1 | \section{\module{decimal} ---
|
---|
2 | Decimal floating point arithmetic}
|
---|
3 |
|
---|
4 | \declaremodule{standard}{decimal}
|
---|
5 | \modulesynopsis{Implementation of the General Decimal Arithmetic
|
---|
6 | Specification.}
|
---|
7 |
|
---|
8 | \moduleauthor{Eric Price}{eprice at tjhsst.edu}
|
---|
9 | \moduleauthor{Facundo Batista}{facundo at taniquetil.com.ar}
|
---|
10 | \moduleauthor{Raymond Hettinger}{python at rcn.com}
|
---|
11 | \moduleauthor{Aahz}{aahz at pobox.com}
|
---|
12 | \moduleauthor{Tim Peters}{tim.one at comcast.net}
|
---|
13 |
|
---|
14 | \sectionauthor{Raymond D. Hettinger}{python at rcn.com}
|
---|
15 |
|
---|
16 | \versionadded{2.4}
|
---|
17 |
|
---|
18 | The \module{decimal} module provides support for decimal floating point
|
---|
19 | arithmetic. It offers several advantages over the \class{float()} datatype:
|
---|
20 |
|
---|
21 | \begin{itemize}
|
---|
22 |
|
---|
23 | \item Decimal numbers can be represented exactly. In contrast, numbers like
|
---|
24 | \constant{1.1} do not have an exact representation in binary floating point.
|
---|
25 | End users typically would not expect \constant{1.1} to display as
|
---|
26 | \constant{1.1000000000000001} as it does with binary floating point.
|
---|
27 |
|
---|
28 | \item The exactness carries over into arithmetic. In decimal floating point,
|
---|
29 | \samp{0.1 + 0.1 + 0.1 - 0.3} is exactly equal to zero. In binary floating
|
---|
30 | point, result is \constant{5.5511151231257827e-017}. While near to zero, the
|
---|
31 | differences prevent reliable equality testing and differences can accumulate.
|
---|
32 | For this reason, decimal would be preferred in accounting applications which
|
---|
33 | have strict equality invariants.
|
---|
34 |
|
---|
35 | \item The decimal module incorporates a notion of significant places so that
|
---|
36 | \samp{1.30 + 1.20} is \constant{2.50}. The trailing zero is kept to indicate
|
---|
37 | significance. This is the customary presentation for monetary applications. For
|
---|
38 | multiplication, the ``schoolbook'' approach uses all the figures in the
|
---|
39 | multiplicands. For instance, \samp{1.3 * 1.2} gives \constant{1.56} while
|
---|
40 | \samp{1.30 * 1.20} gives \constant{1.5600}.
|
---|
41 |
|
---|
42 | \item Unlike hardware based binary floating point, the decimal module has a user
|
---|
43 | settable precision (defaulting to 28 places) which can be as large as needed for
|
---|
44 | a given problem:
|
---|
45 |
|
---|
46 | \begin{verbatim}
|
---|
47 | >>> getcontext().prec = 6
|
---|
48 | >>> Decimal(1) / Decimal(7)
|
---|
49 | Decimal("0.142857")
|
---|
50 | >>> getcontext().prec = 28
|
---|
51 | >>> Decimal(1) / Decimal(7)
|
---|
52 | Decimal("0.1428571428571428571428571429")
|
---|
53 | \end{verbatim}
|
---|
54 |
|
---|
55 | \item Both binary and decimal floating point are implemented in terms of published
|
---|
56 | standards. While the built-in float type exposes only a modest portion of its
|
---|
57 | capabilities, the decimal module exposes all required parts of the standard.
|
---|
58 | When needed, the programmer has full control over rounding and signal handling.
|
---|
59 |
|
---|
60 | \end{itemize}
|
---|
61 |
|
---|
62 |
|
---|
63 | The module design is centered around three concepts: the decimal number, the
|
---|
64 | context for arithmetic, and signals.
|
---|
65 |
|
---|
66 | A decimal number is immutable. It has a sign, coefficient digits, and an
|
---|
67 | exponent. To preserve significance, the coefficient digits do not truncate
|
---|
68 | trailing zeroes. Decimals also include special values such as
|
---|
69 | \constant{Infinity}, \constant{-Infinity}, and \constant{NaN}. The standard
|
---|
70 | also differentiates \constant{-0} from \constant{+0}.
|
---|
71 |
|
---|
72 | The context for arithmetic is an environment specifying precision, rounding
|
---|
73 | rules, limits on exponents, flags indicating the results of operations,
|
---|
74 | and trap enablers which determine whether signals are treated as
|
---|
75 | exceptions. Rounding options include \constant{ROUND_CEILING},
|
---|
76 | \constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
|
---|
77 | \constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, and \constant{ROUND_UP}.
|
---|
78 |
|
---|
79 | Signals are groups of exceptional conditions arising during the course of
|
---|
80 | computation. Depending on the needs of the application, signals may be
|
---|
81 | ignored, considered as informational, or treated as exceptions. The signals in
|
---|
82 | the decimal module are: \constant{Clamped}, \constant{InvalidOperation},
|
---|
83 | \constant{DivisionByZero}, \constant{Inexact}, \constant{Rounded},
|
---|
84 | \constant{Subnormal}, \constant{Overflow}, and \constant{Underflow}.
|
---|
85 |
|
---|
86 | For each signal there is a flag and a trap enabler. When a signal is
|
---|
87 | encountered, its flag is incremented from zero and, then, if the trap enabler
|
---|
88 | is set to one, an exception is raised. Flags are sticky, so the user
|
---|
89 | needs to reset them before monitoring a calculation.
|
---|
90 |
|
---|
91 |
|
---|
92 | \begin{seealso}
|
---|
93 | \seetext{IBM's General Decimal Arithmetic Specification,
|
---|
94 | \citetitle[http://www2.hursley.ibm.com/decimal/decarith.html]
|
---|
95 | {The General Decimal Arithmetic Specification}.}
|
---|
96 |
|
---|
97 | \seetext{IEEE standard 854-1987,
|
---|
98 | \citetitle[http://www.cs.berkeley.edu/\textasciitilde ejr/projects/754/private/drafts/854-1987/dir.html]
|
---|
99 | {Unofficial IEEE 854 Text}.}
|
---|
100 | \end{seealso}
|
---|
101 |
|
---|
102 |
|
---|
103 |
|
---|
104 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
105 | \subsection{Quick-start Tutorial \label{decimal-tutorial}}
|
---|
106 |
|
---|
107 | The usual start to using decimals is importing the module, viewing the current
|
---|
108 | context with \function{getcontext()} and, if necessary, setting new values
|
---|
109 | for precision, rounding, or enabled traps:
|
---|
110 |
|
---|
111 | \begin{verbatim}
|
---|
112 | >>> from decimal import *
|
---|
113 | >>> getcontext()
|
---|
114 | Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
---|
115 | capitals=1, flags=[], traps=[Overflow, InvalidOperation,
|
---|
116 | DivisionByZero])
|
---|
117 |
|
---|
118 | >>> getcontext().prec = 7 # Set a new precision
|
---|
119 | \end{verbatim}
|
---|
120 |
|
---|
121 |
|
---|
122 | Decimal instances can be constructed from integers, strings, or tuples. To
|
---|
123 | create a Decimal from a \class{float}, first convert it to a string. This
|
---|
124 | serves as an explicit reminder of the details of the conversion (including
|
---|
125 | representation error). Decimal numbers include special values such as
|
---|
126 | \constant{NaN} which stands for ``Not a number'', positive and negative
|
---|
127 | \constant{Infinity}, and \constant{-0}.
|
---|
128 |
|
---|
129 | \begin{verbatim}
|
---|
130 | >>> Decimal(10)
|
---|
131 | Decimal("10")
|
---|
132 | >>> Decimal("3.14")
|
---|
133 | Decimal("3.14")
|
---|
134 | >>> Decimal((0, (3, 1, 4), -2))
|
---|
135 | Decimal("3.14")
|
---|
136 | >>> Decimal(str(2.0 ** 0.5))
|
---|
137 | Decimal("1.41421356237")
|
---|
138 | >>> Decimal("NaN")
|
---|
139 | Decimal("NaN")
|
---|
140 | >>> Decimal("-Infinity")
|
---|
141 | Decimal("-Infinity")
|
---|
142 | \end{verbatim}
|
---|
143 |
|
---|
144 |
|
---|
145 | The significance of a new Decimal is determined solely by the number
|
---|
146 | of digits input. Context precision and rounding only come into play during
|
---|
147 | arithmetic operations.
