1 | /* numeric.c
|
---|
2 | *
|
---|
3 | * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
---|
4 | * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
|
---|
5 | *
|
---|
6 | * You may distribute under the terms of either the GNU General Public
|
---|
7 | * License or the Artistic License, as specified in the README file.
|
---|
8 | *
|
---|
9 | */
|
---|
10 |
|
---|
11 | /*
|
---|
12 | * "That only makes eleven (plus one mislaid) and not fourteen, unless
|
---|
13 | * wizards count differently to other people."
|
---|
14 | */
|
---|
15 |
|
---|
16 | /*
|
---|
17 | =head1 Numeric functions
|
---|
18 |
|
---|
19 | This file contains all the stuff needed by perl for manipulating numeric
|
---|
20 | values, including such things as replacements for the OS's atof() function
|
---|
21 |
|
---|
22 | =cut
|
---|
23 |
|
---|
24 | */
|
---|
25 |
|
---|
26 | #include "EXTERN.h"
|
---|
27 | #define PERL_IN_NUMERIC_C
|
---|
28 | #include "perl.h"
|
---|
29 |
|
---|
30 | U32
|
---|
31 | Perl_cast_ulong(pTHX_ NV f)
|
---|
32 | {
|
---|
33 | if (f < 0.0)
|
---|
34 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
|
---|
35 | if (f < U32_MAX_P1) {
|
---|
36 | #if CASTFLAGS & 2
|
---|
37 | if (f < U32_MAX_P1_HALF)
|
---|
38 | return (U32) f;
|
---|
39 | f -= U32_MAX_P1_HALF;
|
---|
40 | return ((U32) f) | (1 + U32_MAX >> 1);
|
---|
41 | #else
|
---|
42 | return (U32) f;
|
---|
43 | #endif
|
---|
44 | }
|
---|
45 | return f > 0 ? U32_MAX : 0 /* NaN */;
|
---|
46 | }
|
---|
47 |
|
---|
48 | I32
|
---|
49 | Perl_cast_i32(pTHX_ NV f)
|
---|
50 | {
|
---|
51 | if (f < I32_MAX_P1)
|
---|
52 | return f < I32_MIN ? I32_MIN : (I32) f;
|
---|
53 | if (f < U32_MAX_P1) {
|
---|
54 | #if CASTFLAGS & 2
|
---|
55 | if (f < U32_MAX_P1_HALF)
|
---|
56 | return (I32)(U32) f;
|
---|
57 | f -= U32_MAX_P1_HALF;
|
---|
58 | return (I32)(((U32) f) | (1 + U32_MAX >> 1));
|
---|
59 | #else
|
---|
60 | return (I32)(U32) f;
|
---|
61 | #endif
|
---|
62 | }
|
---|
63 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
|
---|
64 | }
|
---|
65 |
|
---|
66 | IV
|
---|
67 | Perl_cast_iv(pTHX_ NV f)
|
---|
68 | {
|
---|
69 | if (f < IV_MAX_P1)
|
---|
70 | return f < IV_MIN ? IV_MIN : (IV) f;
|
---|
71 | if (f < UV_MAX_P1) {
|
---|
72 | #if CASTFLAGS & 2
|
---|
73 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
|
---|
74 | if (f < UV_MAX_P1_HALF)
|
---|
75 | return (IV)(UV) f;
|
---|
76 | f -= UV_MAX_P1_HALF;
|
---|
77 | return (IV)(((UV) f) | (1 + UV_MAX >> 1));
|
---|
78 | #else
|
---|
79 | return (IV)(UV) f;
|
---|
80 | #endif
|
---|
81 | }
|
---|
82 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
|
---|
83 | }
|
---|
84 |
|
---|
85 | UV
|
---|
86 | Perl_cast_uv(pTHX_ NV f)
|
---|
87 | {
|
---|
88 | if (f < 0.0)
|
---|
89 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
|
---|
90 | if (f < UV_MAX_P1) {
|
---|
91 | #if CASTFLAGS & 2
|
---|
92 | if (f < UV_MAX_P1_HALF)
|
---|
93 | return (UV) f;
|
---|
94 | f -= UV_MAX_P1_HALF;
|
---|
95 | return ((UV) f) | (1 + UV_MAX >> 1);
|
---|
96 | #else
|
---|
97 | return (UV) f;
|
---|
98 | #endif
|
---|
99 | }
|
---|
100 | return f > 0 ? UV_MAX : 0 /* NaN */;
|
---|
101 | }
|
---|
102 |
|
---|
103 | #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL))
|
---|
104 | /*
|
---|
105 | * This hack is to force load of "huge" support from libm.a
|
---|
106 | * So it is in perl for (say) POSIX to use.
|
---|
107 | * Needed for SunOS with Sun's 'acc' for example.
|
---|
108 | */
|
---|
109 | NV
|
---|
110 | Perl_huge(void)
|
---|
111 | {
|
---|
112 | # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)
|
---|
113 | return HUGE_VALL;
|
---|
114 | # endif
|
---|
115 | return HUGE_VAL;
|
---|
116 | }
|
---|
117 | #endif
|
---|
118 |
|
---|
119 | /*
|
---|
120 | =for apidoc grok_bin
|
---|
121 |
|
---|
122 | converts a string representing a binary number to numeric form.
|
---|
123 |
|
---|
124 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
---|
125 | conversion flags, and I<result> should be NULL or a pointer to an NV.
|
---|
126 | The scan stops at the end of the string, or the first invalid character.
|
---|
127 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
---|
128 | invalid character will also trigger a warning.
