[3181] | 1 | /* numeric.c
|
---|
| 2 | *
|
---|
| 3 | * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
---|
| 4 | * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
|
---|
| 5 | *
|
---|
| 6 | * You may distribute under the terms of either the GNU General Public
|
---|
| 7 | * License or the Artistic License, as specified in the README file.
|
---|
| 8 | *
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /*
|
---|
| 12 | * "That only makes eleven (plus one mislaid) and not fourteen, unless
|
---|
| 13 | * wizards count differently to other people."
|
---|
| 14 | */
|
---|
| 15 |
|
---|
| 16 | /*
|
---|
| 17 | =head1 Numeric functions
|
---|
| 18 |
|
---|
| 19 | This file contains all the stuff needed by perl for manipulating numeric
|
---|
| 20 | values, including such things as replacements for the OS's atof() function
|
---|
| 21 |
|
---|
| 22 | =cut
|
---|
| 23 |
|
---|
| 24 | */
|
---|
| 25 |
|
---|
| 26 | #include "EXTERN.h"
|
---|
| 27 | #define PERL_IN_NUMERIC_C
|
---|
| 28 | #include "perl.h"
|
---|
| 29 |
|
---|
| 30 | U32
|
---|
| 31 | Perl_cast_ulong(pTHX_ NV f)
|
---|
| 32 | {
|
---|
| 33 | if (f < 0.0)
|
---|
| 34 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
|
---|
| 35 | if (f < U32_MAX_P1) {
|
---|
| 36 | #if CASTFLAGS & 2
|
---|
| 37 | if (f < U32_MAX_P1_HALF)
|
---|
| 38 | return (U32) f;
|
---|
| 39 | f -= U32_MAX_P1_HALF;
|
---|
| 40 | return ((U32) f) | (1 + U32_MAX >> 1);
|
---|
| 41 | #else
|
---|
| 42 | return (U32) f;
|
---|
| 43 | #endif
|
---|
| 44 | }
|
---|
| 45 | return f > 0 ? U32_MAX : 0 /* NaN */;
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | I32
|
---|
| 49 | Perl_cast_i32(pTHX_ NV f)
|
---|
| 50 | {
|
---|
| 51 | if (f < I32_MAX_P1)
|
---|
| 52 | return f < I32_MIN ? I32_MIN : (I32) f;
|
---|
| 53 | if (f < U32_MAX_P1) {
|
---|
| 54 | #if CASTFLAGS & 2
|
---|
| 55 | if (f < U32_MAX_P1_HALF)
|
---|
| 56 | return (I32)(U32) f;
|
---|
| 57 | f -= U32_MAX_P1_HALF;
|
---|
| 58 | return (I32)(((U32) f) | (1 + U32_MAX >> 1));
|
---|
| 59 | #else
|
---|
| 60 | return (I32)(U32) f;
|
---|
| 61 | #endif
|
---|
| 62 | }
|
---|
| 63 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | IV
|
---|
| 67 | Perl_cast_iv(pTHX_ NV f)
|
---|
| 68 | {
|
---|
| 69 | if (f < IV_MAX_P1)
|
---|
| 70 | return f < IV_MIN ? IV_MIN : (IV) f;
|
---|
| 71 | if (f < UV_MAX_P1) {
|
---|
| 72 | #if CASTFLAGS & 2
|
---|
| 73 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
|
---|
| 74 | if (f < UV_MAX_P1_HALF)
|
---|
| 75 | return (IV)(UV) f;
|
---|
| 76 | f -= UV_MAX_P1_HALF;
|
---|
| 77 | return (IV)(((UV) f) | (1 + UV_MAX >> 1));
|
---|
| 78 | #else
|
---|
| 79 | return (IV)(UV) f;
|
---|
| 80 | #endif
|
---|
| 81 | }
|
---|
| 82 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | UV
|
---|
| 86 | Perl_cast_uv(pTHX_ NV f)
|
---|
| 87 | {
|
---|
| 88 | if (f < 0.0)
|
---|
| 89 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
|
---|
| 90 | if (f < UV_MAX_P1) {
|
---|
| 91 | #if CASTFLAGS & 2
|
---|
| 92 | if (f < UV_MAX_P1_HALF)
|
---|
| 93 | return (UV) f;
|
---|
| 94 | f -= UV_MAX_P1_HALF;
|
---|
| 95 | return ((UV) f) | (1 + UV_MAX >> 1);
|
---|
| 96 | #else
|
---|
| 97 | return (UV) f;
|
---|
| 98 | #endif
|
---|
| 99 | }
|
---|
| 100 | return f > 0 ? UV_MAX : 0 /* NaN */;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL))
|
---|
| 104 | /*
|
---|
| 105 | * This hack is to force load of "huge" support from libm.a
|
---|
| 106 | * So it is in perl for (say) POSIX to use.
|
---|
| 107 | * Needed for SunOS with Sun's 'acc' for example.
|
---|
| 108 | */
|
---|
| 109 | NV
|
---|
| 110 | Perl_huge(void)
|
---|
| 111 | {
|
---|
| 112 | # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)
|
---|
| 113 | return HUGE_VALL;
|
---|
| 114 | # endif
|
---|
| 115 | return HUGE_VAL;
|
---|
| 116 | }
|
---|
| 117 | #endif
|
---|
| 118 |
|
---|
| 119 | /*
|
---|
| 120 | =for apidoc grok_bin
|
---|
| 121 |
|
---|
| 122 | converts a string representing a binary number to numeric form.
|
---|
| 123 |
|
---|
| 124 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
---|
| 125 | conversion flags, and I<result> should be NULL or a pointer to an NV.
|
---|
| 126 | The scan stops at the end of the string, or the first invalid character.
|
---|
| 127 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
---|
| 128 | invalid character will also trigger a warning.
|
---|
| 129 | On return I<*len> is set to the length of the scanned string,
|
---|
| 130 | and I<*flags> gives output flags.
|
---|
| 131 |
|
---|
| 132 | If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
|
---|
| 133 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
|
---|
| 134 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
---|
| 135 | and writes the value to I<*result> (or the value is discarded if I<result>
|
---|
| 136 | is NULL).