|
---|
148 |
|
---|
149 | \begin{verbatim}
|
---|
150 | >>> getcontext().prec = 6
|
---|
151 | >>> Decimal('3.0')
|
---|
152 | Decimal("3.0")
|
---|
153 | >>> Decimal('3.1415926535')
|
---|
154 | Decimal("3.1415926535")
|
---|
155 | >>> Decimal('3.1415926535') + Decimal('2.7182818285')
|
---|
156 | Decimal("5.85987")
|
---|
157 | >>> getcontext().rounding = ROUND_UP
|
---|
158 | >>> Decimal('3.1415926535') + Decimal('2.7182818285')
|
---|
159 | Decimal("5.85988")
|
---|
160 | \end{verbatim}
|
---|
161 |
|
---|
162 |
|
---|
163 | Decimals interact well with much of the rest of Python. Here is a small
|
---|
164 | decimal floating point flying circus:
|
---|
165 |
|
---|
166 | \begin{verbatim}
|
---|
167 | >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
|
---|
168 | >>> max(data)
|
---|
169 | Decimal("9.25")
|
---|
170 | >>> min(data)
|
---|
171 | Decimal("0.03")
|
---|
172 | >>> sorted(data)
|
---|
173 | [Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"),
|
---|
174 | Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]
|
---|
175 | >>> sum(data)
|
---|
176 | Decimal("19.29")
|
---|
177 | >>> a,b,c = data[:3]
|
---|
178 | >>> str(a)
|
---|
179 | '1.34'
|
---|
180 | >>> float(a)
|
---|
181 | 1.3400000000000001
|
---|
182 | >>> round(a, 1) # round() first converts to binary floating point
|
---|
183 | 1.3
|
---|
184 | >>> int(a)
|
---|
185 | 1
|
---|
186 | >>> a * 5
|
---|
187 | Decimal("6.70")
|
---|
188 | >>> a * b
|
---|
189 | Decimal("2.5058")
|
---|
190 | >>> c % a
|
---|
191 | Decimal("0.77")
|
---|
192 | \end{verbatim}
|
---|
193 |
|
---|
194 | The \method{quantize()} method rounds a number to a fixed exponent. This
|
---|
195 | method is useful for monetary applications that often round results to a fixed
|
---|
196 | number of places:
|
---|
197 |
|
---|
198 | \begin{verbatim}
|
---|
199 | >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
|
---|
200 | Decimal("7.32")
|
---|
201 | >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
|
---|
202 | Decimal("8")
|
---|
203 | \end{verbatim}
|
---|
204 |
|
---|
205 | As shown above, the \function{getcontext()} function accesses the current
|
---|
206 | context and allows the settings to be changed. This approach meets the
|
---|
207 | needs of most applications.
|
---|
208 |
|
---|
209 | For more advanced work, it may be useful to create alternate contexts using
|
---|
210 | the Context() constructor. To make an alternate active, use the
|
---|
211 | \function{setcontext()} function.
|
---|
212 |
|
---|
213 | In accordance with the standard, the \module{Decimal} module provides two
|
---|
214 | ready to use standard contexts, \constant{BasicContext} and
|
---|
215 | \constant{ExtendedContext}. The former is especially useful for debugging
|
---|
216 | because many of the traps are enabled:
|
---|
217 |
|
---|
218 | \begin{verbatim}
|
---|
219 | >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
|
---|
220 | >>> setcontext(myothercontext)
|
---|
221 | >>> Decimal(1) / Decimal(7)
|
---|
222 | Decimal("0.142857142857142857142857142857142857142857142857142857142857")
|
---|
223 |
|
---|
224 | >>> ExtendedContext
|
---|
225 | Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
---|
226 | capitals=1, flags=[], traps=[])
|
---|
227 | >>> setcontext(ExtendedContext)
|
---|
228 | >>> Decimal(1) / Decimal(7)
|
---|
229 | Decimal("0.142857143")
|
---|
230 | >>> Decimal(42) / Decimal(0)
|
---|
231 | Decimal("Infinity")
|
---|
232 |
|
---|
233 | >>> setcontext(BasicContext)
|
---|
234 | >>> Decimal(42) / Decimal(0)
|
---|
235 | Traceback (most recent call last):
|
---|
236 | File "<pyshell#143>", line 1, in -toplevel-
|
---|
237 | Decimal(42) / Decimal(0)
|
---|
238 | DivisionByZero: x / 0
|
---|
239 | \end{verbatim}
|
---|
240 |
|
---|
241 |
|
---|
242 | Contexts also have signal flags for monitoring exceptional conditions
|
---|
243 | encountered during computations. The flags remain set until explicitly
|
---|
244 | cleared, so it is best to clear the flags before each set of monitored
|
---|
245 | computations by using the \method{clear_flags()} method.
|
---|
246 |
|
---|
247 | \begin{verbatim}
|
---|
248 | >>> setcontext(ExtendedContext)
|
---|
249 | >>> getcontext().clear_flags()
|
---|
250 | >>> Decimal(355) / Decimal(113)
|
---|
251 | Decimal("3.14159292")
|
---|
252 | >>> getcontext()
|
---|
253 | Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
|
---|
254 | capitals=1, flags=[Inexact, Rounded], traps=[])
|
---|
255 | \end{verbatim}
|
---|
256 |
|
---|
257 | The \var{flags} entry shows that the rational approximation to \constant{Pi}
|
---|
258 | was rounded (digits beyond the context precision were thrown away) and that
|
---|
259 | the result is inexact (some of the discarded digits were non-zero).
|
---|
260 |
|
---|
261 | Individual traps are set using the dictionary in the \member{traps}
|
---|
262 | field of a context:
|
---|
263 |
|
---|
264 | \begin{verbatim}
|
---|
265 | >>> Decimal(1) / Decimal(0)
|
---|
266 | Decimal("Infinity")
|
---|
267 | >>> getcontext().traps[DivisionByZero] = 1
|
---|
268 | >>> Decimal(1) / Decimal(0)
|
---|
269 | Traceback (most recent call last):
|
---|
270 | File "<pyshell#112>", line 1, in -toplevel-
|
---|
271 | Decimal(1) / Decimal(0)
|
---|
272 | DivisionByZero: x / 0
|
---|
273 | \end{verbatim}
|
---|
274 |
|
---|
275 | Most programs adjust the current context only once, at the beginning of the
|
---|
276 | program. And, in many applications, data is converted to \class{Decimal} with
|
---|
277 | a single cast inside a loop. With context set and decimals created, the bulk
|
---|
278 | of the program manipulates the data no differently than with other Python
|
---|
279 | numeric types.
|
---|
280 |
|
---|
281 |
|
---|
282 |
|
---|
283 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
284 | \subsection{Decimal objects \label{decimal-decimal}}
|
---|
285 |
|
---|
286 | \begin{classdesc}{Decimal}{\optional{value \optional{, context}}}
|
---|
287 | Constructs a new \class{Decimal} object based from \var{value}.
|
---|
288 |
|
---|
289 | \var{value} can be an integer, string, tuple, or another \class{Decimal}
|
---|
290 | object. If no \var{value} is given, returns \code{Decimal("0")}. If
|
---|
291 | \var{value} is a string, it should conform to the decimal numeric string
|
---|
292 | syntax:
|
---|
293 |
|
---|
294 | \begin{verbatim}
|
---|
295 | sign ::= '+' | '-'
|
---|
296 | digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
|
---|
297 | indicator ::= 'e' | 'E'
|
---|
298 | digits ::= digit [digit]...
|
---|
299 | decimal-part ::= digits '.' [digits] | ['.'] digits
|
---|
300 | exponent-part ::= indicator [sign] digits
|
---|
301 | infinity ::= 'Infinity' | 'Inf'
|
---|
302 | nan ::= 'NaN' [digits] | 'sNaN' [digits]
|
---|
303 | numeric-value ::= decimal-part [exponent-part] | infinity
|
---|
304 | numeric-string ::= [sign] numeric-value | [sign] nan
|
---|
305 | \end{verbatim}
|
---|
306 |
|
---|
307 | If \var{value} is a \class{tuple}, it should have three components,
|
---|
308 | a sign (\constant{0} for positive or \constant{1} for negative),
|
---|
309 | a \class{tuple} of digits, and an integer exponent. For example,
|
---|
310 | \samp{Decimal((0, (1, 4, 1, 4), -3))} returns \code{Decimal("1.414")}.
|
---|
311 |
|
---|
312 | The \var{context} precision does not affect how many digits are stored.
|
---|
313 | That is determined exclusively by the number of digits in \var{value}. For
|
---|
314 | example, \samp{Decimal("3.00000")} records all five zeroes even if the
|
---|
315 | context precision is only three.