|
---|
129 | On return I<*len> is set to the length of the scanned string,
|
---|
130 | and I<*flags> gives output flags.
|
---|
131 |
|
---|
132 | If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
|
---|
133 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
|
---|
134 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
---|
135 | and writes the value to I<*result> (or the value is discarded if I<result>
|
---|
136 | is NULL).
|
---|
137 |
|
---|
138 | The binary number may optionally be prefixed with "0b" or "b" unless
|
---|
139 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
---|
140 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
|
---|
141 | number may use '_' characters to separate digits.
|
---|
142 |
|
---|
143 | =cut
|
---|
144 | */
|
---|
145 |
|
---|
146 | UV
|
---|
147 | Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
---|
148 | const char *s = start;
|
---|
149 | STRLEN len = *len_p;
|
---|
150 | UV value = 0;
|
---|
151 | NV value_nv = 0;
|
---|
152 |
|
---|
153 | const UV max_div_2 = UV_MAX / 2;
|
---|
154 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
---|
155 | bool overflowed = FALSE;
|
---|
156 | char bit;
|
---|
157 |
|
---|
158 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
---|
159 | /* strip off leading b or 0b.
|
---|
160 | for compatibility silently suffer "b" and "0b" as valid binary
|
---|
161 | numbers. */
|
---|
162 | if (len >= 1) {
|
---|
163 | if (s[0] == 'b') {
|
---|
164 | s++;
|
---|
165 | len--;
|
---|
166 | }
|
---|
167 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') {
|
---|
168 | s+=2;
|
---|
169 | len-=2;
|
---|
170 | }
|
---|
171 | }
|
---|
172 | }
|
---|
173 |
|
---|
174 | for (; len-- && (bit = *s); s++) {
|
---|
175 | if (bit == '0' || bit == '1') {
|
---|
176 | /* Write it in this wonky order with a goto to attempt to get the
|
---|
177 | compiler to make the common case integer-only loop pretty tight.
|
---|
178 | With gcc seems to be much straighter code than old scan_bin. */
|
---|
179 | redo:
|
---|
180 | if (!overflowed) {
|
---|
181 | if (value <= max_div_2) {
|
---|
182 | value = (value << 1) | (bit - '0');
|
---|
183 | continue;
|
---|
184 | }
|
---|
185 | /* Bah. We're just overflowed. */
|
---|
186 | if (ckWARN_d(WARN_OVERFLOW))
|
---|
187 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
---|
188 | "Integer overflow in binary number");
|
---|
189 | overflowed = TRUE;
|
---|
190 | value_nv = (NV) value;
|
---|
191 | }
|
---|
192 | value_nv *= 2.0;
|
---|
193 | /* If an NV has not enough bits in its mantissa to
|
---|
194 | * represent a UV this summing of small low-order numbers
|
---|
195 | * is a waste of time (because the NV cannot preserve
|
---|
196 | * the low-order bits anyway): we could just remember when
|
---|
197 | * did we overflow and in the end just multiply value_nv by the
|
---|
198 | * right amount. */
|
---|
199 | value_nv += (NV)(bit - '0');
|
---|
200 | continue;
|
---|
201 | }
|
---|
202 | if (bit == '_' && len && allow_underscores && (bit = s[1])
|
---|
203 | && (bit == '0' || bit == '1'))
|
---|
204 | {
|
---|
205 | --len;
|
---|
206 | ++s;
|
---|
207 | goto redo;
|
---|
208 | }
|
---|
209 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT))
|
---|
210 | Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
---|
211 | "Illegal binary digit '%c' ignored", *s);
|
---|
212 | break;
|
---|
213 | }
|
---|
214 |
|
---|
215 | if ( ( overflowed && value_nv > 4294967295.0)
|
---|
216 | #if UVSIZE > 4
|
---|
217 | || (!overflowed && value > 0xffffffff )
|
---|
218 | #endif
|
---|
219 | ) {
|
---|
220 | if (ckWARN(WARN_PORTABLE))
|
---|
221 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
---|
222 | "Binary number > 0b11111111111111111111111111111111 non-portable");
|
---|
223 | }
|
---|
224 | *len_p = s - start;
|
---|
225 | if (!overflowed) {
|
---|
226 | *flags = 0;
|
---|
227 | return value;
|
---|
228 | }
|
---|
229 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
---|
230 | if (result)
|
---|
231 | *result = value_nv;
|
---|
232 | return UV_MAX;
|
---|
233 | }
|
---|
234 |
|
---|
235 | /*
|
---|
236 | =for apidoc grok_hex
|
---|
237 |
|
---|
238 | converts a string representing a hex number to numeric form.
|
---|
239 |
|
---|
240 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
---|
241 | conversion flags, and I<result> should be NULL or a pointer to an NV.
|
---|
242 | The scan stops at the end of the string, or the first invalid character.
|
---|
243 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
---|
244 | invalid character will also trigger a warning.
|
---|
245 | On return I<*len> is set to the length of the scanned string,
|
---|
246 | and I<*flags> gives output flags.
|
---|
247 |
|
---|
248 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
---|
249 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
|
---|
250 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
---|
251 | and writes the value to I<*result> (or the value is discarded if I<result>
|
---|
252 | is NULL).
|
---|
253 |
|
---|
254 | The hex number may optionally be prefixed with "0x" or "x" unless
|
---|
255 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
---|
256 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
|
---|
257 | number may use '_' characters to separate digits.
