1 | #
|
---|
2 | # Trigonometric functions, mostly inherited from Math::Complex.
|
---|
3 | # -- Jarkko Hietaniemi, since April 1997
|
---|
4 | # -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
|
---|
5 | #
|
---|
6 |
|
---|
7 | require Exporter;
|
---|
8 | package Math::Trig;
|
---|
9 |
|
---|
10 | use 5.006;
|
---|
11 | use strict;
|
---|
12 |
|
---|
13 | use Math::Complex 1.35;
|
---|
14 | use Math::Complex qw(:trig);
|
---|
15 |
|
---|
16 | our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
|
---|
17 |
|
---|
18 | @ISA = qw(Exporter);
|
---|
19 |
|
---|
20 | $VERSION = 1.03;
|
---|
21 |
|
---|
22 | my @angcnv = qw(rad2deg rad2grad
|
---|
23 | deg2rad deg2grad
|
---|
24 | grad2rad grad2deg);
|
---|
25 |
|
---|
26 | @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
|
---|
27 | @angcnv);
|
---|
28 |
|
---|
29 | my @rdlcnv = qw(cartesian_to_cylindrical
|
---|
30 | cartesian_to_spherical
|
---|
31 | cylindrical_to_cartesian
|
---|
32 | cylindrical_to_spherical
|
---|
33 | spherical_to_cartesian
|
---|
34 | spherical_to_cylindrical);
|
---|
35 |
|
---|
36 | my @greatcircle = qw(
|
---|
37 | great_circle_distance
|
---|
38 | great_circle_direction
|
---|
39 | great_circle_bearing
|
---|
40 | great_circle_waypoint
|
---|
41 | great_circle_midpoint
|
---|
42 | great_circle_destination
|
---|
43 | );
|
---|
44 |
|
---|
45 | my @pi = qw(pi2 pip2 pip4);
|
---|
46 |
|
---|
47 | @EXPORT_OK = (@rdlcnv, @greatcircle, @pi);
|
---|
48 |
|
---|
49 | # See e.g. the following pages:
|
---|
50 | # http://www.movable-type.co.uk/scripts/LatLong.html
|
---|
51 | # http://williams.best.vwh.net/avform.htm
|
---|
52 |
|
---|
53 | %EXPORT_TAGS = ('radial' => [ @rdlcnv ],
|
---|
54 | 'great_circle' => [ @greatcircle ],
|
---|
55 | 'pi' => [ @pi ]);
|
---|
56 |
|
---|
57 | sub pi2 () { 2 * pi }
|
---|
58 | sub pip2 () { pi / 2 }
|
---|
59 | sub pip4 () { pi / 4 }
|
---|
60 |
|
---|
61 | sub DR () { pi2/360 }
|
---|
62 | sub RD () { 360/pi2 }
|
---|
63 | sub DG () { 400/360 }
|
---|
64 | sub GD () { 360/400 }
|
---|
65 | sub RG () { 400/pi2 }
|
---|
66 | sub GR () { pi2/400 }
|
---|
67 |
|
---|
68 | #
|
---|
69 | # Truncating remainder.
|
---|
70 | #
|
---|
71 |
|
---|
72 | sub remt ($$) {
|
---|
73 | # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
|
---|
74 | $_[0] - $_[1] * int($_[0] / $_[1]);
|
---|
75 | }
|
---|
76 |
|
---|
77 | #
|
---|
78 | # Angle conversions.