|
---|
316 |
|
---|
317 | The purpose of the \var{context} argument is determining what to do if
|
---|
318 | \var{value} is a malformed string. If the context traps
|
---|
319 | \constant{InvalidOperation}, an exception is raised; otherwise, the
|
---|
320 | constructor returns a new Decimal with the value of \constant{NaN}.
|
---|
321 |
|
---|
322 | Once constructed, \class{Decimal} objects are immutable.
|
---|
323 | \end{classdesc}
|
---|
324 |
|
---|
325 | Decimal floating point objects share many properties with the other builtin
|
---|
326 | numeric types such as \class{float} and \class{int}. All of the usual
|
---|
327 | math operations and special methods apply. Likewise, decimal objects can
|
---|
328 | be copied, pickled, printed, used as dictionary keys, used as set elements,
|
---|
329 | compared, sorted, and coerced to another type (such as \class{float}
|
---|
330 | or \class{long}).
|
---|
331 |
|
---|
332 | In addition to the standard numeric properties, decimal floating point objects
|
---|
333 | also have a number of specialized methods:
|
---|
334 |
|
---|
335 | \begin{methoddesc}{adjusted}{}
|
---|
336 | Return the adjusted exponent after shifting out the coefficient's rightmost
|
---|
337 | digits until only the lead digit remains: \code{Decimal("321e+5").adjusted()}
|
---|
338 | returns seven. Used for determining the position of the most significant
|
---|
339 | digit with respect to the decimal point.
|
---|
340 | \end{methoddesc}
|
---|
341 |
|
---|
342 | \begin{methoddesc}{as_tuple}{}
|
---|
343 | Returns a tuple representation of the number:
|
---|
344 | \samp{(sign, digittuple, exponent)}.
|
---|
345 | \end{methoddesc}
|
---|
346 |
|
---|
347 | \begin{methoddesc}{compare}{other\optional{, context}}
|
---|
348 | Compares like \method{__cmp__()} but returns a decimal instance:
|
---|
349 | \begin{verbatim}
|
---|
350 | a or b is a NaN ==> Decimal("NaN")
|
---|
351 | a < b ==> Decimal("-1")
|
---|
352 | a == b ==> Decimal("0")
|
---|
353 | a > b ==> Decimal("1")
|
---|
354 | \end{verbatim}
|
---|
355 | \end{methoddesc}
|
---|
356 |
|
---|
357 | \begin{methoddesc}{max}{other\optional{, context}}
|
---|
358 | Like \samp{max(self, other)} except that the context rounding rule
|
---|
359 | is applied before returning and that \constant{NaN} values are
|
---|
360 | either signalled or ignored (depending on the context and whether
|
---|
361 | they are signaling or quiet).
|
---|
362 | \end{methoddesc}
|
---|
363 |
|
---|
364 | \begin{methoddesc}{min}{other\optional{, context}}
|
---|
365 | Like \samp{min(self, other)} except that the context rounding rule
|
---|
366 | is applied before returning and that \constant{NaN} values are
|
---|
367 | either signalled or ignored (depending on the context and whether
|
---|
368 | they are signaling or quiet).
|
---|
369 | \end{methoddesc}
|
---|
370 |
|
---|
371 | \begin{methoddesc}{normalize}{\optional{context}}
|
---|
372 | Normalize the number by stripping the rightmost trailing zeroes and
|
---|
373 | converting any result equal to \constant{Decimal("0")} to
|
---|
374 | \constant{Decimal("0e0")}. Used for producing canonical values for members
|
---|
375 | of an equivalence class. For example, \code{Decimal("32.100")} and
|
---|
376 | \code{Decimal("0.321000e+2")} both normalize to the equivalent value
|
---|
377 | \code{Decimal("32.1")}.
|
---|
378 | \end{methoddesc}
|
---|
379 |
|
---|
380 | \begin{methoddesc}{quantize}
|
---|
381 | {exp \optional{, rounding\optional{, context\optional{, watchexp}}}}
|
---|
382 | Quantize makes the exponent the same as \var{exp}. Searches for a
|
---|
383 | rounding method in \var{rounding}, then in \var{context}, and then
|
---|
384 | in the current context.
|
---|
385 |
|
---|
386 | If \var{watchexp} is set (default), then an error is returned whenever
|
---|
387 | the resulting exponent is greater than \member{Emax} or less than
|
---|
388 | \member{Etiny}.
|
---|
389 | \end{methoddesc}
|
---|
390 |
|
---|
391 | \begin{methoddesc}{remainder_near}{other\optional{, context}}
|
---|
392 | Computes the modulo as either a positive or negative value depending
|
---|
393 | on which is closest to zero. For instance,
|
---|
394 | \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
|
---|
395 | which is closer to zero than \code{Decimal("4")}.
|
---|
396 |
|
---|
397 | If both are equally close, the one chosen will have the same sign
|
---|
398 | as \var{self}.
|
---|
399 | \end{methoddesc}
|
---|
400 |
|
---|
401 | \begin{methoddesc}{same_quantum}{other\optional{, context}}
|
---|
402 | Test whether self and other have the same exponent or whether both
|
---|
403 | are \constant{NaN}.
|
---|
404 | \end{methoddesc}
|
---|
405 |
|
---|
406 | \begin{methoddesc}{sqrt}{\optional{context}}
|
---|
407 | Return the square root to full precision.
|
---|
408 | \end{methoddesc}
|
---|
409 |
|
---|
410 | \begin{methoddesc}{to_eng_string}{\optional{context}}
|
---|
411 | Convert to an engineering-type string.
|
---|
412 |
|
---|
413 | Engineering notation has an exponent which is a multiple of 3, so there
|
---|
414 | are up to 3 digits left of the decimal place. For example, converts
|
---|
415 | \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
|
---|
416 | \end{methoddesc}
|
---|
417 |
|
---|
418 | \begin{methoddesc}{to_integral}{\optional{rounding\optional{, context}}}
|
---|
419 | Rounds to the nearest integer without signaling \constant{Inexact}
|
---|
420 | or \constant{Rounded}. If given, applies \var{rounding}; otherwise,
|
---|
421 | uses the rounding method in either the supplied \var{context} or the
|
---|
422 | current context.
|
---|
423 | \end{methoddesc}
|
---|
424 |
|
---|
425 |
|
---|
426 |
|
---|
427 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
428 | \subsection{Context objects \label{decimal-decimal}}
|
---|
429 |
|
---|
430 | Contexts are environments for arithmetic operations. They govern precision,
|
---|
431 | set rules for rounding, determine which signals are treated as exceptions, and
|
---|
432 | limit the range for exponents.
|
---|
433 |
|
---|
434 | Each thread has its own current context which is accessed or changed using
|
---|
435 | the \function{getcontext()} and \function{setcontext()} functions:
|
---|
436 |
|
---|
437 | \begin{funcdesc}{getcontext}{}
|
---|
438 | Return the current context for the active thread.
|
---|
439 | \end{funcdesc}
|
---|
440 |
|
---|
441 | \begin{funcdesc}{setcontext}{c}
|
---|
442 | Set the current context for the active thread to \var{c}.
|
---|
443 | \end{funcdesc}
|
---|
444 |
|
---|
445 | Beginning with Python 2.5, you can also use the \keyword{with} statement
|
---|
446 | and the \function{localcontext()} function to temporarily change the
|
---|
447 | active context.
|
---|
448 |
|
---|
449 | \begin{funcdesc}{localcontext}{\optional{c}}
|
---|
450 | Return a context manager that will set the current context for
|
---|
451 | the active thread to a copy of \var{c} on entry to the with-statement
|
---|
452 | and restore the previous context when exiting the with-statement. If
|
---|
453 | no context is specified, a copy of the current context is used.
|
---|
454 | \versionadded{2.5}
|
---|
455 |
|
---|
456 | For example, the following code sets the current decimal precision
|
---|
457 | to 42 places, performs a calculation, and then automatically restores
|
---|
458 | the previous context:
|
---|
459 | \begin{verbatim}
|
---|
460 | from __future__ import with_statement
|
---|
461 | from decimal import localcontext
|
---|
462 |
|
---|
463 | with localcontext() as ctx:
|
---|
464 | ctx.prec = 42 # Perform a high precision calculation
|
---|
465 | s = calculate_something()
|
---|
466 | s = +s # Round the final result back to the default precision
|
---|
467 | \end{verbatim}
|
---|
468 | \end{funcdesc}
|
---|
469 |
|
---|
470 | New contexts can also be created using the \class{Context} constructor
|
---|
471 | described below. In addition, the module provides three pre-made
|
---|
472 | contexts:
|
---|
473 |
|
---|
474 | \begin{classdesc*}{BasicContext}
|
---|
475 | This is a standard context defined by the General Decimal Arithmetic
|
---|
476 | Specification. Precision is set to nine. Rounding is set to
|
---|
477 | \constant{ROUND_HALF_UP}. All flags are cleared. All traps are enabled
|
---|
478 | (treated as exceptions) except \constant{Inexact}, \constant{Rounded}, and
|
---|
479 | \constant{Subnormal}.