|
---|
258 |
|
---|
259 | =cut
|
---|
260 | */
|
---|
261 |
|
---|
262 | UV
|
---|
263 | Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
---|
264 | const char *s = start;
|
---|
265 | STRLEN len = *len_p;
|
---|
266 | UV value = 0;
|
---|
267 | NV value_nv = 0;
|
---|
268 |
|
---|
269 | const UV max_div_16 = UV_MAX / 16;
|
---|
270 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
---|
271 | bool overflowed = FALSE;
|
---|
272 |
|
---|
273 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
---|
274 | /* strip off leading x or 0x.
|
---|
275 | for compatibility silently suffer "x" and "0x" as valid hex numbers.
|
---|
276 | */
|
---|
277 | if (len >= 1) {
|
---|
278 | if (s[0] == 'x') {
|
---|
279 | s++;
|
---|
280 | len--;
|
---|
281 | }
|
---|
282 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') {
|
---|
283 | s+=2;
|
---|
284 | len-=2;
|
---|
285 | }
|
---|
286 | }
|
---|
287 | }
|
---|
288 |
|
---|
289 | for (; len-- && *s; s++) {
|
---|
290 | const char *hexdigit = strchr(PL_hexdigit, *s);
|
---|
291 | if (hexdigit) {
|
---|
292 | /* Write it in this wonky order with a goto to attempt to get the
|
---|
293 | compiler to make the common case integer-only loop pretty tight.
|
---|
294 | With gcc seems to be much straighter code than old scan_hex. */
|
---|
295 | redo:
|
---|
296 | if (!overflowed) {
|
---|
297 | if (value <= max_div_16) {
|
---|
298 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15);
|
---|
299 | continue;
|
---|
300 | }
|
---|
301 | /* Bah. We're just overflowed. */
|
---|
302 | if (ckWARN_d(WARN_OVERFLOW))
|
---|
303 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
---|
304 | "Integer overflow in hexadecimal number");
|
---|
305 | overflowed = TRUE;
|
---|
306 | value_nv = (NV) value;
|
---|
307 | }
|
---|
308 | value_nv *= 16.0;
|
---|
309 | /* If an NV has not enough bits in its mantissa to
|
---|
310 | * represent a UV this summing of small low-order numbers
|
---|
311 | * is a waste of time (because the NV cannot preserve
|
---|
312 | * the low-order bits anyway): we could just remember when
|
---|
313 | * did we overflow and in the end just multiply value_nv by the
|
---|
314 | * right amount of 16-tuples. */
|
---|
315 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15);
|
---|
316 | continue;
|
---|
317 | }
|
---|
318 | if (*s == '_' && len && allow_underscores && s[1]
|
---|
319 | && (hexdigit = strchr(PL_hexdigit, s[1])))
|
---|
320 | {
|
---|
321 | --len;
|
---|
322 | ++s;
|
---|
323 | goto redo;
|
---|
324 | }
|
---|
325 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT))
|
---|
326 | Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
---|
327 | "Illegal hexadecimal digit '%c' ignored", *s);
|
---|
328 | break;
|
---|
329 | }
|
---|
330 |
|
---|
331 | if ( ( overflowed && value_nv > 4294967295.0)
|
---|
332 | #if UVSIZE > 4
|
---|
333 | || (!overflowed && value > 0xffffffff )
|
---|
334 | #endif
|
---|
335 | ) {
|
---|
336 | if (ckWARN(WARN_PORTABLE))
|
---|
337 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
---|
338 | "Hexadecimal number > 0xffffffff non-portable");
|
---|
339 | }
|
---|
340 | *len_p = s - start;
|
---|
341 | if (!overflowed) {
|
---|
342 | *flags = 0;
|
---|
343 | return value;
|
---|
344 | }
|
---|
345 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
---|
346 | if (result)
|
---|
347 | *result = value_nv;
|
---|
348 | return UV_MAX;
|
---|
349 | }
|
---|
350 |
|
---|
351 | /*
|
---|
352 | =for apidoc grok_oct
|
---|
353 |
|
---|
354 | converts a string representing an octal number to numeric form.
|
---|
355 |
|
---|
356 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
---|
357 | conversion flags, and I<result> should be NULL or a pointer to an NV.
|
---|
358 | The scan stops at the end of the string, or the first invalid character.
|
---|
359 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
---|
360 | invalid character will also trigger a warning.
|
---|
361 | On return I<*len> is set to the length of the scanned string,
|
---|
362 | and I<*flags> gives output flags.
|
---|
363 |
|
---|
364 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
---|
365 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
|
---|
366 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
---|
367 | and writes the value to I<*result> (or the value is discarded if I<result>
|
---|
368 | is NULL).
|
---|
369 |
|
---|
370 | If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
|
---|
371 | number may use '_' characters to separate digits.
|
---|
372 |
|
---|
373 | =cut
|
---|
374 | */
|
---|
375 |
|
---|
376 | UV
|
---|
377 | Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
---|
378 | const char *s = start;
|
---|
379 | STRLEN len = *len_p;
|
---|
380 | UV value = 0;
|
---|
381 | NV value_nv = 0;
|
---|
382 |
|
---|
383 | const UV max_div_8 = UV_MAX / 8;
|
---|
384 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
---|
385 | bool overflowed = FALSE;
|
---|
386 |
|
---|
387 | for (; len-- && *s; s++) {
|
---|
388 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction
|
---|
389 | out front allows slicker code. */
|
---|
390 | int digit = *s - '0';
|
---|
391 | if (digit >= 0 && digit <= 7) {
|
---|
392 | /* Write it in this wonky order with a goto to attempt to get the
|
---|
393 | compiler to make the common case integer-only loop pretty tight.