|
---|
79 | #
|
---|
80 |
|
---|
81 | sub rad2rad($) { remt($_[0], pi2) }
|
---|
82 |
|
---|
83 | sub deg2deg($) { remt($_[0], 360) }
|
---|
84 |
|
---|
85 | sub grad2grad($) { remt($_[0], 400) }
|
---|
86 |
|
---|
87 | sub rad2deg ($;$) { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) }
|
---|
88 |
|
---|
89 | sub deg2rad ($;$) { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) }
|
---|
90 |
|
---|
91 | sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) }
|
---|
92 |
|
---|
93 | sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) }
|
---|
94 |
|
---|
95 | sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) }
|
---|
96 |
|
---|
97 | sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) }
|
---|
98 |
|
---|
99 | sub cartesian_to_spherical {
|
---|
100 | my ( $x, $y, $z ) = @_;
|
---|
101 |
|
---|
102 | my $rho = sqrt( $x * $x + $y * $y + $z * $z );
|
---|
103 |
|
---|
104 | return ( $rho,
|
---|
105 | atan2( $y, $x ),
|
---|
106 | $rho ? acos( $z / $rho ) : 0 );
|
---|
107 | }
|
---|
108 |
|
---|
109 | sub spherical_to_cartesian {
|
---|
110 | my ( $rho, $theta, $phi ) = @_;
|
---|
111 |
|
---|
112 | return ( $rho * cos( $theta ) * sin( $phi ),
|
---|
113 | $rho * sin( $theta ) * sin( $phi ),
|
---|
114 | $rho * cos( $phi ) );
|
---|
115 | }
|
---|
116 |
|
---|
117 | sub spherical_to_cylindrical {
|
---|
118 | my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
|
---|
119 |
|
---|
120 | return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
|
---|
121 | }
|
---|
122 |
|
---|
123 | sub cartesian_to_cylindrical {
|
---|
124 | my ( $x, $y, $z ) = @_;
|
---|
125 |
|
---|
126 | return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
|
---|
127 | }
|
---|
128 |
|
---|
129 | sub cylindrical_to_cartesian {
|
---|
130 | my ( $rho, $theta, $z ) = @_;
|
---|
131 |
|
---|
132 | return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
|
---|
133 | }
|
---|
134 |
|
---|
135 | sub cylindrical_to_spherical {
|
---|
136 | return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
|
---|
137 | }
|
---|
138 |
|
---|
139 | sub great_circle_distance {
|
---|
140 | my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
|
---|
141 |
|
---|
142 | $rho = 1 unless defined $rho; # Default to the unit sphere.
|
---|
143 |
|
---|
144 | my $lat0 = pip2 - $phi0;
|
---|
145 | my $lat1 = pip2 - $phi1;
|
---|
146 |
|
---|
147 | return $rho *
|
---|
148 | acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
|
---|
149 | sin( $lat0 ) * sin( $lat1 ) );
|
---|
150 | }
|
---|
151 |
|
---|
152 | sub great_circle_direction {
|
---|
153 | my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
|
---|
154 |
|
---|
155 | my $distance = &great_circle_distance;
|
---|
156 |
|
---|
157 | my $lat0 = pip2 - $phi0;
|
---|
158 | my $lat1 = pip2 - $phi1;
|
---|
159 |
|
---|
160 | my $direction =
|
---|
161 | acos((sin($lat1) - sin($lat0) * cos($distance)) /
|
---|
162 | (cos($lat0) * sin($distance)));
|
---|
163 |
|
---|
164 | $direction = pi2 - $direction
|
---|
165 | if sin($theta1 - $theta0) < 0;
|
---|
166 |
|
---|
167 | return rad2rad($direction);
|
---|
168 | }
|
---|
169 |
|
---|
170 | *great_circle_bearing = \&great_circle_direction;
|
---|
171 |
|
---|
172 | sub great_circle_waypoint {
|
---|
173 | my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_;
|
---|
174 |
|
---|
175 | $point = 0.5 unless defined $point;
|
---|
176 |
|
---|
177 | my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 );
|
---|
178 |
|
---|
179 | return undef if $d == pi;
|
---|
180 |
|
---|
181 | my $sd = sin($d);
|
---|
182 |
|
---|
183 | return ($theta0, $phi0) if $sd == 0;
|
---|
184 |
|
---|
185 | my $A = sin((1 - $point) * $d) / $sd;
|
---|
186 | my $B = sin( $point * $d) / $sd;
|
---|
187 |
|
---|
188 | my $lat0 = pip2 - $phi0;
|
---|
189 | my $lat1 = pip2 - $phi1;
|
---|
190 |
|
---|
191 | my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1);
|
---|
192 | my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1);
|
---|
193 | my $z = $A * sin($lat0) + $B * sin($lat1);
|
---|
194 |
|
---|
195 | my $theta = atan2($y, $x);
|
---|
196 | my $phi = atan2($z, sqrt($x*$x + $y*$y));
|
---|
197 |
|
---|
198 | return ($theta, $phi);
|
---|
199 | }
|
---|
200 |
|
---|
201 | sub great_circle_midpoint {
|
---|
202 | great_circle_waypoint(@_[0..3], 0.5);
|
---|
203 | }
|
---|
204 |
|
---|
205 | sub great_circle_destination {
|
---|
206 | my ( $theta0, $phi0, $dir0, $dst ) = @_;
|
---|
207 |
|
---|
208 | my $lat0 = pip2 - $phi0;
|
---|
209 |
|
---|
210 | my $phi1 = asin(sin($lat0)*cos($dst)+cos($lat0)*sin($dst)*cos($dir0));
|
---|
211 | my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0),
|
---|
212 | cos($dst)-sin($lat0)*sin($phi1));
|
---|
213 |
|
---|
214 | my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi;
|
---|
215 |
|
---|
216 | $dir1 -= pi2 if $dir1 > pi2;
|
---|
217 |
|
---|
218 | return ($theta1, $phi1, $dir1);
|
---|
219 | }
|
---|
220 |
|
---|
221 | 1;
|
---|
222 |
|
---|
223 | __END__
|
---|
224 | =pod
|
---|
225 |
|
---|
226 | =head1 NAME
|
---|
227 |
|
---|
228 | Math::Trig - trigonometric functions
|
---|
229 |
|
---|
230 | =head1 SYNOPSIS
|
---|
231 |
|
---|
232 | use Math::Trig;
|
---|
233 |
|
---|
234 | $x = tan(0.9);
|
---|
235 | $y = acos(3.7);
|
---|
236 | $z = asin(2.4);
|
---|
237 |
|
---|
238 | $halfpi = pi/2;
|
---|
239 |
|
---|
240 | $rad = deg2rad(120);
|
---|
241 |
|
---|
242 | # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).