|
---|
480 |
|
---|
481 | Because many of the traps are enabled, this context is useful for debugging.
|
---|
482 | \end{classdesc*}
|
---|
483 |
|
---|
484 | \begin{classdesc*}{ExtendedContext}
|
---|
485 | This is a standard context defined by the General Decimal Arithmetic
|
---|
486 | Specification. Precision is set to nine. Rounding is set to
|
---|
487 | \constant{ROUND_HALF_EVEN}. All flags are cleared. No traps are enabled
|
---|
488 | (so that exceptions are not raised during computations).
|
---|
489 |
|
---|
490 | Because the trapped are disabled, this context is useful for applications
|
---|
491 | that prefer to have result value of \constant{NaN} or \constant{Infinity}
|
---|
492 | instead of raising exceptions. This allows an application to complete a
|
---|
493 | run in the presence of conditions that would otherwise halt the program.
|
---|
494 | \end{classdesc*}
|
---|
495 |
|
---|
496 | \begin{classdesc*}{DefaultContext}
|
---|
497 | This context is used by the \class{Context} constructor as a prototype for
|
---|
498 | new contexts. Changing a field (such a precision) has the effect of
|
---|
499 | changing the default for new contexts creating by the \class{Context}
|
---|
500 | constructor.
|
---|
501 |
|
---|
502 | This context is most useful in multi-threaded environments. Changing one of
|
---|
503 | the fields before threads are started has the effect of setting system-wide
|
---|
504 | defaults. Changing the fields after threads have started is not recommended
|
---|
505 | as it would require thread synchronization to prevent race conditions.
|
---|
506 |
|
---|
507 | In single threaded environments, it is preferable to not use this context
|
---|
508 | at all. Instead, simply create contexts explicitly as described below.
|
---|
509 |
|
---|
510 | The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled
|
---|
511 | traps for Overflow, InvalidOperation, and DivisionByZero.
|
---|
512 | \end{classdesc*}
|
---|
513 |
|
---|
514 |
|
---|
515 | In addition to the three supplied contexts, new contexts can be created
|
---|
516 | with the \class{Context} constructor.
|
---|
517 |
|
---|
518 | \begin{classdesc}{Context}{prec=None, rounding=None, traps=None,
|
---|
519 | flags=None, Emin=None, Emax=None, capitals=1}
|
---|
520 | Creates a new context. If a field is not specified or is \constant{None},
|
---|
521 | the default values are copied from the \constant{DefaultContext}. If the
|
---|
522 | \var{flags} field is not specified or is \constant{None}, all flags are
|
---|
523 | cleared.
|
---|
524 |
|
---|
525 | The \var{prec} field is a positive integer that sets the precision for
|
---|
526 | arithmetic operations in the context.
|
---|
527 |
|
---|
528 | The \var{rounding} option is one of:
|
---|
529 | \begin{itemize}
|
---|
530 | \item \constant{ROUND_CEILING} (towards \constant{Infinity}),
|
---|
531 | \item \constant{ROUND_DOWN} (towards zero),
|
---|
532 | \item \constant{ROUND_FLOOR} (towards \constant{-Infinity}),
|
---|
533 | \item \constant{ROUND_HALF_DOWN} (to nearest with ties going towards zero),
|
---|
534 | \item \constant{ROUND_HALF_EVEN} (to nearest with ties going to nearest even integer),
|
---|
535 | \item \constant{ROUND_HALF_UP} (to nearest with ties going away from zero), or
|
---|
536 | \item \constant{ROUND_UP} (away from zero).
|
---|
537 | \end{itemize}
|
---|
538 |
|
---|
539 | The \var{traps} and \var{flags} fields list any signals to be set.
|
---|
540 | Generally, new contexts should only set traps and leave the flags clear.
|
---|
541 |
|
---|
542 | The \var{Emin} and \var{Emax} fields are integers specifying the outer
|
---|
543 | limits allowable for exponents.
|
---|
544 |
|
---|
545 | The \var{capitals} field is either \constant{0} or \constant{1} (the
|
---|
546 | default). If set to \constant{1}, exponents are printed with a capital
|
---|
547 | \constant{E}; otherwise, a lowercase \constant{e} is used:
|
---|
548 | \constant{Decimal('6.02e+23')}.
|
---|
549 | \end{classdesc}
|
---|
550 |
|
---|
551 | The \class{Context} class defines several general purpose methods as well as a
|
---|
552 | large number of methods for doing arithmetic directly in a given context.
|
---|
553 |
|
---|
554 | \begin{methoddesc}{clear_flags}{}
|
---|
555 | Resets all of the flags to \constant{0}.
|
---|
556 | \end{methoddesc}
|
---|
557 |
|
---|
558 | \begin{methoddesc}{copy}{}
|
---|
559 | Return a duplicate of the context.
|
---|
560 | \end{methoddesc}
|
---|
561 |
|
---|
562 | \begin{methoddesc}{create_decimal}{num}
|
---|
563 | Creates a new Decimal instance from \var{num} but using \var{self} as
|
---|
564 | context. Unlike the \class{Decimal} constructor, the context precision,
|
---|
565 | rounding method, flags, and traps are applied to the conversion.
|
---|
566 |
|
---|
567 | This is useful because constants are often given to a greater precision than
|
---|
568 | is needed by the application. Another benefit is that rounding immediately
|
---|
569 | eliminates unintended effects from digits beyond the current precision.
|
---|
570 | In the following example, using unrounded inputs means that adding zero
|
---|
571 | to a sum can change the result:
|
---|
572 |
|
---|
573 | \begin{verbatim}
|
---|
574 | >>> getcontext().prec = 3
|
---|
575 | >>> Decimal("3.4445") + Decimal("1.0023")
|
---|
576 | Decimal("4.45")
|
---|
577 | >>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
|
---|
578 | Decimal("4.44")
|
---|
579 | \end{verbatim}
|
---|
580 |
|
---|
581 | \end{methoddesc}
|
---|
582 |
|
---|
583 | \begin{methoddesc}{Etiny}{}
|
---|
584 | Returns a value equal to \samp{Emin - prec + 1} which is the minimum
|
---|
585 | exponent value for subnormal results. When underflow occurs, the
|
---|
586 | exponent is set to \constant{Etiny}.
|
---|
587 | \end{methoddesc}
|
---|
588 |
|
---|
589 | \begin{methoddesc}{Etop}{}
|
---|
590 | Returns a value equal to \samp{Emax - prec + 1}.
|
---|
591 | \end{methoddesc}
|
---|
592 |
|
---|
593 |
|
---|
594 | The usual approach to working with decimals is to create \class{Decimal}
|
---|
595 | instances and then apply arithmetic operations which take place within the
|
---|
596 | current context for the active thread. An alternate approach is to use
|
---|
597 | context methods for calculating within a specific context. The methods are
|
---|
598 | similar to those for the \class{Decimal} class and are only briefly recounted
|
---|
599 | here.
|
---|
600 |
|
---|
601 | \begin{methoddesc}{abs}{x}
|
---|
602 | Returns the absolute value of \var{x}.
|
---|
603 | \end{methoddesc}
|
---|
604 |
|
---|
605 | \begin{methoddesc}{add}{x, y}
|
---|
606 | Return the sum of \var{x} and \var{y}.
|
---|
607 | \end{methoddesc}
|
---|
608 |
|
---|
609 | \begin{methoddesc}{compare}{x, y}
|
---|
610 | Compares values numerically.
|
---|
611 |
|
---|
612 | Like \method{__cmp__()} but returns a decimal instance:
|
---|
613 | \begin{verbatim}
|
---|
614 | a or b is a NaN ==> Decimal("NaN")
|
---|
615 | a < b ==> Decimal("-1")
|
---|
616 | a == b ==> Decimal("0")
|
---|
617 | a > b ==> Decimal("1")
|
---|
618 | \end{verbatim}
|
---|
619 | \end{methoddesc}
|
---|
620 |
|
---|
621 | \begin{methoddesc}{divide}{x, y}
|
---|
622 | Return \var{x} divided by \var{y}.
|
---|
623 | \end{methoddesc}
|
---|
624 |
|
---|
625 | \begin{methoddesc}{divmod}{x, y}
|
---|
626 | Divides two numbers and returns the integer part of the result.
