source: vendor/python/2.5/Doc/lib/libfuncs.tex

Last change on this file was 3225, checked in by bird, 18 years ago

Python 2.5

File size: 59.6 KB
Line 
1\section{Built-in Functions \label{built-in-funcs}}
2
3The Python interpreter has a number of functions built into it that
4are always available. They are listed here in alphabetical order.
5
6
7\setindexsubitem{(built-in function)}
8
9\begin{funcdesc}{__import__}{name\optional{, globals\optional{, locals\optional{, fromlist\optional{, level}}}}}
10 This function is invoked by the \keyword{import}\stindex{import}
11 statement. It mainly exists so that you can replace it with another
12 function that has a compatible interface, in order to change the
13 semantics of the \keyword{import} statement. For examples of why
14 and how you would do this, see the standard library modules
15 \module{ihooks}\refstmodindex{ihooks} and
16 \refmodule{rexec}\refstmodindex{rexec}. See also the built-in
17 module \refmodule{imp}\refbimodindex{imp}, which defines some useful
18 operations out of which you can build your own
19 \function{__import__()} function.
20
21 For example, the statement \samp{import spam} results in the
22 following call: \code{__import__('spam',} \code{globals(),}
23 \code{locals(), [], -1)}; the statement \samp{from spam.ham import eggs}
24 results in \samp{__import__('spam.ham', globals(), locals(),
25 ['eggs'], -1)}. Note that even though \code{locals()} and
26 \code{['eggs']} are passed in as arguments, the
27 \function{__import__()} function does not set the local variable
28 named \code{eggs}; this is done by subsequent code that is generated
29 for the import statement. (In fact, the standard implementation
30 does not use its \var{locals} argument at all, and uses its
31 \var{globals} only to determine the package context of the
32 \keyword{import} statement.)
33
34 When the \var{name} variable is of the form \code{package.module},
35 normally, the top-level package (the name up till the first dot) is
36 returned, \emph{not} the module named by \var{name}. However, when
37 a non-empty \var{fromlist} argument is given, the module named by
38 \var{name} is returned. This is done for compatibility with the
39 bytecode generated for the different kinds of import statement; when
40 using \samp{import spam.ham.eggs}, the top-level package \module{spam}
41 must be placed in the importing namespace, but when using \samp{from
42 spam.ham import eggs}, the \code{spam.ham} subpackage must be used
43 to find the \code{eggs} variable. As a workaround for this
44 behavior, use \function{getattr()} to extract the desired
45 components. For example, you could define the following helper:
46
47\begin{verbatim}
48def my_import(name):
49 mod = __import__(name)
50 components = name.split('.')
51 for comp in components[1:]:
52 mod = getattr(mod, comp)
53 return mod
54\end{verbatim}
55
56 \var{level} specifies whether to use absolute or relative imports.
57 The default is \code{-1} which indicates both absolute and relative
58 imports will be attempted. \code{0} means only perform absolute imports.
59 Positive values for \var{level} indicate the number of parent directories
60 to search relative to the directory of the module calling
61 \function{__import__}.
62\versionchanged[The level parameter was added]{2.5}
63\versionchanged[Keyword support for parameters was added]{2.5}
64\end{funcdesc}
65
66\begin{funcdesc}{abs}{x}
67 Return the absolute value of a number. The argument may be a plain
68 or long integer or a floating point number. If the argument is a
69 complex number, its magnitude is returned.
70\end{funcdesc}
71
72\begin{funcdesc}{all}{iterable}
73 Return True if all elements of the \var{iterable} are true.
74 Equivalent to:
75 \begin{verbatim}
76 def all(iterable):
77 for element in iterable:
78 if not element:
79 return False
80 return True
81 \end{verbatim}
82 \versionadded{2.5}
83\end{funcdesc}
84
85\begin{funcdesc}{any}{iterable}
86 Return True if any element of the \var{iterable} is true.
87 Equivalent to:
88 \begin{verbatim}
89 def any(iterable):
90 for element in iterable:
91 if element:
92 return True
93 return False
94 \end{verbatim}
95 \versionadded{2.5}
96\end{funcdesc}
97
98\begin{funcdesc}{basestring}{}
99 This abstract type is the superclass for \class{str} and \class{unicode}.
100 It cannot be called or instantiated, but it can be used to test whether
101 an object is an instance of \class{str} or \class{unicode}.
102 \code{isinstance(obj, basestring)} is equivalent to
103 \code{isinstance(obj, (str, unicode))}.
104 \versionadded{2.3}
105\end{funcdesc}
106
107\begin{funcdesc}{bool}{\optional{x}}
108 Convert a value to a Boolean, using the standard truth testing
109 procedure. If \var{x} is false or omitted, this returns
110 \constant{False}; otherwise it returns \constant{True}.
111 \class{bool} is also a class, which is a subclass of \class{int}.
112 Class \class{bool} cannot be subclassed further. Its only instances
113 are \constant{False} and \constant{True}.
114
115 \indexii{Boolean}{type}
116 \versionadded{2.2.1}
117 \versionchanged[If no argument is given, this function returns
118 \constant{False}]{2.3}
119\end{funcdesc}
120
121\begin{funcdesc}{callable}{object}
122 Return true if the \var{object} argument appears callable, false if
123 not. If this returns true, it is still possible that a call fails,
124 but if it is false, calling \var{object} will never succeed. Note
125 that classes are callable (calling a class returns a new instance);
126 class instances are callable if they have a \method{__call__()}
127 method.
128\end{funcdesc}
129
130\begin{funcdesc}{chr}{i}
131 Return a string of one character whose \ASCII{} code is the integer
132 \var{i}. For example, \code{chr(97)} returns the string \code{'a'}.
133 This is the inverse of \function{ord()}. The argument must be in
134 the range [0..255], inclusive; \exception{ValueError} will be raised
135 if \var{i} is outside that range.
136\end{funcdesc}
137
138\begin{funcdesc}{classmethod}{function}
139 Return a class method for \var{function}.
140
141 A class method receives the class as implicit first argument,
142 just like an instance method receives the instance.
143 To declare a class method, use this idiom:
144
145\begin{verbatim}
146class C:
147 @classmethod
148 def f(cls, arg1, arg2, ...): ...
149\end{verbatim}
150
151 The \code{@classmethod} form is a function decorator -- see the description
152 of function definitions in chapter 7 of the
153 \citetitle[../ref/ref.html]{Python Reference Manual} for details.
154
155 It can be called either on the class (such as \code{C.f()}) or on an
156 instance (such as \code{C().f()}). The instance is ignored except for
157 its class.
158 If a class method is called for a derived class, the derived class
159 object is passed as the implied first argument.
160
161 Class methods are different than \Cpp{} or Java static methods.
162 If you want those, see \function{staticmethod()} in this section.
163
164 For more information on class methods, consult the documentation on the
165 standard type hierarchy in chapter 3 of the
166 \citetitle[../ref/types.html]{Python Reference Manual} (at the bottom).
167 \versionadded{2.2}
168 \versionchanged[Function decorator syntax added]{2.4}
169\end{funcdesc}
170
171\begin{funcdesc}{cmp}{x, y}
172 Compare the two objects \var{x} and \var{y} and return an integer
173 according to the outcome. The return value is negative if \code{\var{x}
174 < \var{y}}, zero if \code{\var{x} == \var{y}} and strictly positive if
175 \code{\var{x} > \var{y}}.
