
---|
218 | \function{map()} but stops when the shortest iterable is exhausted
|
---|
219 | instead of filling in \code{None} for shorter iterables. The reason
|
---|
220 | for the difference is that infinite iterator arguments are typically
|
---|
221 | an error for \function{map()} (because the output is fully evaluated)
|
---|
222 | but represent a common and useful way of supplying arguments to
|
---|
223 | \function{imap()}.
|
---|
224 | Equivalent to:
|
---|
225 |
|
---|
226 | \begin{verbatim}
|
---|
227 | def imap(function, *iterables):
|
---|
228 | iterables = map(iter, iterables)
|
---|
229 | while True:
|
---|
230 | args = [i.next() for i in iterables]
|
---|
231 | if function is None:
|
---|
232 | yield tuple(args)
|
---|
233 | else:
|
---|
234 | yield function(*args)
|
---|
235 | \end{verbatim}
|
---|
236 | \end{funcdesc}
|
---|
237 |
|
---|
238 | \begin{funcdesc}{islice}{iterable, \optional{start,} stop \optional{, step}}
|
---|
239 | Make an iterator that returns selected elements from the iterable.
|
---|
240 | If \var{start} is non-zero, then elements from the iterable are skipped
|
---|
241 | until start is reached. Afterward, elements are returned consecutively
|
---|
242 | unless \var{step} is set higher than one which results in items being
|
---|
243 | skipped. If \var{stop} is \code{None}, then iteration continues until
|
---|
244 | the iterator is exhausted, if at all; otherwise, it stops at the specified
|
---|
245 | position. Unlike regular slicing,
|
---|
246 | \function{islice()} does not support negative values for \var{start},
|
---|
247 | \var{stop}, or \var{step}. Can be used to extract related fields
|
---|
248 | from data where the internal structure has been flattened (for
|
---|
249 | example, a multi-line report may list a name field on every
|
---|
250 | third line). Equivalent to:
|
---|
251 |
|
---|
252 | \begin{verbatim}
|
---|
253 | def islice(iterable, *args):
|
---|
254 | s = slice(*args)
|
---|
255 | it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
|
---|
256 | nexti = it.next()
|
---|
257 | for i, element in enumerate(iterable):
|
---|
258 | if i == nexti:
|
---|
259 | yield element
|
---|
260 | nexti = it.next()
|
---|
261 | \end{verbatim}
|
---|
262 |
|
---|
263 | If \var{start} is \code{None}, then iteration starts at zero.
|
---|
264 | If \var{step} is \code{None}, then the step defaults to one.
|
---|
265 | \versionchanged[accept \code{None} values for default \var{start} and
|
---|
266 | \var{step}]{2.5}
|
---|
267 | \end{funcdesc}
|
---|
268 |
|
---|
269 | \begin{funcdesc}{izip}{*iterables}
|
---|
270 | Make an iterator that aggregates elements from each of the iterables.
|
---|
271 | Like \function{zip()} except that it returns an iterator instead of
|
---|
272 | a list. Used for lock-step iteration over several iterables at a
|
---|
273 | time. Equivalent to:
|
---|
274 |
|
---|
275 | \begin{verbatim}
|
---|
276 | def izip(*iterables):
|
---|
277 | iterables = map(iter, iterables)
|
---|
278 | while iterables:
|
---|
279 | result = [it.next() for it in iterables]
|
---|
280 | yield tuple(result)
|
---|
281 | \end{verbatim}
|
---|
282 |
|
---|
283 | \versionchanged[When no iterables are specified, returns a zero length
|
---|
284 | iterator instead of raising a \exception{TypeError}
|
---|
285 | exception]{2.4}
|
---|
286 |
|
---|
287 | Note, the left-to-right evaluation order of the iterables is guaranteed.
|
---|
288 | This makes possible an idiom for clustering a data series into n-length
|
---|
289 | groups using \samp{izip(*[iter(s)]*n)}. For data that doesn't fit
|
---|
290 | n-length groups exactly, the last tuple can be pre-padded with fill
|
---|
291 | values using \samp{izip(*[chain(s, [None]*(n-1))]*n)}.