|
---|
627 | \end{methoddesc}
|
---|
628 |
|
---|
629 | \begin{methoddesc}{max}{x, y}
|
---|
630 | Compare two values numerically and return the maximum.
|
---|
631 |
|
---|
632 | If they are numerically equal then the left-hand operand is chosen as the
|
---|
633 | result.
|
---|
634 | \end{methoddesc}
|
---|
635 |
|
---|
636 | \begin{methoddesc}{min}{x, y}
|
---|
637 | Compare two values numerically and return the minimum.
|
---|
638 |
|
---|
639 | If they are numerically equal then the left-hand operand is chosen as the
|
---|
640 | result.
|
---|
641 | \end{methoddesc}
|
---|
642 |
|
---|
643 | \begin{methoddesc}{minus}{x}
|
---|
644 | Minus corresponds to the unary prefix minus operator in Python.
|
---|
645 | \end{methoddesc}
|
---|
646 |
|
---|
647 | \begin{methoddesc}{multiply}{x, y}
|
---|
648 | Return the product of \var{x} and \var{y}.
|
---|
649 | \end{methoddesc}
|
---|
650 |
|
---|
651 | \begin{methoddesc}{normalize}{x}
|
---|
652 | Normalize reduces an operand to its simplest form.
|
---|
653 |
|
---|
654 | Essentially a \method{plus} operation with all trailing zeros removed from
|
---|
655 | the result.
|
---|
656 | \end{methoddesc}
|
---|
657 |
|
---|
658 | \begin{methoddesc}{plus}{x}
|
---|
659 | Plus corresponds to the unary prefix plus operator in Python. This
|
---|
660 | operation applies the context precision and rounding, so it is
|
---|
661 | \emph{not} an identity operation.
|
---|
662 | \end{methoddesc}
|
---|
663 |
|
---|
664 | \begin{methoddesc}{power}{x, y\optional{, modulo}}
|
---|
665 | Return \samp{x ** y} to the \var{modulo} if given.
|
---|
666 |
|
---|
667 | The right-hand operand must be a whole number whose integer part (after any
|
---|
668 | exponent has been applied) has no more than 9 digits and whose fractional
|
---|
669 | part (if any) is all zeros before any rounding. The operand may be positive,
|
---|
670 | negative, or zero; if negative, the absolute value of the power is used, and
|
---|
671 | the left-hand operand is inverted (divided into 1) before use.
|
---|
672 |
|
---|
673 | If the increased precision needed for the intermediate calculations exceeds
|
---|
674 | the capabilities of the implementation then an \constant{InvalidOperation}
|
---|
675 | condition is signaled.
|
---|
676 |
|
---|
677 | If, when raising to a negative power, an underflow occurs during the
|
---|
678 | division into 1, the operation is not halted at that point but continues.
|
---|
679 | \end{methoddesc}
|
---|
680 |
|
---|
681 | \begin{methoddesc}{quantize}{x, y}
|
---|
682 | Returns a value equal to \var{x} after rounding and having the exponent of
|
---|
683 | \var{y}.
|
---|
684 |
|
---|
685 | Unlike other operations, if the length of the coefficient after the quantize
|
---|
686 | operation would be greater than precision, then an
|
---|
687 | \constant{InvalidOperation} is signaled. This guarantees that, unless there
|
---|
688 | is an error condition, the quantized exponent is always equal to that of the
|
---|
689 | right-hand operand.
|
---|
690 |
|
---|
691 | Also unlike other operations, quantize never signals Underflow, even
|
---|
692 | if the result is subnormal and inexact.
|
---|
693 | \end{methoddesc}
|
---|
694 |
|
---|
695 | \begin{methoddesc}{remainder}{x, y}
|
---|
696 | Returns the remainder from integer division.
|
---|
697 |
|
---|
698 | The sign of the result, if non-zero, is the same as that of the original
|
---|
699 | dividend.
|
---|
700 | \end{methoddesc}
|
---|
701 |
|
---|
702 | \begin{methoddesc}{remainder_near}{x, y}
|
---|
703 | Computed the modulo as either a positive or negative value depending
|
---|
704 | on which is closest to zero. For instance,
|
---|
705 | \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
|
---|
706 | which is closer to zero than \code{Decimal("4")}.
|
---|
707 |
|
---|
708 | If both are equally close, the one chosen will have the same sign
|
---|
709 | as \var{self}.
|
---|
710 | \end{methoddesc}
|
---|
711 |
|
---|
712 | \begin{methoddesc}{same_quantum}{x, y}
|
---|
713 | Test whether \var{x} and \var{y} have the same exponent or whether both are
|
---|
714 | \constant{NaN}.
|
---|
715 | \end{methoddesc}
|
---|
716 |
|
---|
717 | \begin{methoddesc}{sqrt}{x}
|
---|
718 | Return the square root of \var{x} to full precision.
|
---|
719 | \end{methoddesc}
|
---|
720 |
|
---|
721 | \begin{methoddesc}{subtract}{x, y}
|
---|
722 | Return the difference between \var{x} and \var{y}.
|
---|
723 | \end{methoddesc}
|
---|
724 |
|
---|
725 | \begin{methoddesc}{to_eng_string}{}
|
---|
726 | Convert to engineering-type string.
|
---|
727 |
|
---|
728 | Engineering notation has an exponent which is a multiple of 3, so there
|
---|
729 | are up to 3 digits left of the decimal place. For example, converts
|
---|
730 | \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
|
---|
731 | \end{methoddesc}
|
---|
732 |
|
---|
733 | \begin{methoddesc}{to_integral}{x}
|
---|
734 | Rounds to the nearest integer without signaling \constant{Inexact}
|
---|
735 | or \constant{Rounded}.
|
---|
736 | \end{methoddesc}
|
---|
737 |
|
---|
738 | \begin{methoddesc}{to_sci_string}{x}
|
---|
739 | Converts a number to a string using scientific notation.
|
---|
740 | \end{methoddesc}
|
---|
741 |
|
---|
742 |
|
---|
743 |
|
---|
744 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
745 | \subsection{Signals \label{decimal-signals}}
|
---|
746 |
|
---|
747 | Signals represent conditions that arise during computation.
|
---|
748 | Each corresponds to one context flag and one context trap enabler.
|
---|
749 |
|
---|
750 | The context flag is incremented whenever the condition is encountered.
|
---|
751 | After the computation, flags may be checked for informational
|
---|
752 | purposes (for instance, to determine whether a computation was exact).
|
---|
753 | After checking the flags, be sure to clear all flags before starting
|
---|
754 | the next computation.
|
---|
755 |
|
---|
756 | If the context's trap enabler is set for the signal, then the condition
|
---|
757 | causes a Python exception to be raised. For example, if the
|
---|
758 | \class{DivisionByZero} trap is set, then a \exception{DivisionByZero}
|
---|
759 | exception is raised upon encountering the condition.
|
---|
760 |
|
---|
761 |
|
---|
762 | \begin{classdesc*}{Clamped}
|
---|
763 | Altered an exponent to fit representation constraints.
|
---|
764 |
|
---|
765 | Typically, clamping occurs when an exponent falls outside the context's
|
---|
766 | \member{Emin} and \member{Emax} limits. If possible, the exponent is
|
---|
767 | reduced to fit by adding zeroes to the coefficient.
|
---|
768 | \end{classdesc*}
|
---|
769 |
|
---|
770 | \begin{classdesc*}{DecimalException}
|
---|
771 | Base class for other signals and a subclass of
|
---|
772 | \exception{ArithmeticError}.
|
---|
773 | \end{classdesc*}
|
---|
774 |
|
---|
775 | \begin{classdesc*}{DivisionByZero}
|
---|
776 | Signals the division of a non-infinite number by zero.
|
---|
777 |
|
---|
778 | Can occur with division, modulo division, or when raising a number to a
|
---|
779 | negative power. If this signal is not trapped, returns
|
---|
780 | \constant{Infinity} or \constant{-Infinity} with the sign determined by
|
---|
781 | the inputs to the calculation.
|
---|
782 | \end{classdesc*}
|
---|
783 |
|
---|
784 | \begin{classdesc*}{Inexact}
|
---|
785 | Indicates that rounding occurred and the result is not exact.
|
---|
786 |
|
---|
787 | Signals when non-zero digits were discarded during rounding. The rounded
|
---|
788 | result is returned. The signal flag or trap is used to detect when
|
---|
789 | results are inexact.
|
---|
790 | \end{classdesc*}
|
---|
791 |
|
---|
792 | \begin{classdesc*}{InvalidOperation}
|
---|
793 | An invalid operation was performed.
|
---|
794 |
|
---|
795 | Indicates that an operation was requested that does not make sense.
