1 | \section{\module{collections} ---
|
---|
2 | High-performance container datatypes}
|
---|
3 |
|
---|
4 | \declaremodule{standard}{collections}
|
---|
5 | \modulesynopsis{High-performance datatypes}
|
---|
6 | \moduleauthor{Raymond Hettinger}{python@rcn.com}
|
---|
7 | \sectionauthor{Raymond Hettinger}{python@rcn.com}
|
---|
8 | \versionadded{2.4}
|
---|
9 |
|
---|
10 |
|
---|
11 | This module implements high-performance container datatypes. Currently,
|
---|
12 | there are two datatypes, deque and defaultdict.
|
---|
13 | Future additions may include balanced trees and ordered dictionaries.
|
---|
14 | \versionchanged[Added defaultdict]{2.5}
|
---|
15 |
|
---|
16 | \subsection{\class{deque} objects \label{deque-objects}}
|
---|
17 |
|
---|
18 | \begin{funcdesc}{deque}{\optional{iterable}}
|
---|
19 | Returns a new deque objected initialized left-to-right (using
|
---|
20 | \method{append()}) with data from \var{iterable}. If \var{iterable}
|
---|
21 | is not specified, the new deque is empty.
|
---|
22 |
|
---|
23 | Deques are a generalization of stacks and queues (the name is pronounced
|
---|
24 | ``deck'' and is short for ``double-ended queue''). Deques support
|
---|
25 | thread-safe, memory efficient appends and pops from either side of the deque
|
---|
26 | with approximately the same \code{O(1)} performance in either direction.
|
---|
27 |
|
---|
28 | Though \class{list} objects support similar operations, they are optimized
|
---|
29 | for fast fixed-length operations and incur \code{O(n)} memory movement costs
|
---|
30 | for \samp{pop(0)} and \samp{insert(0, v)} operations which change both the
|
---|
31 | size and position of the underlying data representation.
|
---|
32 | \versionadded{2.4}
|
---|
33 | \end{funcdesc}
|
---|
34 |
|
---|
35 | Deque objects support the following methods:
|
---|
36 |
|
---|
37 | \begin{methoddesc}{append}{x}
|
---|
38 | Add \var{x} to the right side of the deque.
|
---|
39 | \end{methoddesc}
|
---|
40 |
|
---|
41 | \begin{methoddesc}{appendleft}{x}
|
---|
42 | Add \var{x} to the left side of the deque.
|
---|
43 | \end{methoddesc}
|
---|
44 |
|
---|
45 | \begin{methoddesc}{clear}{}
|
---|
46 | Remove all elements from the deque leaving it with length 0.
|
---|
47 | \end{methoddesc}
|
---|
48 |
|
---|
49 | \begin{methoddesc}{extend}{iterable}
|
---|
50 | Extend the right side of the deque by appending elements from
|
---|
51 | the iterable argument.
|
---|
52 | \end{methoddesc}
|
---|
53 |
|
---|
54 | \begin{methoddesc}{extendleft}{iterable}
|
---|
55 | Extend the left side of the deque by appending elements from
|
---|
56 | \var{iterable}. Note, the series of left appends results in
|
---|
57 | reversing the order of elements in the iterable argument.
|
---|
58 | \end{methoddesc}
|
---|
59 |
|
---|
60 | \begin{methoddesc}{pop}{}
|
---|
61 | Remove and return an element from the right side of the deque.
|
---|
62 | If no elements are present, raises an \exception{IndexError}.
|
---|
63 | \end{methoddesc}
|
---|
64 |
|
---|
65 | \begin{methoddesc}{popleft}{}
|
---|
66 | Remove and return an element from the left side of the deque.
|
---|
67 | If no elements are present, raises an \exception{IndexError}.
|
---|
68 | \end{methoddesc}
|
---|
69 |
|
---|
70 | \begin{methoddesc}{remove}{value}
|
---|
71 | Removed the first occurrence of \var{value}. If not found,
|
---|
72 | raises a \exception{ValueError}.
|
---|
73 | \versionadded{2.5}
|
---|
74 | \end{methoddesc}
|
---|
75 |
|
---|
76 | \begin{methoddesc}{rotate}{n}
|
---|
77 | Rotate the deque \var{n} steps to the right. If \var{n} is
|
---|
78 | negative, rotate to the left. Rotating one step to the right
|
---|
79 | is equivalent to: \samp{d.appendleft(d.pop())}.