|
---|
| 137 |
|
---|
| 138 | The binary number may optionally be prefixed with "0b" or "b" unless
|
---|
| 139 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
---|
| 140 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
|
---|
| 141 | number may use '_' characters to separate digits.
|
---|
| 142 |
|
---|
| 143 | =cut
|
---|
| 144 | */
|
---|
| 145 |
|
---|
| 146 | UV
|
---|
| 147 | Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
---|
| 148 | const char *s = start;
|
---|
| 149 | STRLEN len = *len_p;
|
---|
| 150 | UV value = 0;
|
---|
| 151 | NV value_nv = 0;
|
---|
| 152 |
|
---|
| 153 | const UV max_div_2 = UV_MAX / 2;
|
---|
| 154 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
---|
| 155 | bool overflowed = FALSE;
|
---|
| 156 | char bit;
|
---|
| 157 |
|
---|
| 158 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
---|
| 159 | /* strip off leading b or 0b.
|
---|
| 160 | for compatibility silently suffer "b" and "0b" as valid binary
|
---|
| 161 | numbers. */
|
---|
| 162 | if (len >= 1) {
|
---|
| 163 | if (s[0] == 'b') {
|
---|
| 164 | s++;
|
---|
| 165 | len--;
|
---|
| 166 | }
|
---|
| 167 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') {
|
---|
| 168 | s+=2;
|
---|
| 169 | len-=2;
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | for (; len-- && (bit = *s); s++) {
|
---|
| 175 | if (bit == '0' || bit == '1') {
|
---|
| 176 | /* Write it in this wonky order with a goto to attempt to get the
|
---|
| 177 | compiler to make the common case integer-only loop pretty tight.
|
---|
| 178 | With gcc seems to be much straighter code than old scan_bin. */
|
---|
| 179 | redo:
|
---|
| 180 | if (!overflowed) {
|
---|
| 181 | if (value <= max_div_2) {
|
---|
| 182 | value = (value << 1) | (bit - '0');
|
---|
| 183 | continue;
|
---|
| 184 | }
|
---|
| 185 | /* Bah. We're just overflowed. */
|
---|
| 186 | if (ckWARN_d(WARN_OVERFLOW))
|
---|
| 187 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
---|
| 188 | "Integer overflow in binary number");
|
---|
| 189 | overflowed = TRUE;
|
---|
| 190 | value_nv = (NV) value;
|
---|
| 191 | }
|
---|
| 192 | value_nv *= 2.0;
|
---|
| 193 | /* If an NV has not enough bits in its mantissa to
|
---|
| 194 | * represent a UV this summing of small low-order numbers
|
---|
| 195 | * is a waste of time (because the NV cannot preserve
|
---|
| 196 | * the low-order bits anyway): we could just remember when
|
---|
| 197 | * did we overflow and in the end just multiply value_nv by the
|
---|
| 198 | * right amount. */
|
---|
| 199 | value_nv += (NV)(bit - '0');
|
---|
| 200 | continue;
|
---|
| 201 | }
|
---|
| 202 | if (bit == '_' && len && allow_underscores && (bit = s[1])
|
---|
| 203 | && (bit == '0' || bit == '1'))
|
---|
| 204 | {
|
---|
| 205 | --len;
|
---|
| 206 | ++s;
|
---|
| 207 | goto redo;
|
---|
| 208 | }
|
---|
| 209 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT))
|
---|
| 210 | Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
---|
| 211 | "Illegal binary digit '%c' ignored", *s);
|
---|
| 212 | break;
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 | if ( ( overflowed && value_nv > 4294967295.0)
|
---|
| 216 | #if UVSIZE > 4
|
---|
| 217 | || (!overflowed && value > 0xffffffff )
|
---|
| 218 | #endif
|
---|
| 219 | ) {
|
---|
| 220 | if (ckWARN(WARN_PORTABLE))
|
---|
| 221 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
---|
| 222 | "Binary number > 0b11111111111111111111111111111111 non-portable");
|
---|
| 223 | }
|
---|
| 224 | *len_p = s - start;
|
---|
| 225 | if (!overflowed) {
|
---|
| 226 | *flags = 0;
|
---|
| 227 | return value;
|
---|
| 228 | }
|
---|
| 229 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
---|
| 230 | if (result)
|
---|
| 231 | *result = value_nv;
|
---|
| 232 | return UV_MAX;
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | /*
|
---|
| 236 | =for apidoc grok_hex
|
---|
| 237 |
|
---|
| 238 | converts a string representing a hex number to numeric form.
|
---|
| 239 |
|
---|
| 240 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
---|
| 241 | conversion flags, and I<result> should be NULL or a pointer to an NV.
|
---|
| 242 | The scan stops at the end of the string, or the first invalid character.
|
---|
| 243 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
---|
| 244 | invalid character will also trigger a warning.
|
---|
| 245 | On return I<*len> is set to the length of the scanned string,
|
---|
| 246 | and I<*flags> gives output flags.
|
---|
| 247 |
|
---|
| 248 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
---|
| 249 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
|
---|
| 250 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
---|
| 251 | and writes the value to I<*result> (or the value is discarded if I<result>
|
---|
| 252 | is NULL).
|
---|
| 253 |
|
---|
| 254 | The hex number may optionally be prefixed with "0x" or "x" unless
|
---|
| 255 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
|
---|
| 256 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
|
---|
| 257 | number may use '_' characters to separate digits.
|
---|
| 258 |
|
---|
| 259 | =cut
|
---|
| 260 | */
|
---|
| 261 |
|
---|
| 262 | UV
|
---|
| 263 | Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
---|
| 264 | const char *s = start;
|
---|
| 265 | STRLEN len = *len_p;
|
---|
| 266 | UV value = 0;
|
---|
| 267 | NV value_nv = 0;
|
---|
| 268 |
|
---|
| 269 | const UV max_div_16 = UV_MAX / 16;
|
---|
| 270 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
---|
| 271 | bool overflowed = FALSE;
|
---|
| 272 |
|
---|
| 273 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
|
---|
| 274 | /* strip off leading x or 0x.
|
---|
| 275 | for compatibility silently suffer "x" and "0x" as valid hex numbers.