|
---|
292 |
|
---|
293 | Note, when \function{izip()} is used with unequal length inputs, subsequent
|
---|
294 | iteration over the longer iterables cannot reliably be continued after
|
---|
295 | \function{izip()} terminates. Potentially, up to one entry will be missing
|
---|
296 | from each of the left-over iterables. This occurs because a value is fetched
|
---|
297 | from each iterator in-turn, but the process ends when one of the iterators
|
---|
298 | terminates. This leaves the last fetched values in limbo (they cannot be
|
---|
299 | returned in a final, incomplete tuple and they are cannot be pushed back
|
---|
300 | into the iterator for retrieval with \code{it.next()}). In general,
|
---|
301 | \function{izip()} should only be used with unequal length inputs when you
|
---|
302 | don't care about trailing, unmatched values from the longer iterables.
|
---|
303 | \end{funcdesc}
|
---|
304 |
|
---|
305 | \begin{funcdesc}{repeat}{object\optional{, times}}
|
---|
306 | Make an iterator that returns \var{object} over and over again.
|
---|
307 | Runs indefinitely unless the \var{times} argument is specified.
|
---|
308 | Used as argument to \function{imap()} for invariant parameters
|
---|
309 | to the called function. Also used with \function{izip()} to create
|
---|
310 | an invariant part of a tuple record. Equivalent to:
|
---|
311 |
|
---|
312 | \begin{verbatim}
|
---|
313 | def repeat(object, times=None):
|
---|
314 | if times is None:
|
---|
315 | while True:
|
---|
316 | yield object
|
---|
317 | else:
|
---|
318 | for i in xrange(times):
|
---|
319 | yield object
|
---|
320 | \end{verbatim}
|
---|
321 | \end{funcdesc}
|
---|
322 |
|
---|
323 | \begin{funcdesc}{starmap}{function, iterable}
|
---|
324 | Make an iterator that computes the function using arguments tuples
|
---|
325 | obtained from the iterable. Used instead of \function{imap()} when
|
---|
326 | argument parameters are already grouped in tuples from a single iterable
|
---|
327 | (the data has been ``pre-zipped''). The difference between
|
---|
328 | \function{imap()} and \function{starmap()} parallels the distinction
|
---|
329 | between \code{function(a,b)} and \code{function(*c)}.
|
---|
330 | Equivalent to:
|
---|
331 |
|
---|
332 | \begin{verbatim}
|
---|
333 | def starmap(function, iterable):
|
---|
334 | iterable = iter(iterable)
|
---|
335 | while True:
|
---|
336 | yield function(*iterable.next())
|
---|
337 | \end{verbatim}
|
---|
338 | \end{funcdesc}
|
---|
339 |
|
---|
340 | \begin{funcdesc}{takewhile}{predicate, iterable}
|
---|
341 | Make an iterator that returns elements from the iterable as long as
|
---|
342 | the predicate is true. Equivalent to:
|
---|
343 |
|
---|
344 | \begin{verbatim}
|
---|
345 | def takewhile(predicate, iterable):
|
---|
346 | for x in iterable:
|
---|
347 | if predicate(x):
|
---|
348 | yield x
|
---|
349 | else:
|
---|
350 | break
|
---|
351 | \end{verbatim}
|
---|
352 | \end{funcdesc}
|
---|
353 |
|
---|
354 | \begin{funcdesc}{tee}{iterable\optional{, n=2}}
|
---|
355 | Return \var{n} independent iterators from a single iterable.
|
---|
356 | The case where \code{n==2} is equivalent to:
|
---|
357 |
|
---|
358 | \begin{verbatim}
|
---|
359 | def tee(iterable):
|
---|
360 | def gen(next, data={}, cnt=[0]):
|
---|
361 | for i in count():
|
---|
362 | if i == cnt[0]:
|
---|
363 | item = data[i] = next()
|
---|
364 | cnt[0] += 1
|
---|
365 | else:
|
---|
366 | item = data.pop(i)
|
---|
367 | yield item
|
---|
368 | it = iter(iterable)
|
---|
369 | return (gen(it.next), gen(it.next))
|
---|
370 | \end{verbatim}
|
---|
371 |
|
---|
372 | Note, once \function{tee()} has made a split, the original \var{iterable}
|
---|
373 | should not be used anywhere else; otherwise, the \var{iterable} could get
|
---|
374 | advanced without the tee objects being informed.
