1 | \section{\module{audioop} ---
|
---|
2 | Manipulate raw audio data}
|
---|
3 |
|
---|
4 | \declaremodule{builtin}{audioop}
|
---|
5 | \modulesynopsis{Manipulate raw audio data.}
|
---|
6 |
|
---|
7 |
|
---|
8 | The \module{audioop} module contains some useful operations on sound
|
---|
9 | fragments. It operates on sound fragments consisting of signed
|
---|
10 | integer samples 8, 16 or 32 bits wide, stored in Python strings. This
|
---|
11 | is the same format as used by the \refmodule{al} and \refmodule{sunaudiodev}
|
---|
12 | modules. All scalar items are integers, unless specified otherwise.
|
---|
13 |
|
---|
14 | % This para is mostly here to provide an excuse for the index entries...
|
---|
15 | This module provides support for a-LAW, u-LAW and Intel/DVI ADPCM encodings.
|
---|
16 | \index{Intel/DVI ADPCM}
|
---|
17 | \index{ADPCM, Intel/DVI}
|
---|
18 | \index{a-LAW}
|
---|
19 | \index{u-LAW}
|
---|
20 |
|
---|
21 | A few of the more complicated operations only take 16-bit samples,
|
---|
22 | otherwise the sample size (in bytes) is always a parameter of the
|
---|
23 | operation.
|
---|
24 |
|
---|
25 | The module defines the following variables and functions:
|
---|
26 |
|
---|
27 | \begin{excdesc}{error}
|
---|
28 | This exception is raised on all errors, such as unknown number of bytes
|
---|
29 | per sample, etc.
|
---|
30 | \end{excdesc}
|
---|
31 |
|
---|
32 | \begin{funcdesc}{add}{fragment1, fragment2, width}
|
---|
33 | Return a fragment which is the addition of the two samples passed as
|
---|
34 | parameters. \var{width} is the sample width in bytes, either
|
---|
35 | \code{1}, \code{2} or \code{4}. Both fragments should have the same
|
---|
36 | length.
|
---|
37 | \end{funcdesc}
|
---|
38 |
|
---|
39 | \begin{funcdesc}{adpcm2lin}{adpcmfragment, width, state}
|
---|
40 | Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See
|
---|
41 | the description of \function{lin2adpcm()} for details on ADPCM coding.
|
---|
42 | Return a tuple \code{(\var{sample}, \var{newstate})} where the sample
|
---|
43 | has the width specified in \var{width}.
|
---|
44 | \end{funcdesc}
|
---|
45 |
|
---|
46 | \begin{funcdesc}{alaw2lin}{fragment, width}
|
---|
47 | Convert sound fragments in a-LAW encoding to linearly encoded sound
|
---|
48 | fragments. a-LAW encoding always uses 8 bits samples, so \var{width}
|
---|
49 | refers only to the sample width of the output fragment here.
|
---|
50 | \versionadded{2.5}
|
---|
51 | \end{funcdesc}
|
---|
52 |
|
---|
53 | \begin{funcdesc}{avg}{fragment, width}
|
---|
54 | Return the average over all samples in the fragment.
|
---|
55 | \end{funcdesc}
|
---|
56 |
|
---|
57 | \begin{funcdesc}{avgpp}{fragment, width}
|
---|
58 | Return the average peak-peak value over all samples in the fragment.
|
---|
59 | No filtering is done, so the usefulness of this routine is
|
---|
60 | questionable.
|
---|
61 | \end{funcdesc}
|
---|
62 |
|
---|
63 | \begin{funcdesc}{bias}{fragment, width, bias}
|
---|
64 | Return a fragment that is the original fragment with a bias added to
|
---|
65 | each sample.
|
---|
66 | \end{funcdesc}
|
---|
67 |
|
---|
68 | \begin{funcdesc}{cross}{fragment, width}
|
---|
69 | Return the number of zero crossings in the fragment passed as an
|
---|
70 | argument.
