1 | \chapter{Embedding Python in Another Application
|
---|
2 | \label{embedding}}
|
---|
3 |
|
---|
4 | The previous chapters discussed how to extend Python, that is, how to
|
---|
5 | extend the functionality of Python by attaching a library of C
|
---|
6 | functions to it. It is also possible to do it the other way around:
|
---|
7 | enrich your C/\Cpp{} application by embedding Python in it. Embedding
|
---|
8 | provides your application with the ability to implement some of the
|
---|
9 | functionality of your application in Python rather than C or \Cpp.
|
---|
10 | This can be used for many purposes; one example would be to allow
|
---|
11 | users to tailor the application to their needs by writing some scripts
|
---|
12 | in Python. You can also use it yourself if some of the functionality
|
---|
13 | can be written in Python more easily.
|
---|
14 |
|
---|
15 | Embedding Python is similar to extending it, but not quite. The
|
---|
16 | difference is that when you extend Python, the main program of the
|
---|
17 | application is still the Python interpreter, while if you embed
|
---|
18 | Python, the main program may have nothing to do with Python ---
|
---|
19 | instead, some parts of the application occasionally call the Python
|
---|
20 | interpreter to run some Python code.
|
---|
21 |
|
---|
22 | So if you are embedding Python, you are providing your own main
|
---|
23 | program. One of the things this main program has to do is initialize
|
---|
24 | the Python interpreter. At the very least, you have to call the
|
---|
25 | function \cfunction{Py_Initialize()} (on Mac OS, call
|
---|
26 | \cfunction{PyMac_Initialize()} instead). There are optional calls to
|
---|
27 | pass command line arguments to Python. Then later you can call the
|
---|
28 | interpreter from any part of the application.
|
---|
29 |
|
---|
30 | There are several different ways to call the interpreter: you can pass
|
---|
31 | a string containing Python statements to
|
---|
32 | \cfunction{PyRun_SimpleString()}, or you can pass a stdio file pointer
|
---|
33 | and a file name (for identification in error messages only) to
|
---|
34 | \cfunction{PyRun_SimpleFile()}. You can also call the lower-level
|
---|
35 | operations described in the previous chapters to construct and use
|
---|
36 | Python objects.
|
---|
37 |
|
---|
38 | A simple demo of embedding Python can be found in the directory
|
---|
39 | \file{Demo/embed/} of the source distribution.
|
---|
40 |
|
---|
41 |
|
---|
42 | \begin{seealso}
|
---|
43 | \seetitle[../api/api.html]{Python/C API Reference Manual}{The
|
---|
44 | details of Python's C interface are given in this manual.
|
---|
45 | A great deal of necessary information can be found here.}
|
---|
46 | \end{seealso}
|
---|
47 |
|
---|
48 |
|
---|
49 | \section{Very High Level Embedding
|
---|
50 | \label{high-level-embedding}}
|
---|
51 |
|
---|
52 | The simplest form of embedding Python is the use of the very
|
---|
53 | high level interface. This interface is intended to execute a
|
---|
54 | Python script without needing to interact with the application
|
---|
55 | directly. This can for example be used to perform some operation
|
---|
56 | on a file.
|
---|
57 |
|
---|
58 | \begin{verbatim}
|
---|
59 | #include <Python.h>
|
---|
60 |
|
---|
61 | int
|
---|
62 | main(int argc, char *argv[])
|
---|
63 | {
|
---|
64 | Py_Initialize();
|
---|
65 | PyRun_SimpleString("from time import time,ctime\n"
|
---|
66 | "print 'Today is',ctime(time())\n");
|
---|
67 | Py_Finalize();
|
---|
68 | return 0;
|
---|
69 | }
|
---|
70 | \end{verbatim}
|
---|
71 |
|
---|
72 | The above code first initializes the Python interpreter with
|
---|
73 | \cfunction{Py_Initialize()}, followed by the execution of a hard-coded
|
---|
74 | Python script that print the date and time. Afterwards, the
|
---|
75 | \cfunction{Py_Finalize()} call shuts the interpreter down, followed by
|
---|
76 | the end of the program. In a real program, you may want to get the
|
---|
77 | Python script from another source, perhaps a text-editor routine, a
|
---|
78 | file, or a database. Getting the Python code from a file can better
|
---|
79 | be done by using the \cfunction{PyRun_SimpleFile()} function, which
|
---|
80 | saves you the trouble of allocating memory space and loading the file
|
---|
81 | contents.