|
---|
375 |
|
---|
376 | Note, this member of the toolkit may require significant auxiliary
|
---|
377 | storage (depending on how much temporary data needs to be stored).
|
---|
378 | In general, if one iterator is going to use most or all of the data before
|
---|
379 | the other iterator, it is faster to use \function{list()} instead of
|
---|
380 | \function{tee()}.
|
---|
381 | \versionadded{2.4}
|
---|
382 | \end{funcdesc}
|
---|
383 |
|
---|
384 |
|
---|
385 | \subsection{Examples \label{itertools-example}}
|
---|
386 |
|
---|
387 | The following examples show common uses for each tool and
|
---|
388 | demonstrate ways they can be combined.
|
---|
389 |
|
---|
390 | \begin{verbatim}
|
---|
391 |
|
---|
392 | >>> amounts = [120.15, 764.05, 823.14]
|
---|
393 | >>> for checknum, amount in izip(count(1200), amounts):
|
---|
394 | ... print 'Check %d is for $%.2f' % (checknum, amount)
|
---|
395 | ...
|
---|
396 | Check 1200 is for $120.15
|
---|
397 | Check 1201 is for $764.05
|
---|
398 | Check 1202 is for $823.14
|
---|
399 |
|
---|
400 | >>> import operator
|
---|
401 | >>> for cube in imap(operator.pow, xrange(1,5), repeat(3)):
|
---|
402 | ... print cube
|
---|
403 | ...
|
---|
404 | 1
|
---|
405 | 8
|
---|
406 | 27
|
---|
407 | 64
|
---|
408 |
|
---|
409 | >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
|
---|
410 | '', 'martin', '', 'walter', '', 'mark']
|
---|
411 | >>> for name in islice(reportlines, 3, None, 2):
|
---|
412 | ... print name.title()
|
---|
413 | ...
|
---|
414 | Alex
|
---|
415 | Laura
|
---|
416 | Martin
|
---|
417 | Walter
|
---|
418 | Mark
|
---|
419 |
|
---|
420 | # Show a dictionary sorted and grouped by value
|
---|
421 | >>> from operator import itemgetter
|
---|
422 | >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
|
---|
423 | >>> di = sorted(d.iteritems(), key=itemgetter(1))
|
---|
424 | >>> for k, g in groupby(di, key=itemgetter(1)):
|
---|
425 | ... print k, map(itemgetter(0), g)
|
---|
426 | ...
|
---|
427 | 1 ['a', 'c', 'e']
|
---|
428 | 2 ['b', 'd', 'f']
|
---|
429 | 3 ['g']
|
---|
430 |
|
---|
431 | # Find runs of consecutive numbers using groupby. The key to the solution
|
---|
432 | # is differencing with a range so that consecutive numbers all appear in
|
---|
433 | # same group.
|
---|
434 | >>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
|
---|
435 | >>> for k, g in groupby(enumerate(data), lambda (i,x):i-x):
|
---|
436 | ... print map(operator.itemgetter(1), g)
|
---|
437 | ...
|
---|
438 | [1]
|
---|
439 | [4, 5, 6]
|
---|
440 | [10]
|
---|
441 | [15, 16, 17, 18]
|
---|
442 | [22]
|
---|
443 | [25, 26, 27, 28]
|
---|
444 |
|
---|
445 | \end{verbatim}
|
---|
446 |
|
---|
447 |
|
---|
448 | \subsection{Recipes \label{itertools-recipes}}
|
---|
449 |
|
---|
450 | This section shows recipes for creating an extended toolset using the
|
---|
451 | existing itertools as building blocks.
|
---|
452 |
|
---|
453 | The extended tools offer the same high performance as the underlying
|
---|
454 | toolset. The superior memory performance is kept by processing elements one
|
---|
455 | at a time rather than bringing the whole iterable into memory all at once.