|
---|
71 | \end{funcdesc}
|
---|
72 |
|
---|
73 | \begin{funcdesc}{findfactor}{fragment, reference}
|
---|
74 | Return a factor \var{F} such that
|
---|
75 | \code{rms(add(\var{fragment}, mul(\var{reference}, -\var{F})))} is
|
---|
76 | minimal, i.e., return the factor with which you should multiply
|
---|
77 | \var{reference} to make it match as well as possible to
|
---|
78 | \var{fragment}. The fragments should both contain 2-byte samples.
|
---|
79 |
|
---|
80 | The time taken by this routine is proportional to
|
---|
81 | \code{len(\var{fragment})}.
|
---|
82 | \end{funcdesc}
|
---|
83 |
|
---|
84 | \begin{funcdesc}{findfit}{fragment, reference}
|
---|
85 | Try to match \var{reference} as well as possible to a portion of
|
---|
86 | \var{fragment} (which should be the longer fragment). This is
|
---|
87 | (conceptually) done by taking slices out of \var{fragment}, using
|
---|
88 | \function{findfactor()} to compute the best match, and minimizing the
|
---|
89 | result. The fragments should both contain 2-byte samples. Return a
|
---|
90 | tuple \code{(\var{offset}, \var{factor})} where \var{offset} is the
|
---|
91 | (integer) offset into \var{fragment} where the optimal match started
|
---|
92 | and \var{factor} is the (floating-point) factor as per
|
---|
93 | \function{findfactor()}.
|
---|
94 | \end{funcdesc}
|
---|
95 |
|
---|
96 | \begin{funcdesc}{findmax}{fragment, length}
|
---|
97 | Search \var{fragment} for a slice of length \var{length} samples (not
|
---|
98 | bytes!)\ with maximum energy, i.e., return \var{i} for which
|
---|
99 | \code{rms(fragment[i*2:(i+length)*2])} is maximal. The fragments
|
---|
100 | should both contain 2-byte samples.
|
---|
101 |
|
---|
102 | The routine takes time proportional to \code{len(\var{fragment})}.
|
---|
103 | \end{funcdesc}
|
---|
104 |
|
---|
105 | \begin{funcdesc}{getsample}{fragment, width, index}
|
---|
106 | Return the value of sample \var{index} from the fragment.
|
---|
107 | \end{funcdesc}
|
---|
108 |
|
---|
109 | \begin{funcdesc}{lin2adpcm}{fragment, width, state}
|
---|
110 | Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an
|
---|
111 | adaptive coding scheme, whereby each 4 bit number is the difference
|
---|
112 | between one sample and the next, divided by a (varying) step. The
|
---|
113 | Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it
|
---|
114 | may well become a standard.
|
---|
115 |
|
---|
116 | \var{state} is a tuple containing the state of the coder. The coder
|
---|
117 | returns a tuple \code{(\var{adpcmfrag}, \var{newstate})}, and the
|
---|
118 | \var{newstate} should be passed to the next call of
|
---|
119 | \function{lin2adpcm()}. In the initial call, \code{None} can be
|
---|
120 | passed as the state. \var{adpcmfrag} is the ADPCM coded fragment
|
---|
121 | packed 2 4-bit values per byte.
|
---|
122 | \end{funcdesc}
|
---|
123 |
|
---|
124 | \begin{funcdesc}{lin2alaw}{fragment, width}
|
---|
125 | Convert samples in the audio fragment to a-LAW encoding and return
|
---|
126 | this as a Python string. a-LAW is an audio encoding format whereby
|
---|
127 | you get a dynamic range of about 13 bits using only 8 bit samples. It
|
---|
128 | is used by the Sun audio hardware, among others.
|
---|
129 | \versionadded{2.5}
|
---|
130 | \end{funcdesc}
|
---|
131 |
|
---|
132 | \begin{funcdesc}{lin2lin}{fragment, width, newwidth}
|
---|
133 | Convert samples between 1-, 2- and 4-byte formats.