|
---|
80 | \end{methoddesc}
|
---|
81 |
|
---|
82 | In addition to the above, deques support iteration, pickling, \samp{len(d)},
|
---|
83 | \samp{reversed(d)}, \samp{copy.copy(d)}, \samp{copy.deepcopy(d)},
|
---|
84 | membership testing with the \keyword{in} operator, and subscript references
|
---|
85 | such as \samp{d[-1]}.
|
---|
86 |
|
---|
87 | Example:
|
---|
88 |
|
---|
89 | \begin{verbatim}
|
---|
90 | >>> from collections import deque
|
---|
91 | >>> d = deque('ghi') # make a new deque with three items
|
---|
92 | >>> for elem in d: # iterate over the deque's elements
|
---|
93 | ... print elem.upper()
|
---|
94 | G
|
---|
95 | H
|
---|
96 | I
|
---|
97 |
|
---|
98 | >>> d.append('j') # add a new entry to the right side
|
---|
99 | >>> d.appendleft('f') # add a new entry to the left side
|
---|
100 | >>> d # show the representation of the deque
|
---|
101 | deque(['f', 'g', 'h', 'i', 'j'])
|
---|
102 |
|
---|
103 | >>> d.pop() # return and remove the rightmost item
|
---|
104 | 'j'
|
---|
105 | >>> d.popleft() # return and remove the leftmost item
|
---|
106 | 'f'
|
---|
107 | >>> list(d) # list the contents of the deque
|
---|
108 | ['g', 'h', 'i']
|
---|
109 | >>> d[0] # peek at leftmost item
|
---|
110 | 'g'
|
---|
111 | >>> d[-1] # peek at rightmost item
|
---|
112 | 'i'
|
---|
113 |
|
---|
114 | >>> list(reversed(d)) # list the contents of a deque in reverse
|
---|
115 | ['i', 'h', 'g']
|
---|
116 | >>> 'h' in d # search the deque
|
---|
117 | True
|
---|
118 | >>> d.extend('jkl') # add multiple elements at once
|
---|
119 | >>> d
|
---|
120 | deque(['g', 'h', 'i', 'j', 'k', 'l'])
|
---|
121 | >>> d.rotate(1) # right rotation
|
---|
122 | >>> d
|
---|
123 | deque(['l', 'g', 'h', 'i', 'j', 'k'])
|
---|
124 | >>> d.rotate(-1) # left rotation
|
---|
125 | >>> d
|
---|
126 | deque(['g', 'h', 'i', 'j', 'k', 'l'])
|
---|
127 |
|
---|
128 | >>> deque(reversed(d)) # make a new deque in reverse order
|
---|
129 | deque(['l', 'k', 'j', 'i', 'h', 'g'])
|
---|
130 | >>> d.clear() # empty the deque
|
---|
131 | >>> d.pop() # cannot pop from an empty deque
|
---|
132 | Traceback (most recent call last):
|
---|
133 | File "<pyshell#6>", line 1, in -toplevel-
|
---|
134 | d.pop()
|
---|
135 | IndexError: pop from an empty deque
|
---|
136 |
|
---|
137 | >>> d.extendleft('abc') # extendleft() reverses the input order
|
---|
138 | >>> d
|
---|
139 | deque(['c', 'b', 'a'])
|
---|
140 | \end{verbatim}
|
---|
141 |
|
---|
142 | \subsubsection{Recipes \label{deque-recipes}}
|
---|
143 |
|
---|
144 | This section shows various approaches to working with deques.
|
---|
145 |
|
---|
146 | The \method{rotate()} method provides a way to implement \class{deque}
|
---|
147 | slicing and deletion. For example, a pure python implementation of
|
---|
148 | \code{del d[n]} relies on the \method{rotate()} method to position
|
---|
149 | elements to be popped:
|
---|
150 |
|
---|
151 | \begin{verbatim}
|
---|
152 | def delete_nth(d, n):
|
---|
153 | d.rotate(-n)
|
---|
154 | d.popleft()
|
---|
155 | d.rotate(n)
|
---|
156 | \end{verbatim}
|
---|
157 |
|
---|
158 | To implement \class{deque} slicing, use a similar approach applying
|
---|
159 | \method{rotate()} to bring a target element to the left side of the deque.
|
---|
160 | Remove old entries with \method{popleft()}, add new entries with
|
---|
161 | \method{extend()}, and then reverse the rotation.