|
---|
| 276 | */
|
---|
| 277 | if (len >= 1) {
|
---|
| 278 | if (s[0] == 'x') {
|
---|
| 279 | s++;
|
---|
| 280 | len--;
|
---|
| 281 | }
|
---|
| 282 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') {
|
---|
| 283 | s+=2;
|
---|
| 284 | len-=2;
|
---|
| 285 | }
|
---|
| 286 | }
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | for (; len-- && *s; s++) {
|
---|
| 290 | const char *hexdigit = strchr(PL_hexdigit, *s);
|
---|
| 291 | if (hexdigit) {
|
---|
| 292 | /* Write it in this wonky order with a goto to attempt to get the
|
---|
| 293 | compiler to make the common case integer-only loop pretty tight.
|
---|
| 294 | With gcc seems to be much straighter code than old scan_hex. */
|
---|
| 295 | redo:
|
---|
| 296 | if (!overflowed) {
|
---|
| 297 | if (value <= max_div_16) {
|
---|
| 298 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15);
|
---|
| 299 | continue;
|
---|
| 300 | }
|
---|
| 301 | /* Bah. We're just overflowed. */
|
---|
| 302 | if (ckWARN_d(WARN_OVERFLOW))
|
---|
| 303 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
---|
| 304 | "Integer overflow in hexadecimal number");
|
---|
| 305 | overflowed = TRUE;
|
---|
| 306 | value_nv = (NV) value;
|
---|
| 307 | }
|
---|
| 308 | value_nv *= 16.0;
|
---|
| 309 | /* If an NV has not enough bits in its mantissa to
|
---|
| 310 | * represent a UV this summing of small low-order numbers
|
---|
| 311 | * is a waste of time (because the NV cannot preserve
|
---|
| 312 | * the low-order bits anyway): we could just remember when
|
---|
| 313 | * did we overflow and in the end just multiply value_nv by the
|
---|
| 314 | * right amount of 16-tuples. */
|
---|
| 315 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15);
|
---|
| 316 | continue;
|
---|
| 317 | }
|
---|
| 318 | if (*s == '_' && len && allow_underscores && s[1]
|
---|
| 319 | && (hexdigit = strchr(PL_hexdigit, s[1])))
|
---|
| 320 | {
|
---|
| 321 | --len;
|
---|
| 322 | ++s;
|
---|
| 323 | goto redo;
|
---|
| 324 | }
|
---|
| 325 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT))
|
---|
| 326 | Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
---|
| 327 | "Illegal hexadecimal digit '%c' ignored", *s);
|
---|
| 328 | break;
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 | if ( ( overflowed && value_nv > 4294967295.0)
|
---|
| 332 | #if UVSIZE > 4
|
---|
| 333 | || (!overflowed && value > 0xffffffff )
|
---|
| 334 | #endif
|
---|
| 335 | ) {
|
---|
| 336 | if (ckWARN(WARN_PORTABLE))
|
---|
| 337 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
---|
| 338 | "Hexadecimal number > 0xffffffff non-portable");
|
---|
| 339 | }
|
---|
| 340 | *len_p = s - start;
|
---|
| 341 | if (!overflowed) {
|
---|
| 342 | *flags = 0;
|
---|
| 343 | return value;
|
---|
| 344 | }
|
---|
| 345 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
---|
| 346 | if (result)
|
---|
| 347 | *result = value_nv;
|
---|
| 348 | return UV_MAX;
|
---|
| 349 | }
|
---|
| 350 |
|
---|
| 351 | /*
|
---|
| 352 | =for apidoc grok_oct
|
---|
| 353 |
|
---|
| 354 | converts a string representing an octal number to numeric form.
|
---|
| 355 |
|
---|
| 356 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives
|
---|
| 357 | conversion flags, and I<result> should be NULL or a pointer to an NV.
|
---|
| 358 | The scan stops at the end of the string, or the first invalid character.
|
---|
| 359 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
|
---|
| 360 | invalid character will also trigger a warning.
|
---|
| 361 | On return I<*len> is set to the length of the scanned string,
|
---|
| 362 | and I<*flags> gives output flags.
|
---|
| 363 |
|
---|
| 364 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
|
---|
| 365 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
|
---|
| 366 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
|
---|
| 367 | and writes the value to I<*result> (or the value is discarded if I<result>
|
---|
| 368 | is NULL).
|
---|
| 369 |
|
---|
| 370 | If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
|
---|
| 371 | number may use '_' characters to separate digits.
|
---|
| 372 |
|
---|
| 373 | =cut
|
---|
| 374 | */
|
---|
| 375 |
|
---|
| 376 | UV
|
---|
| 377 | Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) {
|
---|
| 378 | const char *s = start;
|
---|
| 379 | STRLEN len = *len_p;
|
---|
| 380 | UV value = 0;
|
---|
| 381 | NV value_nv = 0;
|
---|
| 382 |
|
---|
| 383 | const UV max_div_8 = UV_MAX / 8;
|
---|
| 384 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
|
---|
| 385 | bool overflowed = FALSE;
|
---|
| 386 |
|
---|
| 387 | for (; len-- && *s; s++) {
|
---|
| 388 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction
|
---|
| 389 | out front allows slicker code. */
|
---|
| 390 | int digit = *s - '0';
|
---|
| 391 | if (digit >= 0 && digit <= 7) {
|
---|
| 392 | /* Write it in this wonky order with a goto to attempt to get the
|
---|
| 393 | compiler to make the common case integer-only loop pretty tight.