176\end{funcdesc}
177
178\begin{funcdesc}{compile}{string, filename, kind\optional{,
179 flags\optional{, dont_inherit}}}
180 Compile the \var{string} into a code object. Code objects can be
181 executed by an \keyword{exec} statement or evaluated by a call to
182 \function{eval()}. The \var{filename} argument should
183 give the file from which the code was read; pass some recognizable value
184 if it wasn't read from a file (\code{'<string>'} is commonly used).
185 The \var{kind} argument specifies what kind of code must be
186 compiled; it can be \code{'exec'} if \var{string} consists of a
187 sequence of statements, \code{'eval'} if it consists of a single
188 expression, or \code{'single'} if it consists of a single
189 interactive statement (in the latter case, expression statements
190 that evaluate to something else than \code{None} will be printed).
191
192 When compiling multi-line statements, two caveats apply: line
193 endings must be represented by a single newline character
194 (\code{'\e n'}), and the input must be terminated by at least one
195 newline character. If line endings are represented by
196 \code{'\e r\e n'}, use the string \method{replace()} method to
197 change them into \code{'\e n'}.
198
199 The optional arguments \var{flags} and \var{dont_inherit}
200 (which are new in Python 2.2) control which future statements (see
201 \pep{236}) affect the compilation of \var{string}. If neither is
202 present (or both are zero) the code is compiled with those future
203 statements that are in effect in the code that is calling compile.
204 If the \var{flags} argument is given and \var{dont_inherit} is not
205 (or is zero) then the future statements specified by the \var{flags}
206 argument are used in addition to those that would be used anyway.
207 If \var{dont_inherit} is a non-zero integer then the \var{flags}
208 argument is it -- the future statements in effect around the call to
209 compile are ignored.
210
211 Future statements are specified by bits which can be bitwise or-ed
212 together to specify multiple statements. The bitfield required to
213 specify a given feature can be found as the \member{compiler_flag}
214 attribute on the \class{_Feature} instance in the
215 \module{__future__} module.
216\end{funcdesc}
217
218\begin{funcdesc}{complex}{\optional{real\optional{, imag}}}
219 Create a complex number with the value \var{real} + \var{imag}*j or
220 convert a string or number to a complex number. If the first
221 parameter is a string, it will be interpreted as a complex number
222 and the function must be called without a second parameter. The
223 second parameter can never be a string.
224 Each argument may be any numeric type (including complex).
225 If \var{imag} is omitted, it defaults to zero and the function
226 serves as a numeric conversion function like \function{int()},
227 \function{long()} and \function{float()}. If both arguments
228 are omitted, returns \code{0j}.
229\end{funcdesc}
230
231\begin{funcdesc}{delattr}{object, name}
232 This is a relative of \function{setattr()}. The arguments are an
233 object and a string. The string must be the name
234 of one of the object's attributes. The function deletes
235 the named attribute, provided the object allows it. For example,
236 \code{delattr(\var{x}, '\var{foobar}')} is equivalent to
237 \code{del \var{x}.\var{foobar}}.
238\end{funcdesc}
239
240\begin{funcdesc}{dict}{\optional{mapping-or-sequence}}
241 Return a new dictionary initialized from an optional positional
242 argument or from a set of keyword arguments.
243 If no arguments are given, return a new empty dictionary.
244 If the positional argument is a mapping object, return a dictionary
245 mapping the same keys to the same values as does the mapping object.
246 Otherwise the positional argument must be a sequence, a container that
247 supports iteration, or an iterator object. The elements of the argument
248 must each also be of one of those kinds, and each must in turn contain
249 exactly two objects. The first is used as a key in the new dictionary,
250 and the second as the key's value. If a given key is seen more than
251 once, the last value associated with it is retained in the new
252 dictionary.
253
254 If keyword arguments are given, the keywords themselves with their
255 associated values are added as items to the dictionary. If a key
256 is specified both in the positional argument and as a keyword argument,
257 the value associated with the keyword is retained in the dictionary.
258 For example, these all return a dictionary equal to
259 \code{\{"one": 2, "two": 3\}}:
260
261 \begin{itemize}
262 \item \code{dict(\{'one': 2, 'two': 3\})}
263 \item \code{dict(\{'one': 2, 'two': 3\}.items())}
264 \item \code{dict(\{'one': 2, 'two': 3\}.iteritems())}
265 \item \code{dict(zip(('one', 'two'), (2, 3)))}
266 \item \code{dict([['two', 3], ['one', 2]])}
267 \item \code{dict(one=2, two=3)}
268 \item \code{dict([(['one', 'two'][i-2], i) for i in (2, 3)])}
269 \end{itemize}
270
271 \versionadded{2.2}
272 \versionchanged[Support for building a dictionary from keyword
273 arguments added]{2.3}
274\end{funcdesc}
275
276\begin{funcdesc}{dir}{\optional{object}}
277 Without arguments, return the list of names in the current local
278 symbol table. With an argument, attempts to return a list of valid
279 attributes for that object. This information is gleaned from the
280 object's \member{__dict__} attribute, if defined, and from the class
281 or type object. The list is not necessarily complete.
282 If the object is a module object, the list contains the names of the
283 module's attributes.
284 If the object is a type or class object,
285 the list contains the names of its attributes,
286 and recursively of the attributes of its bases.
287 Otherwise, the list contains the object's attributes' names,
288 the names of its class's attributes,
289 and recursively of the attributes of its class's base classes.
290 The resulting list is sorted alphabetically.
291 For example:
292
293\begin{verbatim}
294>>> import struct
295>>> dir()
296['__builtins__', '__doc__', '__name__', 'struct']
297>>> dir(struct)
298['__doc__', '__name__', 'calcsize', 'error', 'pack', 'unpack']
299\end{verbatim}
300
301 \note{Because \function{dir()} is supplied primarily as a convenience
302 for use at an interactive prompt,
303 it tries to supply an interesting set of names more than it tries to
304 supply a rigorously or consistently defined set of names,
305 and its detailed behavior may change across releases.}
306\end{funcdesc}
307
308\begin{funcdesc}{divmod}{a, b}
309 Take two (non complex) numbers as arguments and return a pair of numbers
310 consisting of their quotient and remainder when using long division. With
311 mixed operand types, the rules for binary arithmetic operators apply. For
312 plain and long integers, the result is the same as
313 \code{(\var{a} // \var{b}, \var{a} \%{} \var{b})}.
314 For floating point numbers the result is \code{(\var{q}, \var{a} \%{}
315 \var{b})}, where \var{q} is usually \code{math.floor(\var{a} /
316 \var{b})} but may be 1 less than that. In any case \code{\var{q} *
317 \var{b} + \var{a} \%{} \var{b}} is very close to \var{a}, if
318 \code{\var{a} \%{} \var{b}} is non-zero it has the same sign as
319 \var{b}, and \code{0 <= abs(\var{a} \%{} \var{b}) < abs(\var{b})}.
320
321 \versionchanged[Using \function{divmod()} with complex numbers is
322 deprecated]{2.3}
323\end{funcdesc}
324
325\begin{funcdesc}{enumerate}{iterable}
326 Return an enumerate object. \var{iterable} must be a sequence, an
327 iterator, or some other object which supports iteration. The
328 \method{next()} method of the iterator returned by
329 \function{enumerate()} returns a tuple containing a count (from
330 zero) and the corresponding value obtained from iterating over
331 \var{iterable}. \function{enumerate()} is useful for obtaining an
332 indexed series: \code{(0, seq[0])}, \code{(1, seq[1])}, \code{(2,
333 seq[2])}, \ldots.