|
---|
134 | \end{funcdesc}
|
---|
135 |
|
---|
136 | \begin{funcdesc}{lin2ulaw}{fragment, width}
|
---|
137 | Convert samples in the audio fragment to u-LAW encoding and return
|
---|
138 | this as a Python string. u-LAW is an audio encoding format whereby
|
---|
139 | you get a dynamic range of about 14 bits using only 8 bit samples. It
|
---|
140 | is used by the Sun audio hardware, among others.
|
---|
141 | \end{funcdesc}
|
---|
142 |
|
---|
143 | \begin{funcdesc}{minmax}{fragment, width}
|
---|
144 | Return a tuple consisting of the minimum and maximum values of all
|
---|
145 | samples in the sound fragment.
|
---|
146 | \end{funcdesc}
|
---|
147 |
|
---|
148 | \begin{funcdesc}{max}{fragment, width}
|
---|
149 | Return the maximum of the \emph{absolute value} of all samples in a
|
---|
150 | fragment.
|
---|
151 | \end{funcdesc}
|
---|
152 |
|
---|
153 | \begin{funcdesc}{maxpp}{fragment, width}
|
---|
154 | Return the maximum peak-peak value in the sound fragment.
|
---|
155 | \end{funcdesc}
|
---|
156 |
|
---|
157 | \begin{funcdesc}{mul}{fragment, width, factor}
|
---|
158 | Return a fragment that has all samples in the original fragment
|
---|
159 | multiplied by the floating-point value \var{factor}. Overflow is
|
---|
160 | silently ignored.
|
---|
161 | \end{funcdesc}
|
---|
162 |
|
---|
163 | \begin{funcdesc}{ratecv}{fragment, width, nchannels, inrate, outrate,
|
---|
164 | state\optional{, weightA\optional{, weightB}}}
|
---|
165 | Convert the frame rate of the input fragment.
|
---|
166 |
|
---|
167 | \var{state} is a tuple containing the state of the converter. The
|
---|
168 | converter returns a tuple \code{(\var{newfragment}, \var{newstate})},
|
---|
169 | and \var{newstate} should be passed to the next call of
|
---|
170 | \function{ratecv()}. The initial call should pass \code{None}
|
---|
171 | as the state.
|
---|
172 |
|
---|
173 | The \var{weightA} and \var{weightB} arguments are parameters for a
|
---|
174 | simple digital filter and default to \code{1} and \code{0} respectively.
|
---|
175 | \end{funcdesc}
|
---|
176 |
|
---|
177 | \begin{funcdesc}{reverse}{fragment, width}
|
---|
178 | Reverse the samples in a fragment and returns the modified fragment.
|
---|
179 | \end{funcdesc}
|
---|
180 |
|
---|
181 | \begin{funcdesc}{rms}{fragment, width}
|
---|
182 | Return the root-mean-square of the fragment, i.e.
|
---|
183 | \begin{displaymath}
|
---|
184 | \catcode`_=8
|
---|
185 | \sqrt{\frac{\sum{{S_{i}}^{2}}}{n}}
|
---|
186 | \end{displaymath}
|
---|
187 | This is a measure of the power in an audio signal.
|
---|
188 | \end{funcdesc}
|
---|
189 |
|
---|
190 | \begin{funcdesc}{tomono}{fragment, width, lfactor, rfactor}
|
---|
191 | Convert a stereo fragment to a mono fragment. The left channel is
|
---|
192 | multiplied by \var{lfactor} and the right channel by \var{rfactor}
|
---|
193 | before adding the two channels to give a mono signal.