|
---|
| 394 | */
|
---|
| 395 | redo:
|
---|
| 396 | if (!overflowed) {
|
---|
| 397 | if (value <= max_div_8) {
|
---|
| 398 | value = (value << 3) | digit;
|
---|
| 399 | continue;
|
---|
| 400 | }
|
---|
| 401 | /* Bah. We're just overflowed. */
|
---|
| 402 | if (ckWARN_d(WARN_OVERFLOW))
|
---|
| 403 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW),
|
---|
| 404 | "Integer overflow in octal number");
|
---|
| 405 | overflowed = TRUE;
|
---|
| 406 | value_nv = (NV) value;
|
---|
| 407 | }
|
---|
| 408 | value_nv *= 8.0;
|
---|
| 409 | /* If an NV has not enough bits in its mantissa to
|
---|
| 410 | * represent a UV this summing of small low-order numbers
|
---|
| 411 | * is a waste of time (because the NV cannot preserve
|
---|
| 412 | * the low-order bits anyway): we could just remember when
|
---|
| 413 | * did we overflow and in the end just multiply value_nv by the
|
---|
| 414 | * right amount of 8-tuples. */
|
---|
| 415 | value_nv += (NV)digit;
|
---|
| 416 | continue;
|
---|
| 417 | }
|
---|
| 418 | if (digit == ('_' - '0') && len && allow_underscores
|
---|
| 419 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7))
|
---|
| 420 | {
|
---|
| 421 | --len;
|
---|
| 422 | ++s;
|
---|
| 423 | goto redo;
|
---|
| 424 | }
|
---|
| 425 | /* Allow \octal to work the DWIM way (that is, stop scanning
|
---|
| 426 | * as soon as non-octal characters are seen, complain only if
|
---|
| 427 | * someone seems to want to use the digits eight and nine). */
|
---|
| 428 | if (digit == 8 || digit == 9) {
|
---|
| 429 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT))
|
---|
| 430 | Perl_warner(aTHX_ packWARN(WARN_DIGIT),
|
---|
| 431 | "Illegal octal digit '%c' ignored", *s);
|
---|
| 432 | }
|
---|
| 433 | break;
|
---|
| 434 | }
|
---|
| 435 |
|
---|
| 436 | if ( ( overflowed && value_nv > 4294967295.0)
|
---|
| 437 | #if UVSIZE > 4
|
---|
| 438 | || (!overflowed && value > 0xffffffff )
|
---|
| 439 | #endif
|
---|
| 440 | ) {
|
---|
| 441 | if (ckWARN(WARN_PORTABLE))
|
---|
| 442 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE),
|
---|
| 443 | "Octal number > 037777777777 non-portable");
|
---|
| 444 | }
|
---|
| 445 | *len_p = s - start;
|
---|
| 446 | if (!overflowed) {
|
---|
| 447 | *flags = 0;
|
---|
| 448 | return value;
|
---|
| 449 | }
|
---|
| 450 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
|
---|
| 451 | if (result)
|
---|
| 452 | *result = value_nv;
|
---|
| 453 | return UV_MAX;
|
---|
| 454 | }
|
---|
| 455 |
|
---|
| 456 | /*
|
---|
| 457 | =for apidoc scan_bin
|
---|
| 458 |
|
---|
| 459 | For backwards compatibility. Use C<grok_bin> instead.
|
---|
| 460 |
|
---|
| 461 | =for apidoc scan_hex
|
---|
| 462 |
|
---|
| 463 | For backwards compatibility. Use C<grok_hex> instead.
|
---|
| 464 |
|
---|
| 465 | =for apidoc scan_oct
|
---|
| 466 |
|
---|
| 467 | For backwards compatibility. Use C<grok_oct> instead.
|
---|
| 468 |
|
---|
| 469 | =cut
|
---|
| 470 | */
|
---|
| 471 |
|
---|
| 472 | NV
|
---|
| 473 | Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
---|
| 474 | {
|
---|
| 475 | NV rnv;
|
---|
| 476 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
---|
| 477 | const UV ruv = grok_bin (start, &len, &flags, &rnv);
|
---|
| 478 |
|
---|
| 479 | *retlen = len;
|
---|
| 480 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
---|
| 481 | }
|
---|
| 482 |
|
---|
| 483 | NV
|
---|
| 484 | Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
---|
| 485 | {
|
---|
| 486 | NV rnv;
|
---|
| 487 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
---|
| 488 | const UV ruv = grok_oct (start, &len, &flags, &rnv);
|
---|
| 489 |
|
---|
| 490 | *retlen = len;
|
---|
| 491 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
---|
| 492 | }
|
---|
| 493 |
|
---|
| 494 | NV
|
---|
| 495 | Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen)
|
---|
| 496 | {
|
---|
| 497 | NV rnv;
|
---|
| 498 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
|
---|
| 499 | const UV ruv = grok_hex (start, &len, &flags, &rnv);
|
---|
| 500 |
|
---|
| 501 | *retlen = len;
|
---|
| 502 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
|
---|
| 503 | }
|
---|
| 504 |
|
---|
| 505 | /*
|
---|
| 506 | =for apidoc grok_numeric_radix
|
---|
| 507 |
|
---|
| 508 | Scan and skip for a numeric decimal separator (radix).
|
---|
| 509 |
|
---|
| 510 | =cut
|
---|
| 511 | */
|
---|
| 512 | bool
|
---|
| 513 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
|
---|
| 514 | {
|
---|
| 515 | #ifdef USE_LOCALE_NUMERIC
|
---|
| 516 | if (PL_numeric_radix_sv && IN_LOCALE) {
|
---|
| 517 | STRLEN len;
|
---|
| 518 | const char* radix = SvPV(PL_numeric_radix_sv, len);
|
---|
| 519 | if (*sp + len <= send && memEQ(*sp, radix, len)) {
|
---|
| 520 | *sp += len;
|
---|
| 521 | return TRUE;
|
---|
| 522 | }
|
---|
| 523 | }
|
---|
| 524 | /* always try "." if numeric radix didn't match because
|
---|
| 525 | * we may have data from different locales mixed */
|
---|
| 526 | #endif
|
---|
| 527 | if (*sp < send && **sp == '.') {
|
---|
| 528 | ++*sp;
|
---|
| 529 | return TRUE;
|
---|
| 530 | }
|
---|
| 531 | return FALSE;
|
---|
| 532 | }
|
---|
| 533 |
|
---|
| 534 | /*
|
---|
| 535 | =for apidoc grok_number
|
---|
| 536 |
|
---|
| 537 | Recognise (or not) a number. The type of the number is returned
|
---|
| 538 | (0 if unrecognised), otherwise it is a bit-ORed combination of
|
---|
| 539 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
|
---|
| 540 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
|
---|
| 541 |
|
---|
| 542 | If the value of the number can fit an in UV, it is returned in the *valuep
|
---|
| 543 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
|
---|
| 544 | will never be set unless *valuep is valid, but *valuep may have been assigned
|
---|
| 545 | to during processing even though IS_NUMBER_IN_UV is not set on return.