|
---|
456 | Code volume is kept small by linking the tools together in a functional style
|
---|
457 | which helps eliminate temporary variables. High speed is retained by
|
---|
458 | preferring ``vectorized'' building blocks over the use of for-loops and
|
---|
459 | generators which incur interpreter overhead.
|
---|
460 |
|
---|
461 |
|
---|
462 | \begin{verbatim}
|
---|
463 | def take(n, seq):
|
---|
464 | return list(islice(seq, n))
|
---|
465 |
|
---|
466 | def enumerate(iterable):
|
---|
467 | return izip(count(), iterable)
|
---|
468 |
|
---|
469 | def tabulate(function):
|
---|
470 | "Return function(0), function(1), ..."
|
---|
471 | return imap(function, count())
|
---|
472 |
|
---|
473 | def iteritems(mapping):
|
---|
474 | return izip(mapping.iterkeys(), mapping.itervalues())
|
---|
475 |
|
---|
476 | def nth(iterable, n):
|
---|
477 | "Returns the nth item"
|
---|
478 | return list(islice(iterable, n, n+1))
|
---|
479 |
|
---|
480 | def all(seq, pred=None):
|
---|
481 | "Returns True if pred(x) is true for every element in the iterable"
|
---|
482 | for elem in ifilterfalse(pred, seq):
|
---|
483 | return False
|
---|
484 | return True
|
---|
485 |
|
---|
486 | def any(seq, pred=None):
|
---|
487 | "Returns True if pred(x) is true for at least one element in the iterable"
|
---|
488 | for elem in ifilter(pred, seq):
|
---|
489 | return True
|
---|
490 | return False
|
---|
491 |
|
---|
492 | def no(seq, pred=None):
|
---|
493 | "Returns True if pred(x) is false for every element in the iterable"
|
---|
494 | for elem in ifilter(pred, seq):
|
---|
495 | return False
|
---|
496 | return True
|
---|
497 |
|
---|
498 | def quantify(seq, pred=None):
|
---|
499 | "Count how many times the predicate is true in the sequence"
|
---|
500 | return sum(imap(pred, seq))
|
---|
501 |
|
---|
502 | def padnone(seq):
|
---|
503 | """Returns the sequence elements and then returns None indefinitely.
|
---|
504 |
|
---|
505 | Useful for emulating the behavior of the built-in map() function.
|
---|
506 | """
|
---|
507 | return chain(seq, repeat(None))
|
---|
508 |
|
---|
509 | def ncycles(seq, n):
|
---|
510 | "Returns the sequence elements n times"
|
---|
511 | return chain(*repeat(seq, n))
|
---|
512 |
|
---|
513 | def dotproduct(vec1, vec2):
|
---|
514 | return sum(imap(operator.mul, vec1, vec2))
|
---|
515 |
|
---|
516 | def flatten(listOfLists):
|
---|
517 | return list(chain(*listOfLists))
|
---|
518 |
|
---|
519 | def repeatfunc(func, times=None, *args):
|
---|
520 | """Repeat calls to func with specified arguments.
|
---|
521 |
|
---|
522 | Example: repeatfunc(random.random)
|
---|
523 | """
|
---|
524 | if times is None:
|
---|
525 | return starmap(func, repeat(args))
|
---|
526 | else:
|
---|
527 | return starmap(func, repeat(args, times))
|
---|
528 |
|
---|
529 | def pairwise(iterable):
|
---|
530 | "s -> (s0,s1), (s1,s2), (s2, s3), ..."
|
---|
531 | a, b = tee(iterable)
|
---|
532 | try:
|
---|
533 | b.next()
|
---|
534 | except StopIteration:
|
---|
535 | pass
|
---|
536 | return izip(a, b)
|
---|
537 |
|
---|
538 | def grouper(n, iterable, padvalue=None):
|
---|
539 | "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
|
---|
540 | return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
|
---|
541 |
|
---|
542 |
|
---|
543 | \end{verbatim}
|
---|