|
---|
394 | */
|
---|
395 | redo:
|
---|
396 | if (!overflowed) {
|
---|
397 | if (value <= max_div_8) {
|
---|
398 | value = (value << 3) | digit;
|
---|
399 | continue;
|
---|
400 | }
|
---|
401 | /* Bah. We're just overflowed. */
|
---|
402 | if (ckWARN_d(WARN_OVERFLOW))
|
---|
403 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
---|
404 | "Integer overflow in octal number");
|
---|
405 | overflowed = TRUE;
|
---|
406 | value_nv = (NV) value;
|
---|
407 | }
|
---|
408 | value_nv *= 8.0;
|
---|
409 | /* If an NV has not enough bits in its mantissa to
|
---|
410 | * represent a UV this summing of small low-order numbers
|
---|
411 | * is a waste of time (because the NV cannot preserve
|
---|
412 | * the low-order bits anyway): we could just remember when
|
---|
413 | * did we overflow and in the end just multiply value_nv by the
|
---|
414 | * right amount of 8-tuples. */
|
---|
415 | value_nv += (NV)digit;
|
---|
416 | continue;
|
---|
417 | }
|
---|
418 | if (digit == ('_' - '0') && len && allow_underscores
|
---|
419 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7))
|
---|
420 | {
|
---|
421 | --len;
|
---|
422 | ++s;
|
---|
423 | goto redo;
|
---|
424 | }
|
---|
425 | /* Allow \octal to work the DWIM way (that is, stop scanning
|
---|
426 | * as soon as non-octal characters are seen, complain only if
|
---|
427 | * someone seems to want to use the digits eight and nine). */
|
---|
428 | if (digit == 8 || digit == 9) {
|
---|
429 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT))
|
---|
430 | Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
---|
431 | "Illegal octal digit '%c' ignored", *s);
|
---|
432 | }
|
---|
433 | break;
|
---|
434 | }
|
---|
435 |
|
---|
436 | if ( ( overflowed && value_nv > 4294967295.0)
|
---|
437 | #if UVSIZE > 4
|
---|
438 | || (!overflowed && value > 0xffffffff )
|
---|
439 | #endif
|
---|
440 | ) {
|
---|
441 | if (ckWARN(WARN_PORTABLE))
|
---|
442 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
---|
443 | "Octal number > 037777777777 non-portable");
|
---|
444 | }
|
---|
445 | *len_p = s - start;
|
---|
446 | if (!overflowed) {
|
---|
447 | *flags = 0;
|
---|
448 | return value;
|
---|
449 | }
|
---|
450 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
---|
451 | if (result)
|
---|
452 | *result = value_nv;
|
---|
453 | return UV_MAX;
|
---|
454 | }
|
---|
455 |
|
---|
456 | /*
|
---|
457 | =for apidoc scan_bin
|
---|
458 |
|
---|
459 | For backwards compatibility. Use C<grok_bin> instead.
|
---|
460 |
|
---|
461 | =for apidoc scan_hex
|
---|
462 |
|
---|
463 | For backwards compatibility. Use C<grok_hex> instead.
|
---|
464 |
|
---|
465 | =for apidoc scan_oct
|
---|
466 |
|
---|
467 | For backwards compatibility. Use C<grok_oct> instead.
|
---|
468 |
|
---|
469 | =cut
|
---|
470 | */
|
---|
471 |
|
---|
472 | NV
|
---|
473 | Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
---|
474 | {
|
---|
475 | NV rnv;
|
---|
476 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
---|
477 | const UV ruv = grok_bin (start, &len, &flags, &rnv);
|
---|
478 |
|
---|
479 | *retlen = len;
|
---|
480 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
---|
481 | }
|
---|
482 |
|
---|
483 | NV
|
---|
484 | Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
---|
485 | {
|
---|
486 | NV rnv;
|
---|
487 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
---|
488 | const UV ruv = grok_oct (start, &len, &flags, &rnv);
|
---|
489 |
|
---|
490 | *retlen = len;
|
---|
491 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
---|
492 | }
|
---|
493 |
|
---|
494 | NV
|
---|
495 | Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
---|
496 | {
|
---|
497 | NV rnv;
|
---|
498 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
---|
499 | const UV ruv = grok_hex (start, &len, &flags, &rnv);
|
---|
500 |
|
---|
501 | *retlen = len;
|
---|
502 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
---|
503 | }
|
---|
504 |
|
---|
505 | /*
|
---|
506 | =for apidoc grok_numeric_radix
|
---|
507 |
|
---|
508 | Scan and skip for a numeric decimal separator (radix).
|
---|
509 |
|
---|
510 | =cut
|
---|
511 | */
|
---|
512 | bool
|
---|
513 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
|
---|
514 | {
|
---|
515 | #ifdef USE_LOCALE_NUMERIC
|
---|
516 | if (PL_numeric_radix_sv && IN_LOCALE) {
|
---|
517 | STRLEN len;
|
---|
518 | const char* radix = SvPV(PL_numeric_radix_sv, len);
|
---|
519 | if (*sp + len <= send && memEQ(*sp, radix, len)) {
|
---|
520 | *sp += len;
|
---|
521 | return TRUE;
|
---|
522 | }
|
---|
523 | }
|
---|
524 | /* always try "." if numeric radix didn't match because
|
---|
525 | * we may have data from different locales mixed */
|
---|
526 | #endif
|
---|
527 | if (*sp < send && **sp == '.') {
|
---|
528 | ++*sp;
|
---|
529 | return TRUE;
|
---|
530 | }
|
---|
531 | return FALSE;
|
---|
532 | }
|
---|
533 |
|
---|
534 | /*
|
---|
535 | =for apidoc grok_number
|
---|
536 |
|
---|
537 | Recognise (or not) a number. The type of the number is returned
|
---|
538 | (0 if unrecognised), otherwise it is a bit-ORed combination of
|
---|
539 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
|
---|
540 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
|
---|
541 |
|
---|
542 | If the value of the number can fit an in UV, it is returned in the *valuep
|
---|
543 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
|
---|
544 | will never be set unless *valuep is valid, but *valuep may have been assigned
|
---|
545 | to during processing even though IS_NUMBER_IN_UV is not set on return.