|
---|
796 | If not trapped, returns \constant{NaN}. Possible causes include:
|
---|
797 |
|
---|
798 | \begin{verbatim}
|
---|
799 | Infinity - Infinity
|
---|
800 | 0 * Infinity
|
---|
801 | Infinity / Infinity
|
---|
802 | x % 0
|
---|
803 | Infinity % x
|
---|
804 | x._rescale( non-integer )
|
---|
805 | sqrt(-x) and x > 0
|
---|
806 | 0 ** 0
|
---|
807 | x ** (non-integer)
|
---|
808 | x ** Infinity
|
---|
809 | \end{verbatim}
|
---|
810 | \end{classdesc*}
|
---|
811 |
|
---|
812 | \begin{classdesc*}{Overflow}
|
---|
813 | Numerical overflow.
|
---|
814 |
|
---|
815 | Indicates the exponent is larger than \member{Emax} after rounding has
|
---|
816 | occurred. If not trapped, the result depends on the rounding mode, either
|
---|
817 | pulling inward to the largest representable finite number or rounding
|
---|
818 | outward to \constant{Infinity}. In either case, \class{Inexact} and
|
---|
819 | \class{Rounded} are also signaled.
|
---|
820 | \end{classdesc*}
|
---|
821 |
|
---|
822 | \begin{classdesc*}{Rounded}
|
---|
823 | Rounding occurred though possibly no information was lost.
|
---|
824 |
|
---|
825 | Signaled whenever rounding discards digits; even if those digits are
|
---|
826 | zero (such as rounding \constant{5.00} to \constant{5.0}). If not
|
---|
827 | trapped, returns the result unchanged. This signal is used to detect
|
---|
828 | loss of significant digits.
|
---|
829 | \end{classdesc*}
|
---|
830 |
|
---|
831 | \begin{classdesc*}{Subnormal}
|
---|
832 | Exponent was lower than \member{Emin} prior to rounding.
|
---|
833 |
|
---|
834 | Occurs when an operation result is subnormal (the exponent is too small).
|
---|
835 | If not trapped, returns the result unchanged.
|
---|
836 | \end{classdesc*}
|
---|
837 |
|
---|
838 | \begin{classdesc*}{Underflow}
|
---|
839 | Numerical underflow with result rounded to zero.
|
---|
840 |
|
---|
841 | Occurs when a subnormal result is pushed to zero by rounding.
|
---|
842 | \class{Inexact} and \class{Subnormal} are also signaled.
|
---|
843 | \end{classdesc*}
|
---|
844 |
|
---|
845 | The following table summarizes the hierarchy of signals:
|
---|
846 |
|
---|
847 | \begin{verbatim}
|
---|
848 | exceptions.ArithmeticError(exceptions.StandardError)
|
---|
849 | DecimalException
|
---|
850 | Clamped
|
---|
851 | DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
|
---|
852 | Inexact
|
---|
853 | Overflow(Inexact, Rounded)
|
---|
854 | Underflow(Inexact, Rounded, Subnormal)
|
---|
855 | InvalidOperation
|
---|
856 | Rounded
|
---|
857 | Subnormal
|
---|
858 | \end{verbatim}
|
---|
859 |
|
---|
860 |
|
---|
861 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
862 | \subsection{Floating Point Notes \label{decimal-notes}}
|
---|
863 |
|
---|
864 | \subsubsection{Mitigating round-off error with increased precision}
|
---|
865 |
|
---|
866 | The use of decimal floating point eliminates decimal representation error
|
---|
867 | (making it possible to represent \constant{0.1} exactly); however, some
|
---|
868 | operations can still incur round-off error when non-zero digits exceed the
|
---|
869 | fixed precision.
|
---|
870 |
|
---|
871 | The effects of round-off error can be amplified by the addition or subtraction
|
---|
872 | of nearly offsetting quantities resulting in loss of significance. Knuth
|
---|
873 | provides two instructive examples where rounded floating point arithmetic with
|
---|
874 | insufficient precision causes the breakdown of the associative and
|
---|
875 | distributive properties of addition:
|
---|
876 |
|
---|
877 | \begin{verbatim}
|
---|
878 | # Examples from Seminumerical Algorithms, Section 4.2.2.
|
---|
879 | >>> from decimal import Decimal, getcontext
|
---|
880 | >>> getcontext().prec = 8
|
---|
881 |
|
---|
882 | >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
|
---|
883 | >>> (u + v) + w
|
---|
884 | Decimal("9.5111111")
|
---|
885 | >>> u + (v + w)
|
---|
886 | Decimal("10")
|
---|
887 |
|
---|
888 | >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
|
---|
889 | >>> (u*v) + (u*w)
|
---|
890 | Decimal("0.01")
|
---|
891 | >>> u * (v+w)
|
---|
892 | Decimal("0.0060000")
|
---|
893 | \end{verbatim}
|
---|
894 |
|
---|
895 | The \module{decimal} module makes it possible to restore the identities
|
---|
896 | by expanding the precision sufficiently to avoid loss of significance:
|
---|
897 |
|
---|
898 | \begin{verbatim}
|
---|
899 | >>> getcontext().prec = 20
|
---|
900 | >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
|
---|
901 | >>> (u + v) + w
|
---|
902 | Decimal("9.51111111")
|
---|
903 | >>> u + (v + w)
|
---|
904 | Decimal("9.51111111")
|
---|
905 | >>>
|
---|
906 | >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
|
---|
907 | >>> (u*v) + (u*w)
|
---|
908 | Decimal("0.0060000")
|
---|
909 | >>> u * (v+w)
|
---|
910 | Decimal("0.0060000")
|
---|
911 | \end{verbatim}
|
---|
912 |
|
---|
913 | \subsubsection{Special values}
|
---|
914 |
|
---|
915 | The number system for the \module{decimal} module provides special
|
---|
916 | values including \constant{NaN}, \constant{sNaN}, \constant{-Infinity},
|
---|
917 | \constant{Infinity}, and two zeroes, \constant{+0} and \constant{-0}.
|
---|
918 |
|
---|
919 | Infinities can be constructed directly with: \code{Decimal('Infinity')}. Also,
|
---|
920 | they can arise from dividing by zero when the \exception{DivisionByZero}
|
---|
921 | signal is not trapped. Likewise, when the \exception{Overflow} signal is not
|
---|
922 | trapped, infinity can result from rounding beyond the limits of the largest
|
---|
923 | representable number.
|
---|
924 |
|
---|
925 | The infinities are signed (affine) and can be used in arithmetic operations
|
---|
926 | where they get treated as very large, indeterminate numbers. For instance,
|
---|
927 | adding a constant to infinity gives another infinite result.
|
---|
928 |
|
---|
929 | Some operations are indeterminate and return \constant{NaN}, or if the
|
---|
930 | \exception{InvalidOperation} signal is trapped, raise an exception. For
|
---|
931 | example, \code{0/0} returns \constant{NaN} which means ``not a number''. This
|
---|
932 | variety of \constant{NaN} is quiet and, once created, will flow through other
|
---|
933 | computations always resulting in another \constant{NaN}. This behavior can be
|
---|
934 | useful for a series of computations that occasionally have missing inputs ---
|
---|
935 | it allows the calculation to proceed while flagging specific results as
|
---|
936 | invalid.
|
---|
937 |
|
---|
938 | A variant is \constant{sNaN} which signals rather than remaining quiet
|
---|
939 | after every operation. This is a useful return value when an invalid
|
---|
940 | result needs to interrupt a calculation for special handling.
|
---|
941 |
|
---|
942 | The signed zeros can result from calculations that underflow.
|
---|
943 | They keep the sign that would have resulted if the calculation had
|
---|
944 | been carried out to greater precision. Since their magnitude is
|
---|
945 | zero, both positive and negative zeros are treated as equal and their
|
---|
946 | sign is informational.
|
---|
947 |
|
---|
948 | In addition to the two signed zeros which are distinct yet equal,
|
---|
949 | there are various representations of zero with differing precisions
|
---|
950 | yet equivalent in value. This takes a bit of getting used to. For
|
---|
951 | an eye accustomed to normalized floating point representations, it
|
---|
952 | is not immediately obvious that the following calculation returns
|
---|
953 | a value equal to zero:
|
---|
954 |
|
---|
955 | \begin{verbatim}
|
---|
956 | >>> 1 / Decimal('Infinity')
|
---|
957 | Decimal("0E-1000000026")
|
---|
958 | \end{verbatim}
|
---|
959 |
|
---|
960 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
961 | \subsection{Working with threads \label{decimal-threads}}
|
---|
962 |
|
---|
963 | The \function{getcontext()} function accesses a different \class{Context}
|
---|
964 | object for each thread. Having separate thread contexts means that threads
|
---|
965 | may make changes (such as \code{getcontext.prec=10}) without interfering with
|
---|
966 | other threads.