|
---|
162 |
|
---|
163 | With minor variations on that approach, it is easy to implement Forth style
|
---|
164 | stack manipulations such as \code{dup}, \code{drop}, \code{swap}, \code{over},
|
---|
165 | \code{pick}, \code{rot}, and \code{roll}.
|
---|
166 |
|
---|
167 | A roundrobin task server can be built from a \class{deque} using
|
---|
168 | \method{popleft()} to select the current task and \method{append()}
|
---|
169 | to add it back to the tasklist if the input stream is not exhausted:
|
---|
170 |
|
---|
171 | \begin{verbatim}
|
---|
172 | def roundrobin(*iterables):
|
---|
173 | pending = deque(iter(i) for i in iterables)
|
---|
174 | while pending:
|
---|
175 | task = pending.popleft()
|
---|
176 | try:
|
---|
177 | yield task.next()
|
---|
178 | except StopIteration:
|
---|
179 | continue
|
---|
180 | pending.append(task)
|
---|
181 |
|
---|
182 | >>> for value in roundrobin('abc', 'd', 'efgh'):
|
---|
183 | ... print value
|
---|
184 |
|
---|
185 | a
|
---|
186 | d
|
---|
187 | e
|
---|
188 | b
|
---|
189 | f
|
---|
190 | c
|
---|
191 | g
|
---|
192 | h
|
---|
193 |
|
---|
194 | \end{verbatim}
|
---|
195 |
|
---|
196 |
|
---|
197 | Multi-pass data reduction algorithms can be succinctly expressed and
|
---|
198 | efficiently coded by extracting elements with multiple calls to
|
---|
199 | \method{popleft()}, applying the reduction function, and calling
|
---|
200 | \method{append()} to add the result back to the queue.
|
---|
201 |
|
---|
202 | For example, building a balanced binary tree of nested lists entails
|
---|
203 | reducing two adjacent nodes into one by grouping them in a list:
|
---|
204 |
|
---|
205 | \begin{verbatim}
|
---|
206 | def maketree(iterable):
|
---|
207 | d = deque(iterable)
|
---|
208 | while len(d) > 1:
|
---|
209 | pair = [d.popleft(), d.popleft()]
|
---|
210 | d.append(pair)
|
---|
211 | return list(d)
|
---|
212 |
|
---|
213 | >>> print maketree('abcdefgh')
|
---|
214 | [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]]
|
---|
215 |
|
---|
216 | \end{verbatim}
|
---|
217 |
|
---|
218 |
|
---|
219 |
|
---|
220 | \subsection{\class{defaultdict} objects \label{defaultdict-objects}}
|
---|
221 |
|
---|
222 | \begin{funcdesc}{defaultdict}{\optional{default_factory\optional{, ...}}}
|
---|
223 | Returns a new dictionary-like object. \class{defaultdict} is a subclass
|
---|
224 | of the builtin \class{dict} class. It overrides one method and adds one
|
---|
225 | writable instance variable. The remaining functionality is the same as
|
---|
226 | for the \class{dict} class and is not documented here.
|
---|
227 |
|
---|
228 | The first argument provides the initial value for the
|
---|
229 | \member{default_factory} attribute; it defaults to \code{None}.
|
---|
230 | All remaining arguments are treated the same as if they were
|
---|
231 | passed to the \class{dict} constructor, including keyword arguments.
|
---|
232 |
|
---|
233 | \versionadded{2.5}
|
---|
234 | \end{funcdesc}
|
---|
235 |
|
---|
236 | \class{defaultdict} objects support the following method in addition to
|
---|
237 | the standard \class{dict} operations:
|
---|
238 |
|
---|
239 | \begin{methoddesc}{__missing__}{key}
|
---|
240 | If the \member{default_factory} attribute is \code{None}, this raises
|
---|
241 | an \exception{KeyError} exception with the \var{key} as argument.
|
---|
242 |
|
---|
243 | If \member{default_factory} is not \code{None}, it is called without
|
---|
244 | arguments to provide a default value for the given \var{key}, this
|
---|
245 | value is inserted in the dictionary for the \var{key}, and returned.
|
---|
246 |
|
---|
247 | If calling \member{default_factory} raises an exception this exception
|
---|
248 | is propagated unchanged.