|
---|
546 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
|
---|
547 | valuep is non-NULL, but no actual assignment (or SEGV) will occur.
|
---|
548 |
|
---|
549 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
|
---|
550 | seen (in which case *valuep gives the true value truncated to an integer), and
|
---|
551 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
|
---|
552 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
|
---|
553 | number is larger than a UV.
|
---|
554 |
|
---|
555 | =cut
|
---|
556 | */
|
---|
557 | int
|
---|
558 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
|
---|
559 | {
|
---|
560 | const char *s = pv;
|
---|
561 | const char *send = pv + len;
|
---|
562 | const UV max_div_10 = UV_MAX / 10;
|
---|
563 | const char max_mod_10 = UV_MAX % 10;
|
---|
564 | int numtype = 0;
|
---|
565 | int sawinf = 0;
|
---|
566 | int sawnan = 0;
|
---|
567 |
|
---|
568 | while (s < send && isSPACE(*s))
|
---|
569 | s++;
|
---|
570 | if (s == send) {
|
---|
571 | return 0;
|
---|
572 | } else if (*s == '-') {
|
---|
573 | s++;
|
---|
574 | numtype = IS_NUMBER_NEG;
|
---|
575 | }
|
---|
576 | else if (*s == '+')
|
---|
577 | s++;
|
---|
578 |
|
---|
579 | if (s == send)
|
---|
580 | return 0;
|
---|
581 |
|
---|
582 | /* next must be digit or the radix separator or beginning of infinity */
|
---|
583 | if (isDIGIT(*s)) {
|
---|
584 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot
|
---|
585 | overflow. */
|
---|
586 | UV value = *s - '0';
|
---|
587 | /* This construction seems to be more optimiser friendly.
|
---|
588 | (without it gcc does the isDIGIT test and the *s - '0' separately)
|
---|
589 | With it gcc on arm is managing 6 instructions (6 cycles) per digit.
|
---|
590 | In theory the optimiser could deduce how far to unroll the loop
|
---|
591 | before checking for overflow. */
|
---|
592 | if (++s < send) {
|
---|
593 | int digit = *s - '0';
|
---|
594 | if (digit >= 0 && digit <= 9) {
|
---|
595 | value = value * 10 + digit;
|
---|
596 | if (++s < send) {
|
---|
597 | digit = *s - '0';
|
---|
598 | if (digit >= 0 && digit <= 9) {
|
---|
599 | value = value * 10 + digit;
|
---|
600 | if (++s < send) {
|
---|
601 | digit = *s - '0';
|
---|
602 | if (digit >= 0 && digit <= 9) {
|
---|
603 | value = value * 10 + digit;
|
---|
604 | if (++s < send) {
|
---|
605 | digit = *s - '0';
|
---|
606 | if (digit >= 0 && digit <= 9) {
|
---|
607 | value = value * 10 + digit;
|
---|
608 | if (++s < send) {
|
---|
609 | digit = *s - '0';
|
---|
610 | if (digit >= 0 && digit <= 9) {
|
---|
611 | value = value * 10 + digit;
|
---|
612 | if (++s < send) {
|
---|
613 | digit = *s - '0';
|
---|
614 | if (digit >= 0 && digit <= 9) {
|
---|
615 | value = value * 10 + digit;
|
---|
616 | if (++s < send) {
|
---|
617 | digit = *s - '0';
|
---|
618 | if (digit >= 0 && digit <= 9) {
|
---|
619 | value = value * 10 + digit;
|
---|
620 | if (++s < send) {
|
---|
621 | digit = *s - '0';
|
---|
622 | if (digit >= 0 && digit <= 9) {
|
---|
623 | value = value * 10 + digit;
|
---|
624 | if (++s < send) {
|
---|
625 | /* Now got 9 digits, so need to check
|
---|
626 | each time for overflow. */
|
---|
627 | digit = *s - '0';
|
---|
628 | while (digit >= 0 && digit <= 9
|
---|
629 | && (value < max_div_10
|
---|
630 | || (value == max_div_10
|
---|
631 | && digit <= max_mod_10))) {
|
---|
632 | value = value * 10 + digit;
|
---|
633 | if (++s < send)
|
---|
634 | digit = *s - '0';
|
---|
635 | else
|
---|
636 | break;
|
---|
637 | }
|
---|
638 | if (digit >= 0 && digit <= 9
|
---|
639 | && (s < send)) {
|
---|
640 | /* value overflowed.