|
---|
| 546 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
|
---|
| 547 | valuep is non-NULL, but no actual assignment (or SEGV) will occur.
|
---|
| 548 |
|
---|
| 549 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
|
---|
| 550 | seen (in which case *valuep gives the true value truncated to an integer), and
|
---|
| 551 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
|
---|
| 552 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
|
---|
| 553 | number is larger than a UV.
|
---|
| 554 |
|
---|
| 555 | =cut
|
---|
| 556 | */
|
---|
| 557 | int
|
---|
| 558 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
|
---|
| 559 | {
|
---|
| 560 | const char *s = pv;
|
---|
| 561 | const char *send = pv + len;
|
---|
| 562 | const UV max_div_10 = UV_MAX / 10;
|
---|
| 563 | const char max_mod_10 = UV_MAX % 10;
|
---|
| 564 | int numtype = 0;
|
---|
| 565 | int sawinf = 0;
|
---|
| 566 | int sawnan = 0;
|
---|
| 567 |
|
---|
| 568 | while (s < send && isSPACE(*s))
|
---|
| 569 | s++;
|
---|
| 570 | if (s == send) {
|
---|
| 571 | return 0;
|
---|
| 572 | } else if (*s == '-') {
|
---|
| 573 | s++;
|
---|
| 574 | numtype = IS_NUMBER_NEG;
|
---|
| 575 | }
|
---|
| 576 | else if (*s == '+')
|
---|
| 577 | s++;
|
---|
| 578 |
|
---|
| 579 | if (s == send)
|
---|
| 580 | return 0;
|
---|
| 581 |
|
---|
| 582 | /* next must be digit or the radix separator or beginning of infinity */
|
---|
| 583 | if (isDIGIT(*s)) {
|
---|
| 584 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot
|
---|
| 585 | overflow. */
|
---|
| 586 | UV value = *s - '0';
|
---|
| 587 | /* This construction seems to be more optimiser friendly.
|
---|
| 588 | (without it gcc does the isDIGIT test and the *s - '0' separately)
|
---|
| 589 | With it gcc on arm is managing 6 instructions (6 cycles) per digit.
|
---|
| 590 | In theory the optimiser could deduce how far to unroll the loop
|
---|
| 591 | before checking for overflow. */
|
---|
| 592 | if (++s < send) {
|
---|
| 593 | int digit = *s - '0';
|
---|
| 594 | if (digit >= 0 && digit <= 9) {
|
---|
| 595 | value = value * 10 + digit;
|
---|
| 596 | if (++s < send) {
|
---|
| 597 | digit = *s - '0';
|
---|
| 598 | if (digit >= 0 && digit <= 9) {
|
---|
| 599 | value = value * 10 + digit;
|
---|
| 600 | if (++s < send) {
|
---|
| 601 | digit = *s - '0';
|
---|
| 602 | if (digit >= 0 && digit <= 9) {
|
---|
| 603 | value = value * 10 + digit;
|
---|
| 604 | if (++s < send) {
|
---|
| 605 | digit = *s - '0';
|
---|
| 606 | if (digit >= 0 && digit <= 9) {
|
---|
| 607 | value = value * 10 + digit;
|
---|
| 608 | if (++s < send) {
|
---|
| 609 | digit = *s - '0';
|
---|
| 610 | if (digit >= 0 && digit <= 9) {
|
---|
| 611 | value = value * 10 + digit;
|
---|
| 612 | if (++s < send) {
|
---|
| 613 | digit = *s - '0';
|
---|
| 614 | if (digit >= 0 && digit <= 9) {
|
---|
| 615 | value = value * 10 + digit;
|
---|
| 616 | if (++s < send) {
|
---|
| 617 | digit = *s - '0';
|
---|
| 618 | if (digit >= 0 && digit <= 9) {
|
---|
| 619 | value = value * 10 + digit;
|
---|
| 620 | if (++s < send) {
|
---|
| 621 | digit = *s - '0';
|
---|
| 622 | if (digit >= 0 && digit <= 9) {
|
---|
| 623 | value = value * 10 + digit;
|
---|
| 624 | if (++s < send) {
|
---|
| 625 | /* Now got 9 digits, so need to check
|
---|
| 626 | each time for overflow. */
|
---|
| 627 | digit = *s - '0';
|
---|
| 628 | while (digit >= 0 && digit <= 9
|
---|
| 629 | && (value < max_div_10
|
---|
| 630 | || (value == max_div_10
|
---|
| 631 | && digit <= max_mod_10))) {
|
---|
| 632 | value = value * 10 + digit;
|
---|
| 633 | if (++s < send)
|
---|
| 634 | digit = *s - '0';
|
---|
| 635 | else
|
---|
| 636 | break;
|
---|
| 637 | }
|
---|
| 638 | if (digit >= 0 && digit <= 9
|
---|
| 639 | && (s < send)) {
|
---|
| 640 | /* value overflowed.