|
---|
82 |
|
---|
83 |
|
---|
84 | \section{Beyond Very High Level Embedding: An overview
|
---|
85 | \label{lower-level-embedding}}
|
---|
86 |
|
---|
87 | The high level interface gives you the ability to execute
|
---|
88 | arbitrary pieces of Python code from your application, but
|
---|
89 | exchanging data values is quite cumbersome to say the least. If
|
---|
90 | you want that, you should use lower level calls. At the cost of
|
---|
91 | having to write more C code, you can achieve almost anything.
|
---|
92 |
|
---|
93 | It should be noted that extending Python and embedding Python
|
---|
94 | is quite the same activity, despite the different intent. Most
|
---|
95 | topics discussed in the previous chapters are still valid. To
|
---|
96 | show this, consider what the extension code from Python to C
|
---|
97 | really does:
|
---|
98 |
|
---|
99 | \begin{enumerate}
|
---|
100 | \item Convert data values from Python to C,
|
---|
101 | \item Perform a function call to a C routine using the
|
---|
102 | converted values, and
|
---|
103 | \item Convert the data values from the call from C to Python.
|
---|
104 | \end{enumerate}
|
---|
105 |
|
---|
106 | When embedding Python, the interface code does:
|
---|
107 |
|
---|
108 | \begin{enumerate}
|
---|
109 | \item Convert data values from C to Python,
|
---|
110 | \item Perform a function call to a Python interface routine
|
---|
111 | using the converted values, and
|
---|
112 | \item Convert the data values from the call from Python to C.
|
---|
113 | \end{enumerate}
|
---|
114 |
|
---|
115 | As you can see, the data conversion steps are simply swapped to
|
---|
116 | accommodate the different direction of the cross-language transfer.
|
---|
117 | The only difference is the routine that you call between both
|
---|
118 | data conversions. When extending, you call a C routine, when
|
---|
119 | embedding, you call a Python routine.
|
---|
120 |
|
---|
121 | This chapter will not discuss how to convert data from Python
|
---|
122 | to C and vice versa. Also, proper use of references and dealing
|
---|
123 | with errors is assumed to be understood. Since these aspects do not
|
---|
124 | differ from extending the interpreter, you can refer to earlier
|
---|
125 | chapters for the required information.
|
---|
126 |
|
---|
127 |
|
---|
128 | \section{Pure Embedding
|
---|
129 | \label{pure-embedding}}
|
---|
130 |
|
---|
131 | The first program aims to execute a function in a Python
|
---|
132 | script. Like in the section about the very high level interface,
|
---|
133 | the Python interpreter does not directly interact with the
|
---|
134 | application (but that will change in the next section).