|
---|
641 | skip the remaining digits, don't
|
---|
642 | worry about setting *valuep. */
|
---|
643 | do {
|
---|
644 | s++;
|
---|
645 | } while (s < send && isDIGIT(*s));
|
---|
646 | numtype |=
|
---|
647 | IS_NUMBER_GREATER_THAN_UV_MAX;
|
---|
648 | goto skip_value;
|
---|
649 | }
|
---|
650 | }
|
---|
651 | }
|
---|
652 | }
|
---|
653 | }
|
---|
654 | }
|
---|
655 | }
|
---|
656 | }
|
---|
657 | }
|
---|
658 | }
|
---|
659 | }
|
---|
660 | }
|
---|
661 | }
|
---|
662 | }
|
---|
663 | }
|
---|
664 | }
|
---|
665 | }
|
---|
666 | }
|
---|
667 | numtype |= IS_NUMBER_IN_UV;
|
---|
668 | if (valuep)
|
---|
669 | *valuep = value;
|
---|
670 |
|
---|
671 | skip_value:
|
---|
672 | if (GROK_NUMERIC_RADIX(&s, send)) {
|
---|
673 | numtype |= IS_NUMBER_NOT_INT;
|
---|
674 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */
|
---|
675 | s++;
|
---|
676 | }
|
---|
677 | }
|
---|
678 | else if (GROK_NUMERIC_RADIX(&s, send)) {
|
---|
679 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
|
---|
680 | /* no digits before the radix means we need digits after it */
|
---|
681 | if (s < send && isDIGIT(*s)) {
|
---|
682 | do {
|
---|
683 | s++;
|
---|
684 | } while (s < send && isDIGIT(*s));
|
---|
685 | if (valuep) {
|
---|
686 | /* integer approximation is valid - it's 0. */
|
---|
687 | *valuep = 0;
|
---|
688 | }
|
---|
689 | }
|
---|
690 | else
|
---|
691 | return 0;
|
---|
692 | } else if (*s == 'I' || *s == 'i') {
|
---|
693 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
---|
694 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
|
---|
695 | s++; if (s < send && (*s == 'I' || *s == 'i')) {
|
---|
696 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
---|
697 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
|
---|
698 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
|
---|
699 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
|
---|
700 | s++;
|
---|
701 | }
|
---|
702 | sawinf = 1;
|
---|
703 | } else if (*s == 'N' || *s == 'n') {
|
---|
704 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */
|
---|
705 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
|
---|
706 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
---|
707 | s++;
|
---|
708 | sawnan = 1;
|
---|
709 | } else
|
---|
710 | return 0;
|
---|
711 |
|
---|
712 | if (sawinf) {
|
---|
713 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
---|
714 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
|
---|
715 | } else if (sawnan) {
|
---|
716 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
---|
717 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
|
---|
718 | } else if (s < send) {
|
---|
719 | /* we can have an optional exponent part */
|
---|
720 | if (*s == 'e' || *s == 'E') {
|
---|
721 | /* The only flag we keep is sign. Blow away any "it's UV" */
|
---|
722 | numtype &= IS_NUMBER_NEG;
|
---|
723 | numtype |= IS_NUMBER_NOT_INT;
|
---|
724 | s++;
|
---|
725 | if (s < send && (*s == '-' || *s == '+'))
|
---|
726 | s++;
|
---|
727 | if (s < send && isDIGIT(*s)) {
|
---|
728 | do {
|
---|
729 | s++;
|
---|
730 | } while (s < send && isDIGIT(*s));
|
---|
731 | }
|
---|
732 | else
|
---|
733 | return 0;
|
---|
734 | }
|
---|
735 | }
|
---|
736 | while (s < send && isSPACE(*s))
|
---|
737 | s++;
|
---|
738 | if (s >= send)
|
---|
739 | return numtype;
|
---|
740 | if (len == 10 && memEQ(pv, "0 but true", 10)) {
|
---|
741 | if (valuep)
|
---|
742 | *valuep = 0;
|
---|
743 | return IS_NUMBER_IN_UV;
|
---|
744 | }
|
---|
745 | return 0;
|
---|
746 | }
|
---|
747 |
|
---|
748 | STATIC NV
|
---|
749 | S_mulexp10(NV value, I32 exponent)
|
---|
750 | {
|
---|
751 | NV result = 1.0;
|
---|
752 | NV power = 10.0;
|
---|
753 | bool negative = 0;
|
---|
754 | I32 bit;
|
---|
755 |
|
---|
756 | if (exponent == 0)
|
---|
757 | return value;
|
---|
758 | if (value == 0)
|
---|
759 | return (NV)0;
|
---|
760 |
|
---|
761 | /* On OpenVMS VAX we by default use the D_FLOAT double format,
|
---|
762 | * and that format does not have *easy* capabilities [1] for
|
---|
763 | * overflowing doubles 'silently' as IEEE fp does. We also need
|
---|
764 | * to support G_FLOAT on both VAX and Alpha, and though the exponent
|
---|
765 | * range is much larger than D_FLOAT it still doesn't do silent
|
---|
766 | * overflow. Therefore we need to detect early whether we would
|
---|
767 | * overflow (this is the behaviour of the native string-to-float
|
---|
768 | * conversion routines, and therefore of native applications, too).
|
---|
769 | *
|
---|
770 | * [1] Trying to establish a condition handler to trap floating point
|
---|
771 | * exceptions is not a good idea. */
|
---|
772 |
|
---|
773 | /* In UNICOS and in certain Cray models (such as T90) there is no
|
---|
774 | * IEEE fp, and no way at all from C to catch fp overflows gracefully.