334 \versionadded{2.3}
335\end{funcdesc}
336
337\begin{funcdesc}{eval}{expression\optional{, globals\optional{, locals}}}
338 The arguments are a string and optional globals and locals. If provided,
339 \var{globals} must be a dictionary. If provided, \var{locals} can be
340 any mapping object. \versionchanged[formerly \var{locals} was required
341 to be a dictionary]{2.4}
342
343 The \var{expression} argument is parsed and evaluated as a Python
344 expression (technically speaking, a condition list) using the
345 \var{globals} and \var{locals} dictionaries as global and local name
346 space. If the \var{globals} dictionary is present and lacks
347 '__builtins__', the current globals are copied into \var{globals} before
348 \var{expression} is parsed. This means that \var{expression}
349 normally has full access to the standard
350 \refmodule[builtin]{__builtin__} module and restricted environments
351 are propagated. If the \var{locals} dictionary is omitted it defaults to
352 the \var{globals} dictionary. If both dictionaries are omitted, the
353 expression is executed in the environment where \keyword{eval} is
354 called. The return value is the result of the evaluated expression.
355 Syntax errors are reported as exceptions. Example:
356
357\begin{verbatim}
358>>> x = 1
359>>> print eval('x+1')
3602
361\end{verbatim}
362
363 This function can also be used to execute arbitrary code objects
364 (such as those created by \function{compile()}). In this case pass
365 a code object instead of a string. The code object must have been
366 compiled passing \code{'eval'} as the \var{kind} argument.
367
368 Hints: dynamic execution of statements is supported by the
369 \keyword{exec} statement. Execution of statements from a file is
370 supported by the \function{execfile()} function. The
371 \function{globals()} and \function{locals()} functions returns the
372 current global and local dictionary, respectively, which may be
373 useful to pass around for use by \function{eval()} or
374 \function{execfile()}.
375\end{funcdesc}
376
377\begin{funcdesc}{execfile}{filename\optional{, globals\optional{, locals}}}
378 This function is similar to the
379 \keyword{exec} statement, but parses a file instead of a string. It
380 is different from the \keyword{import} statement in that it does not
381 use the module administration --- it reads the file unconditionally
382 and does not create a new module.\footnote{It is used relatively
383 rarely so does not warrant being made into a statement.}
384
385 The arguments are a file name and two optional dictionaries. The file is
386 parsed and evaluated as a sequence of Python statements (similarly to a
387 module) using the \var{globals} and \var{locals} dictionaries as global and
388 local namespace. If provided, \var{locals} can be any mapping object.
389 \versionchanged[formerly \var{locals} was required to be a dictionary]{2.4}
390 If the \var{locals} dictionary is omitted it defaults to the \var{globals}
391 dictionary. If both dictionaries are omitted, the expression is executed in
392 the environment where \function{execfile()} is called. The return value is
393 \code{None}.
394
395 \warning{The default \var{locals} act as described for function
396 \function{locals()} below: modifications to the default \var{locals}
397 dictionary should not be attempted. Pass an explicit \var{locals}
398 dictionary if you need to see effects of the code on \var{locals} after
399 function \function{execfile()} returns. \function{execfile()} cannot
400 be used reliably to modify a function's locals.}
401\end{funcdesc}
402
403\begin{funcdesc}{file}{filename\optional{, mode\optional{, bufsize}}}
404 Constructor function for the \class{file} type, described further
405 in section~\ref{bltin-file-objects}, ``\ulink{File
406 Objects}{bltin-file-objects.html}''. The constructor's arguments
407 are the same as those of the \function{open()} built-in function
408 described below.
409
410 When opening a file, it's preferable to use \function{open()} instead of
411 invoking this constructor directly. \class{file} is more suited to
412 type testing (for example, writing \samp{isinstance(f, file)}).
413
414 \versionadded{2.2}
415\end{funcdesc}
416
417\begin{funcdesc}{filter}{function, list}
418 Construct a list from those elements of \var{list} for which
419 \var{function} returns true. \var{list} may be either a sequence, a
420 container which supports iteration, or an iterator, If \var{list}
421 is a string or a tuple, the result
422 also has that type; otherwise it is always a list. If \var{function} is
423 \code{None}, the identity function is assumed, that is, all elements of
424 \var{list} that are false are removed.
425
426 Note that \code{filter(function, \var{list})} is equivalent to
427 \code{[item for item in \var{list} if function(item)]} if function is
428 not \code{None} and \code{[item for item in \var{list} if item]} if
429 function is \code{None}.
430\end{funcdesc}
431
432\begin{funcdesc}{float}{\optional{x}}
433 Convert a string or a number to floating point. If the argument is a
434 string, it must contain a possibly signed decimal or floating point
435 number, possibly embedded in whitespace. Otherwise, the argument may be a plain
436 or long integer or a floating point number, and a floating point
437 number with the same value (within Python's floating point
438 precision) is returned. If no argument is given, returns \code{0.0}.
439
440 \note{When passing in a string, values for NaN\index{NaN}
441 and Infinity\index{Infinity} may be returned, depending on the
442 underlying C library. The specific set of strings accepted which
443 cause these values to be returned depends entirely on the C library
444 and is known to vary.}
445\end{funcdesc}
446
447\begin{funcdesc}{frozenset}{\optional{iterable}}
448 Return a frozenset object whose elements are taken from \var{iterable}.
449 Frozensets are sets that have no update methods but can be hashed and
450 used as members of other sets or as dictionary keys. The elements of
451 a frozenset must be immutable themselves. To represent sets of sets,
452 the inner sets should also be \class{frozenset} objects. If
453 \var{iterable} is not specified, returns a new empty set,
454 \code{frozenset([])}.
455 \versionadded{2.4}
456\end{funcdesc}
457
458\begin{funcdesc}{getattr}{object, name\optional{, default}}
459 Return the value of the named attributed of \var{object}. \var{name}
460 must be a string. If the string is the name of one of the object's
461 attributes, the result is the value of that attribute. For example,
462 \code{getattr(x, 'foobar')} is equivalent to \code{x.foobar}. If the
463 named attribute does not exist, \var{default} is returned if provided,
464 otherwise \exception{AttributeError} is raised.
465\end{funcdesc}
466
467\begin{funcdesc}{globals}{}
468 Return a dictionary representing the current global symbol table.
469 This is always the dictionary of the current module (inside a
470 function or method, this is the module where it is defined, not the
471 module from which it is called).
472\end{funcdesc}
473
474\begin{funcdesc}{hasattr}{object, name}
475 The arguments are an object and a string. The result is \code{True} if the
476 string is the name of one of the object's attributes, \code{False} if not.
477 (This is implemented by calling \code{getattr(\var{object},
478 \var{name})} and seeing whether it raises an exception or not.)
479\end{funcdesc}
480
481\begin{funcdesc}{hash}{object}
482 Return the hash value of the object (if it has one). Hash values
483 are integers. They are used to quickly compare dictionary
484 keys during a dictionary lookup. Numeric values that compare equal
485 have the same hash value (even if they are of different types, as is
486 the case for 1 and 1.0).
487\end{funcdesc}
488
489\begin{funcdesc}{help}{\optional{object}}
490 Invoke the built-in help system. (This function is intended for
491 interactive use.) If no argument is given, the interactive help
492 system starts on the interpreter console. If the argument is a
493 string, then the string is looked up as the name of a module,
494 function, class, method, keyword, or documentation topic, and a
495 help page is printed on the console. If the argument is any other
496 kind of object, a help page on the object is generated.