|
---|
135 |
|
---|
136 | The code to run a function defined in a Python script is:
|
---|
137 |
|
---|
138 | \verbatiminput{run-func.c}
|
---|
139 |
|
---|
140 | This code loads a Python script using \code{argv[1]}, and calls the
|
---|
141 | function named in \code{argv[2]}. Its integer arguments are the other
|
---|
142 | values of the \code{argv} array. If you compile and link this
|
---|
143 | program (let's call the finished executable \program{call}), and use
|
---|
144 | it to execute a Python script, such as:
|
---|
145 |
|
---|
146 | \begin{verbatim}
|
---|
147 | def multiply(a,b):
|
---|
148 | print "Will compute", a, "times", b
|
---|
149 | c = 0
|
---|
150 | for i in range(0, a):
|
---|
151 | c = c + b
|
---|
152 | return c
|
---|
153 | \end{verbatim}
|
---|
154 |
|
---|
155 | then the result should be:
|
---|
156 |
|
---|
157 | \begin{verbatim}
|
---|
158 | $ call multiply multiply 3 2
|
---|
159 | Will compute 3 times 2
|
---|
160 | Result of call: 6
|
---|
161 | \end{verbatim} % $
|
---|
162 |
|
---|
163 | Although the program is quite large for its functionality, most of the
|
---|
164 | code is for data conversion between Python and C, and for error
|
---|
165 | reporting. The interesting part with respect to embedding Python
|
---|
166 | starts with
|
---|
167 |
|
---|
168 | \begin{verbatim}
|
---|
169 | Py_Initialize();
|
---|
170 | pName = PyString_FromString(argv[1]);
|
---|
171 | /* Error checking of pName left out */
|
---|
172 | pModule = PyImport_Import(pName);
|
---|
173 | \end{verbatim}
|
---|
174 |
|
---|
175 | After initializing the interpreter, the script is loaded using
|
---|
176 | \cfunction{PyImport_Import()}. This routine needs a Python string
|
---|
177 | as its argument, which is constructed using the
|
---|
178 | \cfunction{PyString_FromString()} data conversion routine.
|
---|
179 |
|
---|
180 | \begin{verbatim}
|
---|
181 | pFunc = PyObject_GetAttrString(pModule, argv[2]);
|
---|
182 | /* pFunc is a new reference */
|
---|
183 |
|
---|
184 | if (pFunc && PyCallable_Check(pFunc)) {
|
---|
185 | ...
|
---|
186 | }
|
---|
187 | Py_XDECREF(pFunc);
|
---|
188 | \end{verbatim}
|
---|
189 |
|
---|
190 | Once the script is loaded, the name we're looking for is retrieved
|
---|
191 | using \cfunction{PyObject_GetAttrString()}. If the name exists, and
|
---|
192 | the object returned is callable, you can safely assume that it is a
|
---|
193 | function. The program then proceeds by constructing a tuple of
|
---|
194 | arguments as normal. The call to the Python function is then made
|
---|
195 | with:
|
---|
196 |
|
---|
197 | \begin{verbatim}
|
---|
198 | pValue = PyObject_CallObject(pFunc, pArgs);
|
---|
199 | \end{verbatim}
|
---|
200 |
|
---|
201 | Upon return of the function, \code{pValue} is either \NULL{} or it
|
---|
202 | contains a reference to the return value of the function. Be sure to
|
---|
203 | release the reference after examining the value.
|
---|
204 |
|
---|
205 |
|
---|
206 | \section{Extending Embedded Python
|
---|
207 | \label{extending-with-embedding}}
|
---|
208 |
|
---|
209 | Until now, the embedded Python interpreter had no access to
|
---|
210 | functionality from the application itself. The Python API allows this
|
---|
211 | by extending the embedded interpreter. That is, the embedded
|
---|
212 | interpreter gets extended with routines provided by the application.
|
---|
213 | While it sounds complex, it is not so bad. Simply forget for a while
|
---|
214 | that the application starts the Python interpreter. Instead, consider
|
---|
215 | the application to be a set of subroutines, and write some glue code
|
---|
216 | that gives Python access to those routines, just like you would write
|
---|
217 | a normal Python extension. For example:
|
---|
218 |
|
---|
219 | \begin{verbatim}
|
---|
220 | static int numargs=0;
|
---|
221 |
|
---|
222 | /* Return the number of arguments of the application command line */
|
---|
223 | static PyObject*
|
---|
224 | emb_numargs(PyObject *self, PyObject *args)
|
---|
225 | {
|
---|
226 | if(!PyArg_ParseTuple(args, ":numargs"))
|
---|
227 | return NULL;
|
---|
228 | return Py_BuildValue("i", numargs);
|
---|
229 | }
|
---|
230 |
|
---|
231 | static PyMethodDef EmbMethods[] = {
|
---|
232 | {"numargs", emb_numargs, METH_VARARGS,
|
---|
233 | "Return the number of arguments received by the process."},
|
---|
234 | {NULL, NULL, 0, NULL}
|
---|
235 | };
|
---|
236 | \end{verbatim}
|
---|
237 |
|
---|
238 | Insert the above code just above the \cfunction{main()} function.