|
---|
775 | * There is something you can do if you are willing to use some
|
---|
776 | * inline assembler: the instruction is called DFI-- but that will
|
---|
777 | * disable *all* floating point interrupts, a little bit too large
|
---|
778 | * a hammer. Therefore we need to catch potential overflows before
|
---|
779 | * it's too late. */
|
---|
780 |
|
---|
781 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
|
---|
782 | STMT_START {
|
---|
783 | NV exp_v = log10(value);
|
---|
784 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
|
---|
785 | return NV_MAX;
|
---|
786 | if (exponent < 0) {
|
---|
787 | if (-(exponent + exp_v) >= NV_MAX_10_EXP)
|
---|
788 | return 0.0;
|
---|
789 | while (-exponent >= NV_MAX_10_EXP) {
|
---|
790 | /* combination does not overflow, but 10^(-exponent) does */
|
---|
791 | value /= 10;
|
---|
792 | ++exponent;
|
---|
793 | }
|
---|
794 | }
|
---|
795 | } STMT_END;
|
---|
796 | #endif
|
---|
797 |
|
---|
798 | if (exponent < 0) {
|
---|
799 | negative = 1;
|
---|
800 | exponent = -exponent;
|
---|
801 | }
|
---|
802 | for (bit = 1; exponent; bit <<= 1) {
|
---|
803 | if (exponent & bit) {
|
---|
804 | exponent ^= bit;
|
---|
805 | result *= power;
|
---|
806 | /* Floating point exceptions are supposed to be turned off,
|
---|
807 | * but if we're obviously done, don't risk another iteration.
|
---|
808 | */
|
---|
809 | if (exponent == 0) break;
|
---|
810 | }
|
---|
811 | power *= power;
|
---|
812 | }
|
---|
813 | return negative ? value / result : value * result;
|
---|
814 | }
|
---|
815 |
|
---|
816 | NV
|
---|
817 | Perl_my_atof(pTHX_ const char* s)
|
---|
818 | {
|
---|
819 | NV x = 0.0;
|
---|
820 | #ifdef USE_LOCALE_NUMERIC
|
---|
821 | if (PL_numeric_local && IN_LOCALE) {
|
---|
822 | NV y;
|
---|
823 |
|
---|
824 | /* Scan the number twice; once using locale and once without;
|
---|
825 | * choose the larger result (in absolute value). */
|
---|
826 | Perl_atof2(s, x);
|
---|
827 | SET_NUMERIC_STANDARD();
|
---|
828 | Perl_atof2(s, y);
|
---|
829 | SET_NUMERIC_LOCAL();
|
---|
830 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
|
---|
831 | return y;
|
---|
832 | }
|
---|
833 | else
|
---|
834 | Perl_atof2(s, x);
|
---|
835 | #else
|
---|
836 | Perl_atof2(s, x);
|
---|
837 | #endif
|
---|
838 | return x;
|
---|
839 | }
|
---|
840 |
|
---|
841 | char*
|
---|
842 | Perl_my_atof2(pTHX_ const char* orig, NV* value)
|
---|
843 | {
|
---|
844 | NV result[3] = {0.0, 0.0, 0.0};
|
---|
845 | const char* s = orig;
|
---|
846 | #ifdef USE_PERL_ATOF
|
---|
847 | UV accumulator[2] = {0,0}; /* before/after dp */
|
---|
848 | bool negative = 0;
|
---|
849 | const char* send = s + strlen(orig) - 1;
|
---|
850 | bool seen_digit = 0;
|
---|
851 | I32 exp_adjust[2] = {0,0};
|
---|
852 | I32 exp_acc[2] = {-1, -1};
|
---|
853 | /* the current exponent adjust for the accumulators */
|
---|
854 | I32 exponent = 0;
|
---|
855 | I32 seen_dp = 0;
|
---|
856 | I32 digit = 0;
|
---|
857 | I32 old_digit = 0;
|
---|
858 | I32 sig_digits = 0; /* noof significant digits seen so far */
|
---|
859 |
|
---|
860 | /* There is no point in processing more significant digits
|
---|
861 | * than the NV can hold. Note that NV_DIG is a lower-bound value,
|
---|
862 | * while we need an upper-bound value. We add 2 to account for this;
|
---|
863 | * since it will have been conservative on both the first and last digit.
|
---|
864 | * For example a 32-bit mantissa with an exponent of 4 would have
|
---|
865 | * exact values in the set
|
---|
866 | * 4
|
---|
867 | * 8
|
---|
868 | * ..
|
---|
869 | * 17179869172
|
---|
870 | * 17179869176
|
---|
871 | * 17179869180
|
---|
872 | *
|
---|
873 | * where for the purposes of calculating NV_DIG we would have to discount
|
---|
874 | * both the first and last digit, since neither can hold all values from
|
---|
875 | * 0..9; but for calculating the value we must examine those two digits.