497 \versionadded{2.2}
498\end{funcdesc}
499
500\begin{funcdesc}{hex}{x}
501 Convert an integer number (of any size) to a hexadecimal string.
502 The result is a valid Python expression.
503 \versionchanged[Formerly only returned an unsigned literal]{2.4}
504\end{funcdesc}
505
506\begin{funcdesc}{id}{object}
507 Return the ``identity'' of an object. This is an integer (or long
508 integer) which is guaranteed to be unique and constant for this
509 object during its lifetime. Two objects with non-overlapping lifetimes
510 may have the same \function{id()} value. (Implementation
511 note: this is the address of the object.)
512\end{funcdesc}
513
514\begin{funcdesc}{input}{\optional{prompt}}
515 Equivalent to \code{eval(raw_input(\var{prompt}))}.
516 \warning{This function is not safe from user errors! It
517 expects a valid Python expression as input; if the input is not
518 syntactically valid, a \exception{SyntaxError} will be raised.
519 Other exceptions may be raised if there is an error during
520 evaluation. (On the other hand, sometimes this is exactly what you
521 need when writing a quick script for expert use.)}
522
523 If the \refmodule{readline} module was loaded, then
524 \function{input()} will use it to provide elaborate line editing and
525 history features.
526
527 Consider using the \function{raw_input()} function for general input
528 from users.
529\end{funcdesc}
530
531\begin{funcdesc}{int}{\optional{x\optional{, radix}}}
532 Convert a string or number to a plain integer. If the argument is a
533 string, it must contain a possibly signed decimal number
534 representable as a Python integer, possibly embedded in whitespace.
535 The \var{radix} parameter gives the base for the
536 conversion and may be any integer in the range [2, 36], or zero. If
537 \var{radix} is zero, the proper radix is guessed based on the
538 contents of string; the interpretation is the same as for integer
539 literals. If \var{radix} is specified and \var{x} is not a string,
540 \exception{TypeError} is raised.
541 Otherwise, the argument may be a plain or
542 long integer or a floating point number. Conversion of floating
543 point numbers to integers truncates (towards zero).
544 If the argument is outside the integer range a long object will
545 be returned instead. If no arguments are given, returns \code{0}.
546\end{funcdesc}
547
548\begin{funcdesc}{isinstance}{object, classinfo}
549 Return true if the \var{object} argument is an instance of the
550 \var{classinfo} argument, or of a (direct or indirect) subclass
551 thereof. Also return true if \var{classinfo} is a type object and
552 \var{object} is an object of that type. If \var{object} is not a
553 class instance or an object of the given type, the function always
554 returns false. If \var{classinfo} is neither a class object nor a
555 type object, it may be a tuple of class or type objects, or may
556 recursively contain other such tuples (other sequence types are not
557 accepted). If \var{classinfo} is not a class, type, or tuple of
558 classes, types, and such tuples, a \exception{TypeError} exception
559 is raised.
560 \versionchanged[Support for a tuple of type information was added]{2.2}
561\end{funcdesc}
562
563\begin{funcdesc}{issubclass}{class, classinfo}
564 Return true if \var{class} is a subclass (direct or indirect) of
565 \var{classinfo}. A class is considered a subclass of itself.
566 \var{classinfo} may be a tuple of class objects, in which case every
567 entry in \var{classinfo} will be checked. In any other case, a
568 \exception{TypeError} exception is raised.
569 \versionchanged[Support for a tuple of type information was added]{2.3}
570\end{funcdesc}
571
572\begin{funcdesc}{iter}{o\optional{, sentinel}}
573 Return an iterator object. The first argument is interpreted very
574 differently depending on the presence of the second argument.
575 Without a second argument, \var{o} must be a collection object which
576 supports the iteration protocol (the \method{__iter__()} method), or
577 it must support the sequence protocol (the \method{__getitem__()}
578 method with integer arguments starting at \code{0}). If it does not
579 support either of those protocols, \exception{TypeError} is raised.
580 If the second argument, \var{sentinel}, is given, then \var{o} must
581 be a callable object. The iterator created in this case will call
582 \var{o} with no arguments for each call to its \method{next()}
583 method; if the value returned is equal to \var{sentinel},
584 \exception{StopIteration} will be raised, otherwise the value will
585 be returned.
586 \versionadded{2.2}
587\end{funcdesc}
588
589\begin{funcdesc}{len}{s}
590 Return the length (the number of items) of an object. The argument
591 may be a sequence (string, tuple or list) or a mapping (dictionary).
592\end{funcdesc}
593
594\begin{funcdesc}{list}{\optional{sequence}}
595 Return a list whose items are the same and in the same order as
596 \var{sequence}'s items. \var{sequence} may be either a sequence, a
597 container that supports iteration, or an iterator object. If
598 \var{sequence} is already a list, a copy is made and returned,
599 similar to \code{\var{sequence}[:]}. For instance,
600 \code{list('abc')} returns \code{['a', 'b', 'c']} and \code{list(
601 (1, 2, 3) )} returns \code{[1, 2, 3]}. If no argument is given,
602 returns a new empty list, \code{[]}.
603\end{funcdesc}
604
605\begin{funcdesc}{locals}{}
606 Update and return a dictionary representing the current local symbol table.
607 \warning{The contents of this dictionary should not be modified;
608 changes may not affect the values of local variables used by the
609 interpreter.}
610\end{funcdesc}
611
612\begin{funcdesc}{long}{\optional{x\optional{, radix}}}
613 Convert a string or number to a long integer. If the argument is a
614 string, it must contain a possibly signed number of
615 arbitrary size, possibly embedded in whitespace. The
616 \var{radix} argument is interpreted in the same way as for
617 \function{int()}, and may only be given when \var{x} is a string.
618 Otherwise, the argument may be a plain or
619 long integer or a floating point number, and a long integer with
620 the same value is returned. Conversion of floating
621 point numbers to integers truncates (towards zero). If no arguments
622 are given, returns \code{0L}.
623\end{funcdesc}
624
625\begin{funcdesc}{map}{function, list, ...}
626 Apply \var{function} to every item of \var{list} and return a list
627 of the results. If additional \var{list} arguments are passed,
628 \var{function} must take that many arguments and is applied to the
629 items of all lists in parallel; if a list is shorter than another it
630 is assumed to be extended with \code{None} items. If \var{function}
631 is \code{None}, the identity function is assumed; if there are
632 multiple list arguments, \function{map()} returns a list consisting
633 of tuples containing the corresponding items from all lists (a kind
634 of transpose operation). The \var{list} arguments may be any kind
635 of sequence; the result is always a list.
636\end{funcdesc}
637
638\begin{funcdesc}{max}{s\optional{, args...}\optional{key}}
639 With a single argument \var{s}, return the largest item of a
640 non-empty sequence (such as a string, tuple or list). With more
641 than one argument, return the largest of the arguments.
642
643 The optional \var{key} argument specifies a one-argument ordering
644 function like that used for \method{list.sort()}. The \var{key}
645 argument, if supplied, must be in keyword form (for example,
646 \samp{max(a,b,c,key=func)}).
647 \versionchanged[Added support for the optional \var{key} argument]{2.5}
648\end{funcdesc}
649
650\begin{funcdesc}{min}{s\optional{, args...}\optional{key}}
651 With a single argument \var{s}, return the smallest item of a
652 non-empty sequence (such as a string, tuple or list). With more
653 than one argument, return the smallest of the arguments.
654
655 The optional \var{key} argument specifies a one-argument ordering
656 function like that used for \method{list.sort()}. The \var{key}
657 argument, if supplied, must be in keyword form (for example,
658 \samp{min(a,b,c,key=func)}).