|
---|
239 | Also, insert the following two statements directly after
|
---|
240 | \cfunction{Py_Initialize()}:
|
---|
241 |
|
---|
242 | \begin{verbatim}
|
---|
243 | numargs = argc;
|
---|
244 | Py_InitModule("emb", EmbMethods);
|
---|
245 | \end{verbatim}
|
---|
246 |
|
---|
247 | These two lines initialize the \code{numargs} variable, and make the
|
---|
248 | \function{emb.numargs()} function accessible to the embedded Python
|
---|
249 | interpreter. With these extensions, the Python script can do things
|
---|
250 | like
|
---|
251 |
|
---|
252 | \begin{verbatim}
|
---|
253 | import emb
|
---|
254 | print "Number of arguments", emb.numargs()
|
---|
255 | \end{verbatim}
|
---|
256 |
|
---|
257 | In a real application, the methods will expose an API of the
|
---|
258 | application to Python.
|
---|
259 |
|
---|
260 |
|
---|
261 | %\section{For the future}
|
---|
262 | %
|
---|
263 | %You don't happen to have a nice library to get textual
|
---|
264 | %equivalents of numeric values do you :-) ?
|
---|
265 | %Callbacks here ? (I may be using information from that section
|
---|
266 | %?!)
|
---|
267 | %threads
|
---|
268 | %code examples do not really behave well if errors happen
|
---|
269 | % (what to watch out for)
|
---|
270 |
|
---|
271 |
|
---|
272 | \section{Embedding Python in \Cpp
|
---|
273 | \label{embeddingInCplusplus}}
|
---|
274 |
|
---|
275 | It is also possible to embed Python in a \Cpp{} program; precisely how this
|
---|
276 | is done will depend on the details of the \Cpp{} system used; in general you
|
---|
277 | will need to write the main program in \Cpp, and use the \Cpp{} compiler
|
---|
278 | to compile and link your program. There is no need to recompile Python
|
---|
279 | itself using \Cpp.
|
---|
280 |
|
---|
281 |
|
---|
282 | \section{Linking Requirements
|
---|
283 | \label{link-reqs}}
|
---|
284 |
|
---|
285 | While the \program{configure} script shipped with the Python sources
|
---|
286 | will correctly build Python to export the symbols needed by
|
---|
287 | dynamically linked extensions, this is not automatically inherited by
|
---|
288 | applications which embed the Python library statically, at least on
|
---|
289 | \UNIX. This is an issue when the application is linked to the static
|
---|
290 | runtime library (\file{libpython.a}) and needs to load dynamic
|
---|
291 | extensions (implemented as \file{.so} files).
|
---|
292 |
|
---|
293 | The problem is that some entry points are defined by the Python
|
---|
294 | runtime solely for extension modules to use. If the embedding
|
---|
295 | application does not use any of these entry points, some linkers will
|
---|
296 | not include those entries in the symbol table of the finished
|
---|
297 | executable. Some additional options are needed to inform the linker
|
---|
298 | not to remove these symbols.
|
---|
299 |
|
---|
300 | Determining the right options to use for any given platform can be
|
---|
301 | quite difficult, but fortunately the Python configuration already has
|
---|
302 | those values. To retrieve them from an installed Python interpreter,
|
---|
303 | start an interactive interpreter and have a short session like this:
|
---|
304 |
|
---|
305 | \begin{verbatim}
|
---|
306 | >>> import distutils.sysconfig
|
---|
307 | >>> distutils.sysconfig.get_config_var('LINKFORSHARED')
|
---|
308 | '-Xlinker -export-dynamic'
|
---|
309 | \end{verbatim}
|
---|
310 | \refstmodindex{distutils.sysconfig}
|
---|
311 |
|
---|
312 | The contents of the string presented will be the options that should
|
---|
313 | be used. If the string is empty, there's no need to add any
|
---|
314 | additional options. The \constant{LINKFORSHARED} definition
|
---|
315 | corresponds to the variable of the same name in Python's top-level
|
---|
316 | \file{Makefile}.
|
---|