|
---|
967 |
|
---|
968 | Likewise, the \function{setcontext()} function automatically assigns its target
|
---|
969 | to the current thread.
|
---|
970 |
|
---|
971 | If \function{setcontext()} has not been called before \function{getcontext()},
|
---|
972 | then \function{getcontext()} will automatically create a new context for use
|
---|
973 | in the current thread.
|
---|
974 |
|
---|
975 | The new context is copied from a prototype context called
|
---|
976 | \var{DefaultContext}. To control the defaults so that each thread will use the
|
---|
977 | same values throughout the application, directly modify the
|
---|
978 | \var{DefaultContext} object. This should be done \emph{before} any threads are
|
---|
979 | started so that there won't be a race condition between threads calling
|
---|
980 | \function{getcontext()}. For example:
|
---|
981 |
|
---|
982 | \begin{verbatim}
|
---|
983 | # Set applicationwide defaults for all threads about to be launched
|
---|
984 | DefaultContext.prec = 12
|
---|
985 | DefaultContext.rounding = ROUND_DOWN
|
---|
986 | DefaultContext.traps = ExtendedContext.traps.copy()
|
---|
987 | DefaultContext.traps[InvalidOperation] = 1
|
---|
988 | setcontext(DefaultContext)
|
---|
989 |
|
---|
990 | # Afterwards, the threads can be started
|
---|
991 | t1.start()
|
---|
992 | t2.start()
|
---|
993 | t3.start()
|
---|
994 | . . .
|
---|
995 | \end{verbatim}
|
---|
996 |
|
---|
997 |
|
---|
998 |
|
---|
999 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
1000 | \subsection{Recipes \label{decimal-recipes}}
|
---|
1001 |
|
---|
1002 | Here are a few recipes that serve as utility functions and that demonstrate
|
---|
1003 | ways to work with the \class{Decimal} class:
|
---|
1004 |
|
---|
1005 | \begin{verbatim}
|
---|
1006 | def moneyfmt(value, places=2, curr='', sep=',', dp='.',
|
---|
1007 | pos='', neg='-', trailneg=''):
|
---|
1008 | """Convert Decimal to a money formatted string.
|
---|
1009 |
|
---|
1010 | places: required number of places after the decimal point
|
---|
1011 | curr: optional currency symbol before the sign (may be blank)
|
---|
1012 | sep: optional grouping separator (comma, period, space, or blank)
|
---|
1013 | dp: decimal point indicator (comma or period)
|
---|
1014 | only specify as blank when places is zero
|
---|
1015 | pos: optional sign for positive numbers: '+', space or blank
|
---|
1016 | neg: optional sign for negative numbers: '-', '(', space or blank
|
---|
1017 | trailneg:optional trailing minus indicator: '-', ')', space or blank
|
---|
1018 |
|
---|
1019 | >>> d = Decimal('-1234567.8901')
|
---|
1020 | >>> moneyfmt(d, curr='$')
|
---|
1021 | '-$1,234,567.89'
|
---|
1022 | >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
|
---|
1023 | '1.234.568-'
|
---|
1024 | >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
|
---|
1025 | '($1,234,567.89)'
|
---|
1026 | >>> moneyfmt(Decimal(123456789), sep=' ')
|
---|
1027 | '123 456 789.00'
|
---|
1028 | >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
|
---|
1029 | '<.02>'
|
---|
1030 |
|
---|
1031 | """
|
---|
1032 | q = Decimal((0, (1,), -places)) # 2 places --> '0.01'
|
---|
1033 | sign, digits, exp = value.quantize(q).as_tuple()
|
---|
1034 | assert exp == -places
|
---|
1035 | result = []
|
---|
1036 | digits = map(str, digits)
|
---|
1037 | build, next = result.append, digits.pop
|
---|
1038 | if sign:
|
---|
1039 | build(trailneg)
|
---|
1040 | for i in range(places):
|
---|
1041 | if digits:
|
---|
1042 | build(next())
|
---|
1043 | else:
|
---|
1044 | build('0')
|
---|
1045 | build(dp)
|
---|
1046 | i = 0
|
---|
1047 | while digits:
|
---|
1048 | build(next())
|
---|
1049 | i += 1
|
---|
1050 | if i == 3 and digits:
|
---|
1051 | i = 0
|
---|
1052 | build(sep)
|
---|
1053 | build(curr)
|
---|
1054 | if sign:
|
---|
1055 | build(neg)
|
---|
1056 | else:
|
---|
1057 | build(pos)
|
---|
1058 | result.reverse()
|
---|
1059 | return ''.join(result)
|
---|
1060 |
|
---|
1061 | def pi():
|
---|
1062 | """Compute Pi to the current precision.
|
---|
1063 |
|
---|
1064 | >>> print pi()
|
---|
1065 | 3.141592653589793238462643383
|
---|
1066 |
|
---|
1067 | """
|
---|
1068 | getcontext().prec += 2 # extra digits for intermediate steps
|
---|
1069 | three = Decimal(3) # substitute "three=3.0" for regular floats
|
---|
1070 | lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
|
---|
1071 | while s != lasts:
|
---|
1072 | lasts = s
|
---|
1073 | n, na = n+na, na+8
|
---|
1074 | d, da = d+da, da+32
|
---|
1075 | t = (t * n) / d
|
---|
1076 | s += t
|
---|
1077 | getcontext().prec -= 2
|
---|
1078 | return +s # unary plus applies the new precision
|
---|
1079 |
|
---|
1080 | def exp(x):
|
---|
1081 | """Return e raised to the power of x. Result type matches input type.
|
---|
1082 |
|
---|
1083 | >>> print exp(Decimal(1))
|
---|
1084 | 2.718281828459045235360287471
|
---|
1085 | >>> print exp(Decimal(2))
|
---|
1086 | 7.389056098930650227230427461
|
---|
1087 | >>> print exp(2.0)
|
---|
1088 | 7.38905609893
|
---|
1089 | >>> print exp(2+0j)
|
---|
1090 | (7.38905609893+0j)
|
---|
1091 |
|
---|
1092 | """
|
---|
1093 | getcontext().prec += 2
|
---|
1094 | i, lasts, s, fact, num = 0, 0, 1, 1, 1
|
---|
1095 | while s != lasts:
|
---|
1096 | lasts = s
|
---|
1097 | i += 1
|
---|
1098 | fact *= i
|
---|
1099 | num *= x
|
---|
1100 | s += num / fact
|
---|
1101 | getcontext().prec -= 2
|
---|
1102 | return +s
|
---|
1103 |
|
---|
1104 | def cos(x):
|
---|
1105 | """Return the cosine of x as measured in radians.
|
---|
1106 |
|
---|
1107 | >>> print cos(Decimal('0.5'))
|
---|
1108 | 0.8775825618903727161162815826
|
---|
1109 | >>> print cos(0.5)
|
---|
1110 | 0.87758256189
|
---|
1111 | >>> print cos(0.5+0j)
|
---|
1112 | (0.87758256189+0j)
|
---|
1113 |
|
---|
1114 | """
|
---|
1115 | getcontext().prec += 2
|
---|
1116 | i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
|
---|
1117 | while s != lasts:
|
---|
1118 | lasts = s
|
---|
1119 | i += 2
|
---|
1120 | fact *= i * (i-1)
|
---|
1121 | num *= x * x
|
---|
1122 | sign *= -1
|
---|
1123 | s += num / fact * sign
|
---|
1124 | getcontext().prec -= 2
|
---|
1125 | return +s
|
---|
1126 |
|
---|
1127 | def sin(x):
|
---|
1128 | """Return the sine of x as measured in radians.
|
---|
1129 |
|
---|
1130 | >>> print sin(Decimal('0.5'))
|
---|
1131 | 0.4794255386042030002732879352
|
---|
1132 | >>> print sin(0.5)
|
---|
1133 | 0.479425538604
|
---|
1134 | >>> print sin(0.5+0j)
|
---|
1135 | (0.479425538604+0j)
|
---|
1136 |
|
---|
1137 | """
|
---|
1138 | getcontext().prec += 2
|
---|
1139 | i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
|
---|
1140 | while s != lasts:
|
---|
1141 | lasts = s
|
---|
1142 | i += 2
|
---|
1143 | fact *= i * (i-1)
|
---|
1144 | num *= x * x
|
---|
1145 | sign *= -1
|
---|
1146 | s += num / fact * sign
|
---|
1147 | getcontext().prec -= 2
|
---|
1148 | return +s
|
---|
1149 |
|
---|
1150 | \end{verbatim}
|
---|
1151 |
|
---|
1152 |
|
---|
1153 |
|
---|
1154 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
1155 | \subsection{Decimal FAQ \label{decimal-faq}}
|
---|
1156 |
|
---|
1157 | Q. It is cumbersome to type \code{decimal.Decimal('1234.5')}. Is there a way
|
---|
1158 | to minimize typing when using the interactive interpreter?