659 \versionchanged[Added support for the optional \var{key} argument]{2.5}
660\end{funcdesc}
661
662\begin{funcdesc}{object}{}
663 Return a new featureless object. \class{object} is a base
664 for all new style classes. It has the methods that are common
665 to all instances of new style classes.
666 \versionadded{2.2}
667
668 \versionchanged[This function does not accept any arguments.
669 Formerly, it accepted arguments but ignored them]{2.3}
670\end{funcdesc}
671
672\begin{funcdesc}{oct}{x}
673 Convert an integer number (of any size) to an octal string. The
674 result is a valid Python expression.
675 \versionchanged[Formerly only returned an unsigned literal]{2.4}
676\end{funcdesc}
677
678\begin{funcdesc}{open}{filename\optional{, mode\optional{, bufsize}}}
679 Open a file, returning an object of the \class{file} type described
680 in section~\ref{bltin-file-objects}, ``\ulink{File
681 Objects}{bltin-file-objects.html}''. If the file cannot be opened,
682 \exception{IOError} is raised. When opening a file, it's
683 preferable to use \function{open()} instead of invoking the
684 \class{file} constructor directly.
685
686 The first two arguments are the same as for \code{stdio}'s
687 \cfunction{fopen()}: \var{filename} is the file name to be opened,
688 and \var{mode} is a string indicating how the file is to be opened.
689
690 The most commonly-used values of \var{mode} are \code{'r'} for
691 reading, \code{'w'} for writing (truncating the file if it already
692 exists), and \code{'a'} for appending (which on \emph{some} \UNIX{}
693 systems means that \emph{all} writes append to the end of the file
694 regardless of the current seek position). If \var{mode} is omitted,
695 it defaults to \code{'r'}. When opening a binary file, you should
696 append \code{'b'} to the \var{mode} value to open the file in binary
697 mode, which will improve portability. (Appending \code{'b'} is
698 useful even on systems that don't treat binary and text files
699 differently, where it serves as documentation.) See below for more
700 possible values of \var{mode}.
701
702 \index{line-buffered I/O}\index{unbuffered I/O}\index{buffer size, I/O}
703 \index{I/O control!buffering}
704 The optional \var{bufsize} argument specifies the
705 file's desired buffer size: 0 means unbuffered, 1 means line
706 buffered, any other positive value means use a buffer of
707 (approximately) that size. A negative \var{bufsize} means to use
708 the system default, which is usually line buffered for tty
709 devices and fully buffered for other files. If omitted, the system
710 default is used.\footnote{
711 Specifying a buffer size currently has no effect on systems that
712 don't have \cfunction{setvbuf()}. The interface to specify the
713 buffer size is not done using a method that calls
714 \cfunction{setvbuf()}, because that may dump core when called
715 after any I/O has been performed, and there's no reliable way to
716 determine whether this is the case.}
717
718 Modes \code{'r+'}, \code{'w+'} and \code{'a+'} open the file for
719 updating (note that \code{'w+'} truncates the file). Append
720 \code{'b'} to the mode to open the file in binary mode, on systems
721 that differentiate between binary and text files; on systems
722 that don't have this distinction, adding the \code{'b'} has no effect.
723
724 In addition to the standard \cfunction{fopen()} values \var{mode}
725 may be \code{'U'} or \code{'rU'}. Python is usually built with universal
726 newline support; supplying \code{'U'} opens the file as a text file, but
727 lines may be terminated by any of the following: the \UNIX{} end-of-line
728 convention \code{'\e n'},
729 the Macintosh convention \code{'\e r'}, or the Windows
730 convention \code{'\e r\e n'}. All of these external representations are seen as
731 \code{'\e n'}
732 by the Python program. If Python is built without universal newline support
733 a \var{mode} with \code{'U'} is the same as normal text mode. Note that
734 file objects so opened also have an attribute called
735 \member{newlines} which has a value of \code{None} (if no newlines
736 have yet been seen), \code{'\e n'}, \code{'\e r'}, \code{'\e r\e n'},
737 or a tuple containing all the newline types seen.
738
739 Python enforces that the mode, after stripping \code{'U'}, begins with
740 \code{'r'}, \code{'w'} or \code{'a'}.
741
742 \versionchanged[Restriction on first letter of mode string
743 introduced]{2.5}
744\end{funcdesc}
745
746\begin{funcdesc}{ord}{c}
747 Given a string of length one, return an integer representing the
748 Unicode code point of the character when the argument is a unicode object,
749 or the value of the byte when the argument is an 8-bit string.
750 For example, \code{ord('a')} returns the integer \code{97},
751 \code{ord(u'\e u2020')} returns \code{8224}. This is the inverse of
752 \function{chr()} for 8-bit strings and of \function{unichr()} for unicode
753 objects. If a unicode argument is given and Python was built with
754 UCS2 Unicode, then the character's code point must be in the range
755 [0..65535] inclusive; otherwise the string length is two, and a
756 \exception{TypeError} will be raised.
757\end{funcdesc}
758
759\begin{funcdesc}{pow}{x, y\optional{, z}}
760 Return \var{x} to the power \var{y}; if \var{z} is present, return
761 \var{x} to the power \var{y}, modulo \var{z} (computed more
762 efficiently than \code{pow(\var{x}, \var{y}) \%\ \var{z}}).
763 The two-argument form \code{pow(\var{x}, \var{y})} is equivalent to using
764 the power operator: \code{\var{x}**\var{y}}.
765
766 The arguments must have numeric types. With mixed operand types, the
767 coercion rules for binary arithmetic operators apply. For int and
768 long int operands, the result has the same type as the operands
769 (after coercion) unless the second argument is negative; in that
770 case, all arguments are converted to float and a float result is
771 delivered. For example, \code{10**2} returns \code{100}, but
772 \code{10**-2} returns \code{0.01}. (This last feature was added in
773 Python 2.2. In Python 2.1 and before, if both arguments were of integer
774 types and the second argument was negative, an exception was raised.)
775 If the second argument is negative, the third argument must be omitted.
776 If \var{z} is present, \var{x} and \var{y} must be of integer types,
777 and \var{y} must be non-negative. (This restriction was added in
778 Python 2.2. In Python 2.1 and before, floating 3-argument \code{pow()}
779 returned platform-dependent results depending on floating-point
780 rounding accidents.)
781\end{funcdesc}
782
783\begin{funcdesc}{property}{\optional{fget\optional{, fset\optional{,
784 fdel\optional{, doc}}}}}
785 Return a property attribute for new-style classes (classes that
786 derive from \class{object}).
787
788 \var{fget} is a function for getting an attribute value, likewise
789 \var{fset} is a function for setting, and \var{fdel} a function
790 for del'ing, an attribute. Typical use is to define a managed attribute x:
791
792\begin{verbatim}
793class C(object):
794 def __init__(self): self.__x = None
795 def getx(self): return self._x
796 def setx(self, value): self._x = value
797 def delx(self): del self._x
798 x = property(getx, setx, delx, "I'm the 'x' property.")
799\end{verbatim}
800
801 If given, \var{doc} will be the docstring of the property attribute.
802 Otherwise, the property will copy \var{fget}'s docstring (if it
803 exists). This makes it possible to create read-only properties
804 easily using \function{property()} as a decorator:
805
806\begin{verbatim}
807class Parrot(object):
808 def __init__(self):
809 self._voltage = 100000
810
811 @property
812 def voltage(self):
813 """Get the current voltage."""
814 return self._voltage
815\end{verbatim}
816
817 turns the \method{voltage()} method into a ``getter'' for a read-only
818 attribute with the same name.