|
---|
| 641 | skip the remaining digits, don't
|
---|
| 642 | worry about setting *valuep. */
|
---|
| 643 | do {
|
---|
| 644 | s++;
|
---|
| 645 | } while (s < send && isDIGIT(*s));
|
---|
| 646 | numtype |=
|
---|
| 647 | IS_NUMBER_GREATER_THAN_UV_MAX;
|
---|
| 648 | goto skip_value;
|
---|
| 649 | }
|
---|
| 650 | }
|
---|
| 651 | }
|
---|
| 652 | }
|
---|
| 653 | }
|
---|
| 654 | }
|
---|
| 655 | }
|
---|
| 656 | }
|
---|
| 657 | }
|
---|
| 658 | }
|
---|
| 659 | }
|
---|
| 660 | }
|
---|
| 661 | }
|
---|
| 662 | }
|
---|
| 663 | }
|
---|
| 664 | }
|
---|
| 665 | }
|
---|
| 666 | }
|
---|
| 667 | numtype |= IS_NUMBER_IN_UV;
|
---|
| 668 | if (valuep)
|
---|
| 669 | *valuep = value;
|
---|
| 670 |
|
---|
| 671 | skip_value:
|
---|
| 672 | if (GROK_NUMERIC_RADIX(&s, send)) {
|
---|
| 673 | numtype |= IS_NUMBER_NOT_INT;
|
---|
| 674 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */
|
---|
| 675 | s++;
|
---|
| 676 | }
|
---|
| 677 | }
|
---|
| 678 | else if (GROK_NUMERIC_RADIX(&s, send)) {
|
---|
| 679 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
|
---|
| 680 | /* no digits before the radix means we need digits after it */
|
---|
| 681 | if (s < send && isDIGIT(*s)) {
|
---|
| 682 | do {
|
---|
| 683 | s++;
|
---|
| 684 | } while (s < send && isDIGIT(*s));
|
---|
| 685 | if (valuep) {
|
---|
| 686 | /* integer approximation is valid - it's 0. */
|
---|
| 687 | *valuep = 0;
|
---|
| 688 | }
|
---|
| 689 | }
|
---|
| 690 | else
|
---|
| 691 | return 0;
|
---|
| 692 | } else if (*s == 'I' || *s == 'i') {
|
---|
| 693 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
---|
| 694 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
|
---|
| 695 | s++; if (s < send && (*s == 'I' || *s == 'i')) {
|
---|
| 696 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
---|
| 697 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
|
---|
| 698 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
|
---|
| 699 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
|
---|
| 700 | s++;
|
---|
| 701 | }
|
---|
| 702 | sawinf = 1;
|
---|
| 703 | } else if (*s == 'N' || *s == 'n') {
|
---|
| 704 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */
|
---|
| 705 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
|
---|
| 706 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
|
---|
| 707 | s++;
|
---|
| 708 | sawnan = 1;
|
---|
| 709 | } else
|
---|
| 710 | return 0;
|
---|
| 711 |
|
---|
| 712 | if (sawinf) {
|
---|
| 713 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
---|
| 714 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
|
---|
| 715 | } else if (sawnan) {
|
---|
| 716 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */
|
---|
| 717 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
|
---|
| 718 | } else if (s < send) {
|
---|
| 719 | /* we can have an optional exponent part */
|
---|
| 720 | if (*s == 'e' || *s == 'E') {
|
---|
| 721 | /* The only flag we keep is sign. Blow away any "it's UV" */
|
---|
| 722 | numtype &= IS_NUMBER_NEG;
|
---|
| 723 | numtype |= IS_NUMBER_NOT_INT;
|
---|
| 724 | s++;
|
---|
| 725 | if (s < send && (*s == '-' || *s == '+'))
|
---|
| 726 | s++;
|
---|
| 727 | if (s < send && isDIGIT(*s)) {
|
---|
| 728 | do {
|
---|
| 729 | s++;
|
---|
| 730 | } while (s < send && isDIGIT(*s));
|
---|
| 731 | }
|
---|
| 732 | else
|
---|
| 733 | return 0;
|
---|
| 734 | }
|
---|
| 735 | }
|
---|
| 736 | while (s < send && isSPACE(*s))
|
---|
| 737 | s++;
|
---|
| 738 | if (s >= send)
|
---|
| 739 | return numtype;
|
---|
| 740 | if (len == 10 && memEQ(pv, "0 but true", 10)) {
|
---|
| 741 | if (valuep)
|
---|
| 742 | *valuep = 0;
|
---|
| 743 | return IS_NUMBER_IN_UV;
|
---|
| 744 | }
|
---|
| 745 | return 0;
|
---|
| 746 | }
|
---|
| 747 |
|
---|
| 748 | STATIC NV
|
---|
| 749 | S_mulexp10(NV value, I32 exponent)
|
---|
| 750 | {
|
---|
| 751 | NV result = 1.0;
|
---|
| 752 | NV power = 10.0;
|
---|
| 753 | bool negative = 0;
|
---|
| 754 | I32 bit;
|
---|
| 755 |
|
---|
| 756 | if (exponent == 0)
|
---|
| 757 | return value;
|
---|
| 758 | if (value == 0)
|
---|
| 759 | return (NV)0;
|
---|
| 760 |
|
---|
| 761 | /* On OpenVMS VAX we by default use the D_FLOAT double format,
|
---|
| 762 | * and that format does not have *easy* capabilities [1] for
|
---|
| 763 | * overflowing doubles 'silently' as IEEE fp does. We also need
|
---|
| 764 | * to support G_FLOAT on both VAX and Alpha, and though the exponent
|
---|
| 765 | * range is much larger than D_FLOAT it still doesn't do silent
|
---|
| 766 | * overflow. Therefore we need to detect early whether we would
|
---|
| 767 | * overflow (this is the behaviour of the native string-to-float
|
---|
| 768 | * conversion routines, and therefore of native applications, too).
|
---|
| 769 | *
|
---|
| 770 | * [1] Trying to establish a condition handler to trap floating point
|
---|
| 771 | * exceptions is not a good idea. */
|
---|
| 772 |
|
---|
| 773 | /* In UNICOS and in certain Cray models (such as T90) there is no
|
---|
| 774 | * IEEE fp, and no way at all from C to catch fp overflows gracefully.