|
---|
876 | */
|
---|
877 | #define MAX_SIG_DIGITS (NV_DIG+2)
|
---|
878 |
|
---|
879 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */
|
---|
880 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
|
---|
881 |
|
---|
882 | /* leading whitespace */
|
---|
883 | while (isSPACE(*s))
|
---|
884 | ++s;
|
---|
885 |
|
---|
886 | /* sign */
|
---|
887 | switch (*s) {
|
---|
888 | case '-':
|
---|
889 | negative = 1;
|
---|
890 | /* fall through */
|
---|
891 | case '+':
|
---|
892 | ++s;
|
---|
893 | }
|
---|
894 |
|
---|
895 | /* punt to strtod for NaN/Inf; if no support for it there, tough luck */
|
---|
896 |
|
---|
897 | #ifdef HAS_STRTOD
|
---|
898 | if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') {
|
---|
899 | const char *p = negative ? s - 1 : s;
|
---|
900 | char *endp;
|
---|
901 | NV rslt;
|
---|
902 | rslt = strtod(p, &endp);
|
---|
903 | if (endp != p) {
|
---|
904 | *value = rslt;
|
---|
905 | return (char *)endp;
|
---|
906 | }
|
---|
907 | }
|
---|
908 | #endif
|
---|
909 |
|
---|
910 | /* we accumulate digits into an integer; when this becomes too
|
---|
911 | * large, we add the total to NV and start again */
|
---|
912 |
|
---|
913 | while (1) {
|
---|
914 | if (isDIGIT(*s)) {
|
---|
915 | seen_digit = 1;
|
---|
916 | old_digit = digit;
|
---|
917 | digit = *s++ - '0';
|
---|
918 | if (seen_dp)
|
---|
919 | exp_adjust[1]++;
|
---|
920 |
|
---|
921 | /* don't start counting until we see the first significant
|
---|
922 | * digit, eg the 5 in 0.00005... */
|
---|
923 | if (!sig_digits && digit == 0)
|
---|
924 | continue;
|
---|
925 |
|
---|
926 | if (++sig_digits > MAX_SIG_DIGITS) {
|
---|
927 | /* limits of precision reached */
|
---|
928 | if (digit > 5) {
|
---|
929 | ++accumulator[seen_dp];
|
---|
930 | } else if (digit == 5) {
|
---|
931 | if (old_digit % 2) { /* round to even - Allen */
|
---|
932 | ++accumulator[seen_dp];
|
---|
933 | }
|
---|
934 | }
|
---|
935 | if (seen_dp) {
|
---|
936 | exp_adjust[1]--;
|
---|
937 | } else {
|
---|
938 | exp_adjust[0]++;
|
---|
939 | }
|
---|
940 | /* skip remaining digits */
|
---|
941 | while (isDIGIT(*s)) {
|
---|
942 | ++s;
|
---|
943 | if (! seen_dp) {
|
---|
944 | exp_adjust[0]++;
|
---|
945 | }
|
---|
946 | }
|
---|
947 | /* warn of loss of precision? */
|
---|
948 | }
|
---|
949 | else {
|
---|
950 | if (accumulator[seen_dp] > MAX_ACCUMULATE) {
|
---|
951 | /* add accumulator to result and start again */
|
---|
952 | result[seen_dp] = S_mulexp10(result[seen_dp],
|
---|
953 | exp_acc[seen_dp])
|
---|
954 | + (NV)accumulator[seen_dp];
|
---|
955 | accumulator[seen_dp] = 0;
|
---|
956 | exp_acc[seen_dp] = 0;
|
---|
957 | }
|
---|
958 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
|
---|
959 | ++exp_acc[seen_dp];
|
---|
960 | }
|
---|
961 | }
|
---|
962 | else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
|
---|
963 | seen_dp = 1;
|
---|
964 | if (sig_digits > MAX_SIG_DIGITS) {
|
---|
965 | ++s;
|
---|
966 | while (isDIGIT(*s)) {
|
---|
967 | ++s;
|
---|
968 | }
|
---|
969 | break;
|
---|
970 | }
|
---|
971 | }
|
---|
972 | else {
|
---|
973 | break;
|
---|
974 | }
|
---|
975 | }
|
---|
976 |
|
---|
977 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
|
---|
978 | if (seen_dp) {
|
---|
979 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
|
---|
980 | }
|
---|
981 |
|
---|
982 | if (seen_digit && (*s == 'e' || *s == 'E')) {
|
---|
983 | bool expnegative = 0;
|
---|
984 |
|
---|
985 | ++s;
|
---|
986 | switch (*s) {
|
---|
987 | case '-':
|
---|
988 | expnegative = 1;
|
---|
989 | /* fall through */
|
---|
990 | case '+':
|
---|
991 | ++s;
|
---|
992 | }
|
---|
993 | while (isDIGIT(*s))
|
---|
994 | exponent = exponent * 10 + (*s++ - '0');
|
---|
995 | if (expnegative)
|
---|
996 | exponent = -exponent;
|
---|
997 | }
|
---|
998 |
|
---|
999 |
|
---|
1000 |
|
---|
1001 | /* now apply the exponent */
|
---|
1002 |
|
---|
1003 | if (seen_dp) {
|
---|
1004 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
|
---|
1005 | + S_mulexp10(result[1],exponent-exp_adjust[1]);
|
---|
1006 | } else {
|
---|
1007 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 | /* now apply the sign */
|
---|
1011 | if (negative)
|
---|
1012 | result[2] = -result[2];
|
---|
1013 | #endif /* USE_PERL_ATOF */
|
---|
1014 | *value = result[2];
|
---|
1015 | return (char *)s;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
|
---|
1019 | long double
|
---|
1020 | Perl_my_modfl(long double x, long double *ip)
|
---|
1021 | {
|
---|
1022 | *ip = aintl(x);
|
---|
1023 | return (x == *ip ? copysignl(0.0L, x) : x - *ip);
|
---|
1024 | }
|
---|
1025 | #endif
|
---|
1026 |
|
---|
1027 | #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
|
---|
1028 | long double
|
---|
1029 | Perl_my_frexpl(long double x, int *e) {
|
---|
1030 | *e = x == 0.0L ? 0 : ilogbl(x) + 1;
|
---|
1031 | return (scalbnl(x, -*e));
|
---|
1032 | }
|
---|
1033 | #endif
|
---|
1034 |
|
---|
1035 | /*
|
---|
1036 | * Local variables:
|
---|
1037 | * c-indentation-style: bsd
|
---|
1038 | * c-basic-offset: 4
|
---|
1039 | * indent-tabs-mode: t
|
---|
1040 | * End:
|
---|
1041 | *
|
---|
1042 | * ex: set ts=8 sts=4 sw=4 noet:
|
---|
1043 | */
|
---|