819
820 \versionadded{2.2}
821 \versionchanged[Use \var{fget}'s docstring if no \var{doc} given]{2.5}
822\end{funcdesc}
823
824\begin{funcdesc}{range}{\optional{start,} stop\optional{, step}}
825 This is a versatile function to create lists containing arithmetic
826 progressions. It is most often used in \keyword{for} loops. The
827 arguments must be plain integers. If the \var{step} argument is
828 omitted, it defaults to \code{1}. If the \var{start} argument is
829 omitted, it defaults to \code{0}. The full form returns a list of
830 plain integers \code{[\var{start}, \var{start} + \var{step},
831 \var{start} + 2 * \var{step}, \ldots]}. If \var{step} is positive,
832 the last element is the largest \code{\var{start} + \var{i} *
833 \var{step}} less than \var{stop}; if \var{step} is negative, the last
834 element is the smallest \code{\var{start} + \var{i} * \var{step}}
835 greater than \var{stop}. \var{step} must not be zero (or else
836 \exception{ValueError} is raised). Example:
837
838\begin{verbatim}
839>>> range(10)
840[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
841>>> range(1, 11)
842[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
843>>> range(0, 30, 5)
844[0, 5, 10, 15, 20, 25]
845>>> range(0, 10, 3)
846[0, 3, 6, 9]
847>>> range(0, -10, -1)
848[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
849>>> range(0)
850[]
851>>> range(1, 0)
852[]
853\end{verbatim}
854\end{funcdesc}
855
856\begin{funcdesc}{raw_input}{\optional{prompt}}
857 If the \var{prompt} argument is present, it is written to standard output
858 without a trailing newline. The function then reads a line from input,
859 converts it to a string (stripping a trailing newline), and returns that.
860 When \EOF{} is read, \exception{EOFError} is raised. Example:
861
862\begin{verbatim}
863>>> s = raw_input('--> ')
864--> Monty Python's Flying Circus
865>>> s
866"Monty Python's Flying Circus"
867\end{verbatim}
868
869 If the \refmodule{readline} module was loaded, then
870 \function{raw_input()} will use it to provide elaborate
871 line editing and history features.
872\end{funcdesc}
873
874\begin{funcdesc}{reduce}{function, sequence\optional{, initializer}}
875 Apply \var{function} of two arguments cumulatively to the items of
876 \var{sequence}, from left to right, so as to reduce the sequence to
877 a single value. For example, \code{reduce(lambda x, y: x+y, [1, 2,
878 3, 4, 5])} calculates \code{((((1+2)+3)+4)+5)}. The left argument,
879 \var{x}, is the accumulated value and the right argument, \var{y},
880 is the update value from the \var{sequence}. If the optional
881 \var{initializer} is present, it is placed before the items of the
882 sequence in the calculation, and serves as a default when the
883 sequence is empty. If \var{initializer} is not given and
884 \var{sequence} contains only one item, the first item is returned.
885\end{funcdesc}
886
887\begin{funcdesc}{reload}{module}
888 Reload a previously imported \var{module}. The
889 argument must be a module object, so it must have been successfully
890 imported before. This is useful if you have edited the module
891 source file using an external editor and want to try out the new
892 version without leaving the Python interpreter. The return value is
893 the module object (the same as the \var{module} argument).
894
895 When \code{reload(module)} is executed:
896
897\begin{itemize}
898
899 \item Python modules' code is recompiled and the module-level code
900 reexecuted, defining a new set of objects which are bound to names in
901 the module's dictionary. The \code{init} function of extension
902 modules is not called a second time.
903
904 \item As with all other objects in Python the old objects are only
905 reclaimed after their reference counts drop to zero.
906
907 \item The names in the module namespace are updated to point to
908 any new or changed objects.
909
910 \item Other references to the old objects (such as names external
911 to the module) are not rebound to refer to the new objects and
912 must be updated in each namespace where they occur if that is
913 desired.
914
915\end{itemize}
916
917 There are a number of other caveats:
918
919 If a module is syntactically correct but its initialization fails,
920 the first \keyword{import} statement for it does not bind its name
921 locally, but does store a (partially initialized) module object in
922 \code{sys.modules}. To reload the module you must first
923 \keyword{import} it again (this will bind the name to the partially
924 initialized module object) before you can \function{reload()} it.
925
926 When a module is reloaded, its dictionary (containing the module's
927 global variables) is retained. Redefinitions of names will override
928 the old definitions, so this is generally not a problem. If the new
929 version of a module does not define a name that was defined by the
930 old version, the old definition remains. This feature can be used
931 to the module's advantage if it maintains a global table or cache of
932 objects --- with a \keyword{try} statement it can test for the
933 table's presence and skip its initialization if desired:
934
935\begin{verbatim}
936try:
937 cache
938except NameError:
939 cache = {}
940\end{verbatim}
941
942
943 It is legal though generally not very useful to reload built-in or
944 dynamically loaded modules, except for \refmodule{sys},
945 \refmodule[main]{__main__} and \refmodule[builtin]{__builtin__}. In
946 many cases, however, extension modules are not designed to be
947 initialized more than once, and may fail in arbitrary ways when
948 reloaded.
949
950 If a module imports objects from another module using \keyword{from}
951 \ldots{} \keyword{import} \ldots{}, calling \function{reload()} for
952 the other module does not redefine the objects imported from it ---
953 one way around this is to re-execute the \keyword{from} statement,
954 another is to use \keyword{import} and qualified names
955 (\var{module}.\var{name}) instead.
956
957 If a module instantiates instances of a class, reloading the module
958 that defines the class does not affect the method definitions of the
959 instances --- they continue to use the old class definition. The
960 same is true for derived classes.
961\end{funcdesc}
962
963\begin{funcdesc}{repr}{object}
964 Return a string containing a printable representation of an object.
965 This is the same value yielded by conversions (reverse quotes).
966 It is sometimes useful to be able to access this operation as an
967 ordinary function. For many types, this function makes an attempt
968 to return a string that would yield an object with the same value
969 when passed to \function{eval()}.
970\end{funcdesc}
971
972\begin{funcdesc}{reversed}{seq}
973 Return a reverse iterator. \var{seq} must be an object which
974 supports the sequence protocol (the __len__() method and the
975 \method{__getitem__()} method with integer arguments starting at
976 \code{0}).
977 \versionadded{2.4}
978\end{funcdesc}
979
980\begin{funcdesc}{round}{x\optional{, n}}
981 Return the floating point value \var{x} rounded to \var{n} digits
982 after the decimal point. If \var{n} is omitted, it defaults to zero.
983 The result is a floating point number. Values are rounded to the
984 closest multiple of 10 to the power minus \var{n}; if two multiples
985 are equally close, rounding is done away from 0 (so. for example,
986 \code{round(0.5)} is \code{1.0} and \code{round(-0.5)} is \code{-1.0}).
987\end{funcdesc}
988
989\begin{funcdesc}{set}{\optional{iterable}}
990 Return a set whose elements are taken from \var{iterable}. The elements
991 must be immutable. To represent sets of sets, the inner sets should
992 be \class{frozenset} objects. If \var{iterable} is not specified,
993 returns a new empty set, \code{set([])}.
994 \versionadded{2.4}
995\end{funcdesc}
996
997\begin{funcdesc}{setattr}{object, name, value}
998 This is the counterpart of \function{getattr()}. The arguments are an
999 object, a string and an arbitrary value. The string may name an
1000 existing attribute or a new attribute. The function assigns the
1001 value to the attribute, provided the object allows it. For example,
1002 \code{setattr(\var{x}, '\var{foobar}', 123)} is equivalent to
1003 \code{\var{x}.\var{foobar} = 123}.