|
---|
| 775 | * There is something you can do if you are willing to use some
|
---|
| 776 | * inline assembler: the instruction is called DFI-- but that will
|
---|
| 777 | * disable *all* floating point interrupts, a little bit too large
|
---|
| 778 | * a hammer. Therefore we need to catch potential overflows before
|
---|
| 779 | * it's too late. */
|
---|
| 780 |
|
---|
| 781 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
|
---|
| 782 | STMT_START {
|
---|
| 783 | NV exp_v = log10(value);
|
---|
| 784 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
|
---|
| 785 | return NV_MAX;
|
---|
| 786 | if (exponent < 0) {
|
---|
| 787 | if (-(exponent + exp_v) >= NV_MAX_10_EXP)
|
---|
| 788 | return 0.0;
|
---|
| 789 | while (-exponent >= NV_MAX_10_EXP) {
|
---|
| 790 | /* combination does not overflow, but 10^(-exponent) does */
|
---|
| 791 | value /= 10;
|
---|
| 792 | ++exponent;
|
---|
| 793 | }
|
---|
| 794 | }
|
---|
| 795 | } STMT_END;
|
---|
| 796 | #endif
|
---|
| 797 |
|
---|
| 798 | if (exponent < 0) {
|
---|
| 799 | negative = 1;
|
---|
| 800 | exponent = -exponent;
|
---|
| 801 | }
|
---|
| 802 | for (bit = 1; exponent; bit <<= 1) {
|
---|
| 803 | if (exponent & bit) {
|
---|
| 804 | exponent ^= bit;
|
---|
| 805 | result *= power;
|
---|
| 806 | /* Floating point exceptions are supposed to be turned off,
|
---|
| 807 | * but if we're obviously done, don't risk another iteration.
|
---|
| 808 | */
|
---|
| 809 | if (exponent == 0) break;
|
---|
| 810 | }
|
---|
| 811 | power *= power;
|
---|
| 812 | }
|
---|
| 813 | return negative ? value / result : value * result;
|
---|
| 814 | }
|
---|
| 815 |
|
---|
| 816 | NV
|
---|
| 817 | Perl_my_atof(pTHX_ const char* s)
|
---|
| 818 | {
|
---|
| 819 | NV x = 0.0;
|
---|
| 820 | #ifdef USE_LOCALE_NUMERIC
|
---|
| 821 | if (PL_numeric_local && IN_LOCALE) {
|
---|
| 822 | NV y;
|
---|
| 823 |
|
---|
| 824 | /* Scan the number twice; once using locale and once without;
|
---|
| 825 | * choose the larger result (in absolute value). */
|
---|
| 826 | Perl_atof2(s, x);
|
---|
| 827 | SET_NUMERIC_STANDARD();
|
---|
| 828 | Perl_atof2(s, y);
|
---|
| 829 | SET_NUMERIC_LOCAL();
|
---|
| 830 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x))
|
---|
| 831 | return y;
|
---|
| 832 | }
|
---|
| 833 | else
|
---|
| 834 | Perl_atof2(s, x);
|
---|
| 835 | #else
|
---|
| 836 | Perl_atof2(s, x);
|
---|
| 837 | #endif
|
---|
| 838 | return x;
|
---|
| 839 | }
|
---|
| 840 |
|
---|
| 841 | char*
|
---|
| 842 | Perl_my_atof2(pTHX_ const char* orig, NV* value)
|
---|
| 843 | {
|
---|
| 844 | NV result[3] = {0.0, 0.0, 0.0};
|
---|
| 845 | const char* s = orig;
|
---|
| 846 | #ifdef USE_PERL_ATOF
|
---|
| 847 | UV accumulator[2] = {0,0}; /* before/after dp */
|
---|
| 848 | bool negative = 0;
|
---|
| 849 | const char* send = s + strlen(orig) - 1;
|
---|
| 850 | bool seen_digit = 0;
|
---|
| 851 | I32 exp_adjust[2] = {0,0};
|
---|
| 852 | I32 exp_acc[2] = {-1, -1};
|
---|
| 853 | /* the current exponent adjust for the accumulators */
|
---|
| 854 | I32 exponent = 0;
|
---|
| 855 | I32 seen_dp = 0;
|
---|
| 856 | I32 digit = 0;
|
---|
| 857 | I32 old_digit = 0;
|
---|
| 858 | I32 sig_digits = 0; /* noof significant digits seen so far */
|
---|
| 859 |
|
---|
| 860 | /* There is no point in processing more significant digits
|
---|
| 861 | * than the NV can hold. Note that NV_DIG is a lower-bound value,
|
---|
| 862 | * while we need an upper-bound value. We add 2 to account for this;
|
---|
| 863 | * since it will have been conservative on both the first and last digit.
|
---|
| 864 | * For example a 32-bit mantissa with an exponent of 4 would have
|
---|
| 865 | * exact values in the set
|
---|
| 866 | * 4
|
---|
| 867 | * 8
|
---|
| 868 | * ..
|
---|
| 869 | * 17179869172
|
---|
| 870 | * 17179869176
|
---|
| 871 | * 17179869180
|
---|
| 872 | *
|
---|
| 873 | * where for the purposes of calculating NV_DIG we would have to discount
|
---|
| 874 | * both the first and last digit, since neither can hold all values from
|
---|
| 875 | * 0..9; but for calculating the value we must examine those two digits.