|
---|
249 |
|
---|
250 | This method is called by the \method{__getitem__} method of the
|
---|
251 | \class{dict} class when the requested key is not found; whatever it
|
---|
252 | returns or raises is then returned or raised by \method{__getitem__}.
|
---|
253 | \end{methoddesc}
|
---|
254 |
|
---|
255 | \class{defaultdict} objects support the following instance variable:
|
---|
256 |
|
---|
257 | \begin{datadesc}{default_factory}
|
---|
258 | This attribute is used by the \method{__missing__} method; it is initialized
|
---|
259 | from the first argument to the constructor, if present, or to \code{None},
|
---|
260 | if absent.
|
---|
261 | \end{datadesc}
|
---|
262 |
|
---|
263 |
|
---|
264 | \subsubsection{\class{defaultdict} Examples \label{defaultdict-examples}}
|
---|
265 |
|
---|
266 | Using \class{list} as the \member{default_factory}, it is easy to group
|
---|
267 | a sequence of key-value pairs into a dictionary of lists:
|
---|
268 |
|
---|
269 | \begin{verbatim}
|
---|
270 | >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
|
---|
271 | >>> d = defaultdict(list)
|
---|
272 | >>> for k, v in s:
|
---|
273 | d[k].append(v)
|
---|
274 |
|
---|
275 | >>> d.items()
|
---|
276 | [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
|
---|
277 | \end{verbatim}
|
---|
278 |
|
---|
279 | When each key is encountered for the first time, it is not already in the
|
---|
280 | mapping; so an entry is automatically created using the
|
---|
281 | \member{default_factory} function which returns an empty \class{list}. The
|
---|
282 | \method{list.append()} operation then attaches the value to the new list. When
|
---|
283 | keys are encountered again, the look-up proceeds normally (returning the list
|
---|
284 | for that key) and the \method{list.append()} operation adds another value to
|
---|
285 | the list. This technique is simpler and faster than an equivalent technique
|
---|
286 | using \method{dict.setdefault()}:
|
---|
287 |
|
---|
288 | \begin{verbatim}
|
---|
289 | >>> d = {}
|
---|
290 | >>> for k, v in s:
|
---|
291 | d.setdefault(k, []).append(v)
|
---|
292 |
|
---|
293 | >>> d.items()
|
---|
294 | [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
|
---|
295 | \end{verbatim}
|
---|
296 |
|
---|
297 | Setting the \member{default_factory} to \class{int} makes the
|
---|
298 | \class{defaultdict} useful for counting (like a bag or multiset in other
|
---|
299 | languages):
|
---|
300 |
|
---|
301 | \begin{verbatim}
|
---|
302 | >>> s = 'mississippi'
|
---|
303 | >>> d = defaultdict(int)
|
---|
304 | >>> for k in s:
|
---|
305 | d[k] += 1
|
---|
306 |
|
---|
307 | >>> d.items()
|
---|
308 | [('i', 4), ('p', 2), ('s', 4), ('m', 1)]
|
---|
309 | \end{verbatim}
|
---|
310 |
|
---|
311 | When a letter is first encountered, it is missing from the mapping, so the
|
---|
312 | \member{default_factory} function calls \function{int()} to supply a default
|
---|
313 | count of zero. The increment operation then builds up the count for each
|
---|
314 | letter. This technique makes counting simpler and faster than an equivalent
|
---|
315 | technique using \method{dict.get()}:
|
---|
316 |
|
---|
317 | \begin{verbatim}
|
---|
318 | >>> d = {}
|
---|
319 | >>> for k in s:
|
---|
320 | d[k] = d.get(k, 0) + 1
|
---|
321 |
|
---|
322 | >>> d.items()
|
---|
323 | [('i', 4), ('p', 2), ('s', 4), ('m', 1)]
|
---|
324 | \end{verbatim}
|
---|
325 |
|
---|
326 | Setting the \member{default_factory} to \class{set} makes the
|
---|
327 | \class{defaultdict} useful for building a dictionary of sets:
|
---|
328 |
|
---|
329 | \begin{verbatim}
|
---|
330 | >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
|
---|
331 | >>> d = defaultdict(set)
|
---|
332 | >>> for k, v in s:
|
---|
333 | d[k].add(v)
|
---|
334 |
|
---|
335 | >>> d.items()
|
---|
336 | [('blue', set([2, 4])), ('red', set([1, 3]))]
|
---|
337 | \end{verbatim}
|
---|