1004\end{funcdesc}
1005
1006\begin{funcdesc}{slice}{\optional{start,} stop\optional{, step}}
1007 Return a slice object representing the set of indices specified by
1008 \code{range(\var{start}, \var{stop}, \var{step})}. The \var{start}
1009 and \var{step} arguments default to \code{None}. Slice objects have
1010 read-only data attributes \member{start}, \member{stop} and
1011 \member{step} which merely return the argument values (or their
1012 default). They have no other explicit functionality; however they
1013 are used by Numerical Python\index{Numerical Python} and other third
1014 party extensions. Slice objects are also generated when extended
1015 indexing syntax is used. For example: \samp{a[start:stop:step]} or
1016 \samp{a[start:stop, i]}.
1017\end{funcdesc}
1018
1019\begin{funcdesc}{sorted}{iterable\optional{, cmp\optional{,
1020 key\optional{, reverse}}}}
1021 Return a new sorted list from the items in \var{iterable}.
1022
1023 The optional arguments \var{cmp}, \var{key}, and \var{reverse} have
1024 the same meaning as those for the \method{list.sort()} method
1025 (described in section~\ref{typesseq-mutable}).
1026
1027 \var{cmp} specifies a custom comparison function of two arguments
1028 (iterable elements) which should return a negative, zero or positive
1029 number depending on whether the first argument is considered smaller
1030 than, equal to, or larger than the second argument:
1031 \samp{\var{cmp}=\keyword{lambda} \var{x},\var{y}:
1032 \function{cmp}(x.lower(), y.lower())}
1033
1034 \var{key} specifies a function of one argument that is used to
1035 extract a comparison key from each list element:
1036 \samp{\var{key}=\function{str.lower}}
1037
1038 \var{reverse} is a boolean value. If set to \code{True}, then the
1039 list elements are sorted as if each comparison were reversed.
1040
1041 In general, the \var{key} and \var{reverse} conversion processes are
1042 much faster than specifying an equivalent \var{cmp} function. This is
1043 because \var{cmp} is called multiple times for each list element while
1044 \var{key} and \var{reverse} touch each element only once.
1045
1046 \versionadded{2.4}
1047\end{funcdesc}
1048
1049\begin{funcdesc}{staticmethod}{function}
1050 Return a static method for \var{function}.
1051
1052 A static method does not receive an implicit first argument.
1053 To declare a static method, use this idiom:
1054
1055\begin{verbatim}
1056class C:
1057 @staticmethod
1058 def f(arg1, arg2, ...): ...
1059\end{verbatim}
1060
1061 The \code{@staticmethod} form is a function decorator -- see the description
1062 of function definitions in chapter 7 of the
1063 \citetitle[../ref/function.html]{Python Reference Manual} for details.
1064
1065 It can be called either on the class (such as \code{C.f()}) or on an
1066 instance (such as \code{C().f()}). The instance is ignored except
1067 for its class.
1068
1069 Static methods in Python are similar to those found in Java or \Cpp.
1070 For a more advanced concept, see \function{classmethod()} in this
1071 section.
1072
1073 For more information on static methods, consult the documentation on the
1074 standard type hierarchy in chapter 3 of the
1075 \citetitle[../ref/types.html]{Python Reference Manual} (at the bottom).
1076 \versionadded{2.2}
1077 \versionchanged[Function decorator syntax added]{2.4}
1078\end{funcdesc}
1079
1080\begin{funcdesc}{str}{\optional{object}}
1081 Return a string containing a nicely printable representation of an
1082 object. For strings, this returns the string itself. The
1083 difference with \code{repr(\var{object})} is that
1084 \code{str(\var{object})} does not always attempt to return a string
1085 that is acceptable to \function{eval()}; its goal is to return a
1086 printable string. If no argument is given, returns the empty
1087 string, \code{''}.
1088\end{funcdesc}
1089
1090\begin{funcdesc}{sum}{sequence\optional{, start}}
1091 Sums \var{start} and the items of a \var{sequence}, from left to
1092 right, and returns the total. \var{start} defaults to \code{0}.
1093 The \var{sequence}'s items are normally numbers, and are not allowed
1094 to be strings. The fast, correct way to concatenate sequence of
1095 strings is by calling \code{''.join(\var{sequence})}.
1096 Note that \code{sum(range(\var{n}), \var{m})} is equivalent to
1097 \code{reduce(operator.add, range(\var{n}), \var{m})}
1098 \versionadded{2.3}
1099\end{funcdesc}
1100
1101\begin{funcdesc}{super}{type\optional{, object-or-type}}
1102 Return the superclass of \var{type}. If the second argument is omitted
1103 the super object returned is unbound. If the second argument is an
1104 object, \code{isinstance(\var{obj}, \var{type})} must be true. If
1105 the second argument is a type, \code{issubclass(\var{type2},
1106 \var{type})} must be true.
1107 \function{super()} only works for new-style classes.
1108
1109 A typical use for calling a cooperative superclass method is:
1110\begin{verbatim}
1111class C(B):
1112 def meth(self, arg):
1113 super(C, self).meth(arg)
1114\end{verbatim}
1115
1116 Note that \function{super} is implemented as part of the binding process for
1117 explicit dotted attribute lookups such as
1118 \samp{super(C, self).__getitem__(name)}. Accordingly, \function{super} is
1119 undefined for implicit lookups using statements or operators such as
1120 \samp{super(C, self)[name]}.
1121\versionadded{2.2}
1122\end{funcdesc}
1123
1124\begin{funcdesc}{tuple}{\optional{sequence}}
1125 Return a tuple whose items are the same and in the same order as
1126 \var{sequence}'s items. \var{sequence} may be a sequence, a
1127 container that supports iteration, or an iterator object.
1128 If \var{sequence} is already a tuple, it
1129 is returned unchanged. For instance, \code{tuple('abc')} returns
1130 \code{('a', 'b', 'c')} and \code{tuple([1, 2, 3])} returns
1131 \code{(1, 2, 3)}. If no argument is given, returns a new empty
1132 tuple, \code{()}.
1133\end{funcdesc}
1134
1135\begin{funcdesc}{type}{object}
1136 Return the type of an \var{object}. The return value is a
1137 type\obindex{type} object. The \function{isinstance()} built-in
1138 function is recommended for testing the type of an object.
1139
1140 With three arguments, \function{type} functions as a constructor
1141 as detailed below.
1142\end{funcdesc}
1143
1144\begin{funcdesc}{type}{name, bases, dict}
1145 Return a new type object. This is essentially a dynamic form of the
1146 \keyword{class} statement. The \var{name} string is the class name
1147 and becomes the \member{__name__} attribute; the \var{bases} tuple
1148 itemizes the base classes and becomes the \member{__bases__}
1149 attribute; and the \var{dict} dictionary is the namespace containing
1150 definitions for class body and becomes the \member{__dict__}
1151 attribute. For example, the following two statements create
1152 identical \class{type} objects:
1153
1154\begin{verbatim}
1155 >>> class X(object):
1156 ... a = 1
1157 ...
1158 >>> X = type('X', (object,), dict(a=1))
1159\end{verbatim}
1160\versionadded{2.2}
1161\end{funcdesc}
1162
1163\begin{funcdesc}{unichr}{i}
1164 Return the Unicode string of one character whose Unicode code is the
1165 integer \var{i}. For example, \code{unichr(97)} returns the string
1166 \code{u'a'}. This is the inverse of \function{ord()} for Unicode
1167 strings. The valid range for the argument depends how Python was
1168 configured -- it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
1169 \exception{ValueError} is raised otherwise.