|
---|
| 876 | */
|
---|
| 877 | #define MAX_SIG_DIGITS (NV_DIG+2)
|
---|
| 878 |
|
---|
| 879 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */
|
---|
| 880 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
|
---|
| 881 |
|
---|
| 882 | /* leading whitespace */
|
---|
| 883 | while (isSPACE(*s))
|
---|
| 884 | ++s;
|
---|
| 885 |
|
---|
| 886 | /* sign */
|
---|
| 887 | switch (*s) {
|
---|
| 888 | case '-':
|
---|
| 889 | negative = 1;
|
---|
| 890 | /* fall through */
|
---|
| 891 | case '+':
|
---|
| 892 | ++s;
|
---|
| 893 | }
|
---|
| 894 |
|
---|
| 895 | /* punt to strtod for NaN/Inf; if no support for it there, tough luck */
|
---|
| 896 |
|
---|
| 897 | #ifdef HAS_STRTOD
|
---|
| 898 | if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') {
|
---|
| 899 | const char *p = negative ? s - 1 : s;
|
---|
| 900 | char *endp;
|
---|
| 901 | NV rslt;
|
---|
| 902 | rslt = strtod(p, &endp);
|
---|
| 903 | if (endp != p) {
|
---|
| 904 | *value = rslt;
|
---|
| 905 | return (char *)endp;
|
---|
| 906 | }
|
---|
| 907 | }
|
---|
| 908 | #endif
|
---|
| 909 |
|
---|
| 910 | /* we accumulate digits into an integer; when this becomes too
|
---|
| 911 | * large, we add the total to NV and start again */
|
---|
| 912 |
|
---|
| 913 | while (1) {
|
---|
| 914 | if (isDIGIT(*s)) {
|
---|
| 915 | seen_digit = 1;
|
---|
| 916 | old_digit = digit;
|
---|
| 917 | digit = *s++ - '0';
|
---|
| 918 | if (seen_dp)
|
---|
| 919 | exp_adjust[1]++;
|
---|
| 920 |
|
---|
| 921 | /* don't start counting until we see the first significant
|
---|
| 922 | * digit, eg the 5 in 0.00005... */
|
---|
| 923 | if (!sig_digits && digit == 0)
|
---|
| 924 | continue;
|
---|
| 925 |
|
---|
| 926 | if (++sig_digits > MAX_SIG_DIGITS) {
|
---|
| 927 | /* limits of precision reached */
|
---|
| 928 | if (digit > 5) {
|
---|
| 929 | ++accumulator[seen_dp];
|
---|
| 930 | } else if (digit == 5) {
|
---|
| 931 | if (old_digit % 2) { /* round to even - Allen */
|
---|
| 932 | ++accumulator[seen_dp];
|
---|
| 933 | }
|
---|
| 934 | }
|
---|
| 935 | if (seen_dp) {
|
---|
| 936 | exp_adjust[1]--;
|
---|
| 937 | } else {
|
---|
| 938 | exp_adjust[0]++;
|
---|
| 939 | }
|
---|
| 940 | /* skip remaining digits */
|
---|
| 941 | while (isDIGIT(*s)) {
|
---|
| 942 | ++s;
|
---|
| 943 | if (! seen_dp) {
|
---|
| 944 | exp_adjust[0]++;
|
---|
| 945 | }
|
---|
| 946 | }
|
---|
| 947 | /* warn of loss of precision? */
|
---|
| 948 | }
|
---|
| 949 | else {
|
---|
| 950 | if (accumulator[seen_dp] > MAX_ACCUMULATE) {
|
---|
| 951 | /* add accumulator to result and start again */
|
---|
| 952 | result[seen_dp] = S_mulexp10(result[seen_dp],
|
---|
| 953 | exp_acc[seen_dp])
|
---|
| 954 | + (NV)accumulator[seen_dp];
|
---|
| 955 | accumulator[seen_dp] = 0;
|
---|
| 956 | exp_acc[seen_dp] = 0;
|
---|
| 957 | }
|
---|
| 958 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
|
---|
| 959 | ++exp_acc[seen_dp];
|
---|
| 960 | }
|
---|
| 961 | }
|
---|
| 962 | else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
|
---|
| 963 | seen_dp = 1;
|
---|
| 964 | if (sig_digits > MAX_SIG_DIGITS) {
|
---|
| 965 | ++s;
|
---|
| 966 | while (isDIGIT(*s)) {
|
---|
| 967 | ++s;
|
---|
| 968 | }
|
---|
| 969 | break;
|
---|
| 970 | }
|
---|
| 971 | }
|
---|
| 972 | else {
|
---|
| 973 | break;
|
---|
| 974 | }
|
---|
| 975 | }
|
---|
| 976 |
|
---|
| 977 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
|
---|
| 978 | if (seen_dp) {
|
---|
| 979 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
|
---|
| 980 | }
|
---|
| 981 |
|
---|
| 982 | if (seen_digit && (*s == 'e' || *s == 'E')) {
|
---|
| 983 | bool expnegative = 0;
|
---|
| 984 |
|
---|
| 985 | ++s;
|
---|
| 986 | switch (*s) {
|
---|
| 987 | case '-':
|
---|
| 988 | expnegative = 1;
|
---|
| 989 | /* fall through */
|
---|
| 990 | case '+':
|
---|
| 991 | ++s;
|
---|
| 992 | }
|
---|
| 993 | while (isDIGIT(*s))
|
---|
| 994 | exponent = exponent * 10 + (*s++ - '0');
|
---|
| 995 | if (expnegative)
|
---|
| 996 | exponent = -exponent;
|
---|
| 997 | }
|
---|
| 998 |
|
---|
| 999 |
|
---|
| 1000 |
|
---|
| 1001 | /* now apply the exponent */
|
---|
| 1002 |
|
---|
| 1003 | if (seen_dp) {
|
---|
| 1004 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
|
---|
| 1005 | + S_mulexp10(result[1],exponent-exp_adjust[1]);
|
---|
| 1006 | } else {
|
---|
| 1007 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
|
---|
| 1008 | }
|
---|
| 1009 |
|
---|
| 1010 | /* now apply the sign */
|
---|
| 1011 | if (negative)
|
---|
| 1012 | result[2] = -result[2];
|
---|
| 1013 | #endif /* USE_PERL_ATOF */
|
---|
| 1014 | *value = result[2];
|
---|
| 1015 | return (char *)s;
|
---|
| 1016 | }
|
---|
| 1017 |
|
---|
| 1018 | #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
|
---|
| 1019 | long double
|
---|
| 1020 | Perl_my_modfl(long double x, long double *ip)
|
---|
| 1021 | {
|
---|
| 1022 | *ip = aintl(x);
|
---|
| 1023 | return (x == *ip ? copysignl(0.0L, x) : x - *ip);
|
---|
| 1024 | }
|
---|
| 1025 | #endif
|
---|
| 1026 |
|
---|
| 1027 | #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
|
---|
| 1028 | long double
|
---|
| 1029 | Perl_my_frexpl(long double x, int *e) {
|
---|
| 1030 | *e = x == 0.0L ? 0 : ilogbl(x) + 1;
|
---|
| 1031 | return (scalbnl(x, -*e));
|
---|
| 1032 | }
|
---|
| 1033 | #endif
|
---|
| 1034 |
|
---|
| 1035 | /*
|
---|
| 1036 | * Local variables:
|
---|
| 1037 | * c-indentation-style: bsd
|
---|
| 1038 | * c-basic-offset: 4
|
---|
| 1039 | * indent-tabs-mode: t
|
---|
| 1040 | * End:
|
---|
| 1041 | *
|
---|
| 1042 | * ex: set ts=8 sts=4 sw=4 noet:
|
---|
| 1043 | */
|
---|