|
---|
1159 |
|
---|
1160 | A. Some users abbreviate the constructor to just a single letter:
|
---|
1161 |
|
---|
1162 | \begin{verbatim}
|
---|
1163 | >>> D = decimal.Decimal
|
---|
1164 | >>> D('1.23') + D('3.45')
|
---|
1165 | Decimal("4.68")
|
---|
1166 | \end{verbatim}
|
---|
1167 |
|
---|
1168 |
|
---|
1169 | Q. In a fixed-point application with two decimal places, some inputs
|
---|
1170 | have many places and need to be rounded. Others are not supposed to have
|
---|
1171 | excess digits and need to be validated. What methods should be used?
|
---|
1172 |
|
---|
1173 | A. The \method{quantize()} method rounds to a fixed number of decimal places.
|
---|
1174 | If the \constant{Inexact} trap is set, it is also useful for validation:
|
---|
1175 |
|
---|
1176 | \begin{verbatim}
|
---|
1177 | >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
|
---|
1178 |
|
---|
1179 | >>> # Round to two places
|
---|
1180 | >>> Decimal("3.214").quantize(TWOPLACES)
|
---|
1181 | Decimal("3.21")
|
---|
1182 |
|
---|
1183 | >>> # Validate that a number does not exceed two places
|
---|
1184 | >>> Decimal("3.21").quantize(TWOPLACES, context=Context(traps=[Inexact]))
|
---|
1185 | Decimal("3.21")
|
---|
1186 |
|
---|
1187 | >>> Decimal("3.214").quantize(TWOPLACES, context=Context(traps=[Inexact]))
|
---|
1188 | Traceback (most recent call last):
|
---|
1189 | ...
|
---|
1190 | Inexact: Changed in rounding
|
---|
1191 | \end{verbatim}
|
---|
1192 |
|
---|
1193 |
|
---|
1194 | Q. Once I have valid two place inputs, how do I maintain that invariant
|
---|
1195 | throughout an application?
|
---|
1196 |
|
---|
1197 | A. Some operations like addition and subtraction automatically preserve fixed
|
---|
1198 | point. Others, like multiplication and division, change the number of decimal
|
---|
1199 | places and need to be followed-up with a \method{quantize()} step.
|
---|
1200 |
|
---|
1201 |
|
---|
1202 | Q. There are many ways to express the same value. The numbers
|
---|
1203 | \constant{200}, \constant{200.000}, \constant{2E2}, and \constant{.02E+4} all
|
---|
1204 | have the same value at various precisions. Is there a way to transform them to
|
---|
1205 | a single recognizable canonical value?
|
---|
1206 |
|
---|
1207 | A. The \method{normalize()} method maps all equivalent values to a single
|
---|
1208 | representative:
|
---|
1209 |
|
---|
1210 | \begin{verbatim}
|
---|
1211 | >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
|
---|
1212 | >>> [v.normalize() for v in values]
|
---|
1213 | [Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2")]
|
---|
1214 | \end{verbatim}
|
---|
1215 |
|
---|
1216 |
|
---|
1217 | Q. Some decimal values always print with exponential notation. Is there
|
---|
1218 | a way to get a non-exponential representation?
|
---|
1219 |
|
---|
1220 | A. For some values, exponential notation is the only way to express
|
---|
1221 | the number of significant places in the coefficient. For example,
|
---|
1222 | expressing \constant{5.0E+3} as \constant{5000} keeps the value
|
---|
1223 | constant but cannot show the original's two-place significance.
|
---|
1224 |
|
---|
1225 |
|
---|
1226 | Q. Is there a way to convert a regular float to a \class{Decimal}?
|
---|
1227 |
|
---|
1228 | A. Yes, all binary floating point numbers can be exactly expressed as a
|
---|
1229 | Decimal. An exact conversion may take more precision than intuition would
|
---|
1230 | suggest, so trapping \constant{Inexact} will signal a need for more precision:
|
---|
1231 |
|
---|
1232 | \begin{verbatim}
|
---|
1233 | def floatToDecimal(f):
|
---|
1234 | "Convert a floating point number to a Decimal with no loss of information"
|
---|
1235 | # Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
|
---|
1236 | # exponent. Double the mantissa until it is an integer. Use the integer
|
---|
1237 | # mantissa and exponent to compute an equivalent Decimal. If this cannot
|
---|
1238 | # be done exactly, then retry with more precision.
|
---|
1239 |
|
---|
1240 | mantissa, exponent = math.frexp(f)
|
---|
1241 | while mantissa != int(mantissa):
|
---|
1242 | mantissa *= 2.0
|
---|
1243 | exponent -= 1
|
---|
1244 | mantissa = int(mantissa)
|
---|
1245 |
|
---|
1246 | oldcontext = getcontext()
|
---|
1247 | setcontext(Context(traps=[Inexact]))
|
---|
1248 | try:
|
---|
1249 | while True:
|
---|
1250 | try:
|
---|
1251 | return mantissa * Decimal(2) ** exponent
|
---|
1252 | except Inexact:
|
---|
1253 | getcontext().prec += 1
|
---|
1254 | finally:
|
---|
1255 | setcontext(oldcontext)
|
---|
1256 | \end{verbatim}
|
---|
1257 |
|
---|
1258 |
|
---|
1259 | Q. Why isn't the \function{floatToDecimal()} routine included in the module?
|
---|
1260 |
|
---|
1261 | A. There is some question about whether it is advisable to mix binary and
|
---|
1262 | decimal floating point. Also, its use requires some care to avoid the
|
---|
1263 | representation issues associated with binary floating point:
|
---|
1264 |
|
---|
1265 | \begin{verbatim}
|
---|
1266 | >>> floatToDecimal(1.1)
|
---|
1267 | Decimal("1.100000000000000088817841970012523233890533447265625")
|
---|
1268 | \end{verbatim}
|
---|
1269 |
|
---|
1270 |
|
---|
1271 | Q. Within a complex calculation, how can I make sure that I haven't gotten a
|
---|
1272 | spurious result because of insufficient precision or rounding anomalies.
|
---|
1273 |
|
---|
1274 | A. The decimal module makes it easy to test results. A best practice is to
|
---|
1275 | re-run calculations using greater precision and with various rounding modes.
|
---|
1276 | Widely differing results indicate insufficient precision, rounding mode
|
---|
1277 | issues, ill-conditioned inputs, or a numerically unstable algorithm.
|
---|
1278 |
|
---|
1279 |
|
---|
1280 | Q. I noticed that context precision is applied to the results of operations
|
---|
1281 | but not to the inputs. Is there anything to watch out for when mixing
|
---|
1282 | values of different precisions?
|
---|
1283 |
|
---|
1284 | A. Yes. The principle is that all values are considered to be exact and so
|
---|
1285 | is the arithmetic on those values. Only the results are rounded. The
|
---|
1286 | advantage for inputs is that ``what you type is what you get''. A
|
---|
1287 | disadvantage is that the results can look odd if you forget that the inputs
|
---|
1288 | haven't been rounded:
|
---|
1289 |
|
---|
1290 | \begin{verbatim}
|
---|
1291 | >>> getcontext().prec = 3
|
---|
1292 | >>> Decimal('3.104') + D('2.104')
|
---|
1293 | Decimal("5.21")
|
---|
1294 | >>> Decimal('3.104') + D('0.000') + D('2.104')
|
---|
1295 | Decimal("5.20")
|
---|
1296 | \end{verbatim}
|
---|
1297 |
|
---|
1298 | The solution is either to increase precision or to force rounding of inputs
|
---|
1299 | using the unary plus operation:
|
---|
1300 |
|
---|
1301 | \begin{verbatim}
|
---|
1302 | >>> getcontext().prec = 3
|
---|
1303 | >>> +Decimal('1.23456789') # unary plus triggers rounding
|
---|
1304 | Decimal("1.23")
|
---|
1305 | \end{verbatim}
|
---|
1306 |
|
---|
1307 | Alternatively, inputs can be rounded upon creation using the
|
---|
1308 | \method{Context.create_decimal()} method:
|
---|
1309 |
|
---|
1310 | \begin{verbatim}
|
---|
1311 | >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
|
---|
1312 | Decimal("1.2345")
|
---|
1313 | \end{verbatim}
|
---|