1170 \versionadded{2.0}
1171\end{funcdesc}
1172
1173\begin{funcdesc}{unicode}{\optional{object\optional{, encoding
1174 \optional{, errors}}}}
1175 Return the Unicode string version of \var{object} using one of the
1176 following modes:
1177
1178 If \var{encoding} and/or \var{errors} are given, \code{unicode()}
1179 will decode the object which can either be an 8-bit string or a
1180 character buffer using the codec for \var{encoding}. The
1181 \var{encoding} parameter is a string giving the name of an encoding;
1182 if the encoding is not known, \exception{LookupError} is raised.
1183 Error handling is done according to \var{errors}; this specifies the
1184 treatment of characters which are invalid in the input encoding. If
1185 \var{errors} is \code{'strict'} (the default), a
1186 \exception{ValueError} is raised on errors, while a value of
1187 \code{'ignore'} causes errors to be silently ignored, and a value of
1188 \code{'replace'} causes the official Unicode replacement character,
1189 \code{U+FFFD}, to be used to replace input characters which cannot
1190 be decoded. See also the \refmodule{codecs} module.
1191
1192 If no optional parameters are given, \code{unicode()} will mimic the
1193 behaviour of \code{str()} except that it returns Unicode strings
1194 instead of 8-bit strings. More precisely, if \var{object} is a
1195 Unicode string or subclass it will return that Unicode string without
1196 any additional decoding applied.
1197
1198 For objects which provide a \method{__unicode__()} method, it will
1199 call this method without arguments to create a Unicode string. For
1200 all other objects, the 8-bit string version or representation is
1201 requested and then converted to a Unicode string using the codec for
1202 the default encoding in \code{'strict'} mode.
1203
1204 \versionadded{2.0}
1205 \versionchanged[Support for \method{__unicode__()} added]{2.2}
1206\end{funcdesc}
1207
1208\begin{funcdesc}{vars}{\optional{object}}
1209 Without arguments, return a dictionary corresponding to the current
1210 local symbol table. With a module, class or class instance object
1211 as argument (or anything else that has a \member{__dict__}
1212 attribute), returns a dictionary corresponding to the object's
1213 symbol table. The returned dictionary should not be modified: the
1214 effects on the corresponding symbol table are undefined.\footnote{
1215 In the current implementation, local variable bindings cannot
1216 normally be affected this way, but variables retrieved from
1217 other scopes (such as modules) can be. This may change.}
1218\end{funcdesc}
1219
1220\begin{funcdesc}{xrange}{\optional{start,} stop\optional{, step}}
1221 This function is very similar to \function{range()}, but returns an
1222 ``xrange object'' instead of a list. This is an opaque sequence
1223 type which yields the same values as the corresponding list, without
1224 actually storing them all simultaneously. The advantage of
1225 \function{xrange()} over \function{range()} is minimal (since
1226 \function{xrange()} still has to create the values when asked for
1227 them) except when a very large range is used on a memory-starved
1228 machine or when all of the range's elements are never used (such as
1229 when the loop is usually terminated with \keyword{break}).
1230
1231 \note{\function{xrange()} is intended to be simple and fast.
1232 Implementations may impose restrictions to achieve this.
1233 The C implementation of Python restricts all arguments to
1234 native C longs ("short" Python integers), and also requires
1235 that the number of elements fit in a native C long.}
1236\end{funcdesc}
1237
1238\begin{funcdesc}{zip}{\optional{iterable, \moreargs}}
1239 This function returns a list of tuples, where the \var{i}-th tuple contains
1240 the \var{i}-th element from each of the argument sequences or iterables.
1241 The returned list is truncated in length to the length of
1242 the shortest argument sequence. When there are multiple arguments
1243 which are all of the same length, \function{zip()} is
1244 similar to \function{map()} with an initial argument of \code{None}.
1245 With a single sequence argument, it returns a list of 1-tuples.
1246 With no arguments, it returns an empty list.
1247 \versionadded{2.0}
1248
1249 \versionchanged[Formerly, \function{zip()} required at least one argument
1250 and \code{zip()} raised a \exception{TypeError} instead of returning
1251 an empty list]{2.4}
1252\end{funcdesc}
1253
1254
1255% ---------------------------------------------------------------------------
1256
1257
1258\section{Non-essential Built-in Functions \label{non-essential-built-in-funcs}}
1259
1260There are several built-in functions that are no longer essential to learn,
1261know or use in modern Python programming. They have been kept here to
1262maintain backwards compatibility with programs written for older versions
1263of Python.
1264
1265Python programmers, trainers, students and bookwriters should feel free to
1266bypass these functions without concerns about missing something important.
1267
1268
1269\setindexsubitem{(non-essential built-in functions)}
1270
1271\begin{funcdesc}{apply}{function, args\optional{, keywords}}
1272 The \var{function} argument must be a callable object (a
1273 user-defined or built-in function or method, or a class object) and
1274 the \var{args} argument must be a sequence. The \var{function} is
1275 called with \var{args} as the argument list; the number of arguments
1276 is the length of the tuple.
1277 If the optional \var{keywords} argument is present, it must be a
1278 dictionary whose keys are strings. It specifies keyword arguments
1279 to be added to the end of the argument list.
1280 Calling \function{apply()} is different from just calling
1281 \code{\var{function}(\var{args})}, since in that case there is always
1282 exactly one argument. The use of \function{apply()} is equivalent
1283 to \code{\var{function}(*\var{args}, **\var{keywords})}.
1284 Use of \function{apply()} is not necessary since the ``extended call
1285 syntax,'' as used in the last example, is completely equivalent.
1286
1287 \deprecated{2.3}{Use the extended call syntax instead, as described
1288 above.}
1289\end{funcdesc}
1290
1291\begin{funcdesc}{buffer}{object\optional{, offset\optional{, size}}}
1292 The \var{object} argument must be an object that supports the buffer
1293 call interface (such as strings, arrays, and buffers). A new buffer
1294 object will be created which references the \var{object} argument.
1295 The buffer object will be a slice from the beginning of \var{object}
1296 (or from the specified \var{offset}). The slice will extend to the
1297 end of \var{object} (or will have a length given by the \var{size}
1298 argument).
1299\end{funcdesc}
1300
1301\begin{funcdesc}{coerce}{x, y}
1302 Return a tuple consisting of the two numeric arguments converted to
1303 a common type, using the same rules as used by arithmetic
1304 operations. If coercion is not possible, raise \exception{TypeError}.
1305\end{funcdesc}
1306
1307\begin{funcdesc}{intern}{string}
1308 Enter \var{string} in the table of ``interned'' strings and return
1309 the interned string -- which is \var{string} itself or a copy.
1310 Interning strings is useful to gain a little performance on
1311 dictionary lookup -- if the keys in a dictionary are interned, and
1312 the lookup key is interned, the key comparisons (after hashing) can
1313 be done by a pointer compare instead of a string compare. Normally,
1314 the names used in Python programs are automatically interned, and
1315 the dictionaries used to hold module, class or instance attributes
1316 have interned keys. \versionchanged[Interned strings are not
1317 immortal (like they used to be in Python 2.2 and before);
1318 you must keep a reference to the return value of \function{intern()}
1319 around to benefit from it]{2.3}
1320\end{funcdesc}
Note: See TracBrowser for help on using the repository browser.