|
---|
194 | \end{funcdesc}
|
---|
195 |
|
---|
196 | \begin{funcdesc}{tostereo}{fragment, width, lfactor, rfactor}
|
---|
197 | Generate a stereo fragment from a mono fragment. Each pair of samples
|
---|
198 | in the stereo fragment are computed from the mono sample, whereby left
|
---|
199 | channel samples are multiplied by \var{lfactor} and right channel
|
---|
200 | samples by \var{rfactor}.
|
---|
201 | \end{funcdesc}
|
---|
202 |
|
---|
203 | \begin{funcdesc}{ulaw2lin}{fragment, width}
|
---|
204 | Convert sound fragments in u-LAW encoding to linearly encoded sound
|
---|
205 | fragments. u-LAW encoding always uses 8 bits samples, so \var{width}
|
---|
206 | refers only to the sample width of the output fragment here.
|
---|
207 | \end{funcdesc}
|
---|
208 |
|
---|
209 | Note that operations such as \function{mul()} or \function{max()} make
|
---|
210 | no distinction between mono and stereo fragments, i.e.\ all samples
|
---|
211 | are treated equal. If this is a problem the stereo fragment should be
|
---|
212 | split into two mono fragments first and recombined later. Here is an
|
---|
213 | example of how to do that:
|
---|
214 |
|
---|
215 | \begin{verbatim}
|
---|
216 | def mul_stereo(sample, width, lfactor, rfactor):
|
---|
217 | lsample = audioop.tomono(sample, width, 1, 0)
|
---|
218 | rsample = audioop.tomono(sample, width, 0, 1)
|
---|
219 | lsample = audioop.mul(sample, width, lfactor)
|
---|
220 | rsample = audioop.mul(sample, width, rfactor)
|
---|
221 | lsample = audioop.tostereo(lsample, width, 1, 0)
|
---|
222 | rsample = audioop.tostereo(rsample, width, 0, 1)
|
---|
223 | return audioop.add(lsample, rsample, width)
|
---|
224 | \end{verbatim}
|
---|
225 |
|
---|
226 | If you use the ADPCM coder to build network packets and you want your
|
---|
227 | protocol to be stateless (i.e.\ to be able to tolerate packet loss)
|
---|
228 | you should not only transmit the data but also the state. Note that
|
---|
229 | you should send the \var{initial} state (the one you passed to
|
---|
230 | \function{lin2adpcm()}) along to the decoder, not the final state (as
|
---|
231 | returned by the coder). If you want to use \function{struct.struct()}
|
---|
232 | to store the state in binary you can code the first element (the
|
---|
233 | predicted value) in 16 bits and the second (the delta index) in 8.
|
---|
234 |
|
---|
235 | The ADPCM coders have never been tried against other ADPCM coders,
|
---|
236 | only against themselves. It could well be that I misinterpreted the
|
---|
237 | standards in which case they will not be interoperable with the
|
---|
238 | respective standards.
|
---|
239 |
|
---|
240 | The \function{find*()} routines might look a bit funny at first sight.
|
---|
241 | They are primarily meant to do echo cancellation. A reasonably
|
---|
242 | fast way to do this is to pick the most energetic piece of the output
|
---|
243 | sample, locate that in the input sample and subtract the whole output
|
---|
244 | sample from the input sample:
|
---|
245 |
|
---|
246 | \begin{verbatim}
|
---|
247 | def echocancel(outputdata, inputdata):
|
---|
248 | pos = audioop.findmax(outputdata, 800) # one tenth second
|
---|
249 | out_test = outputdata[pos*2:]
|
---|
250 | in_test = inputdata[pos*2:]
|
---|
251 | ipos, factor = audioop.findfit(in_test, out_test)
|
---|
252 | # Optional (for better cancellation):
|
---|
253 | # factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
|
---|
254 | # out_test)
|
---|
255 | prefill = '\0'*(pos+ipos)*2
|
---|
256 | postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))
|
---|
257 | outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
|
---|
258 | return audioop.add(inputdata, outputdata, 2)
|
---|
259 | \end{verbatim}
|
---|