|
---|
243 | use Math::Trig ':pi';
|
---|
244 |
|
---|
245 | # Import the conversions between cartesian/spherical/cylindrical.
|
---|
246 | use Math::Trig ':radial';
|
---|
247 |
|
---|
248 | # Import the great circle formulas.
|
---|
249 | use Math::Trig ':great_circle';
|
---|
250 |
|
---|
251 | =head1 DESCRIPTION
|
---|
252 |
|
---|
253 | C<Math::Trig> defines many trigonometric functions not defined by the
|
---|
254 | core Perl which defines only the C<sin()> and C<cos()>. The constant
|
---|
255 | B<pi> is also defined as are a few convenience functions for angle
|
---|
256 | conversions, and I<great circle formulas> for spherical movement.
|
---|
257 |
|
---|
258 | =head1 TRIGONOMETRIC FUNCTIONS
|
---|
259 |
|
---|
260 | The tangent
|
---|
261 |
|
---|
262 | =over 4
|
---|
263 |
|
---|
264 | =item B<tan>
|
---|
265 |
|
---|
266 | =back
|
---|
267 |
|
---|
268 | The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
|
---|
269 | are aliases)
|
---|
270 |
|
---|
271 | B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
|
---|
272 |
|
---|
273 | The arcus (also known as the inverse) functions of the sine, cosine,
|
---|
274 | and tangent
|
---|
275 |
|
---|
276 | B<asin>, B<acos>, B<atan>
|
---|
277 |
|
---|
278 | The principal value of the arc tangent of y/x
|
---|
279 |
|
---|
280 | B<atan2>(y, x)
|
---|
281 |
|
---|
282 | The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
|
---|
283 | and acotan/acot are aliases)
|
---|
284 |
|
---|
285 | B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
|
---|
286 |
|
---|
287 | The hyperbolic sine, cosine, and tangent
|
---|
288 |
|
---|
289 | B<sinh>, B<cosh>, B<tanh>
|
---|
290 |
|
---|
291 | The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
|
---|
292 | and cotanh/coth are aliases)
|
---|
293 |
|
---|
294 | B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
|
---|
295 |
|
---|
296 | The arcus (also known as the inverse) functions of the hyperbolic
|
---|
297 | sine, cosine, and tangent
|
---|
298 |
|
---|
299 | B<asinh>, B<acosh>, B<atanh>
|
---|
300 |
|
---|
301 | The arcus cofunctions of the hyperbolic sine, cosine, and tangent
|
---|
302 | (acsch/acosech and acoth/acotanh are aliases)
|
---|
303 |
|
---|
304 | B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
|
---|
305 |
|
---|
306 | The trigonometric constant B<pi> is also defined.
|
---|
307 |
|
---|
308 | $pi2 = 2 * B<pi>;
|
---|
309 |
|
---|
310 | =head2 ERRORS DUE TO DIVISION BY ZERO
|
---|
311 |
|
---|
312 | The following functions
|
---|
313 |
|
---|
314 | acoth
|
---|
315 | acsc
|
---|
316 | acsch
|
---|
317 | asec
|
---|
318 | asech
|
---|
319 | atanh
|
---|
320 | cot
|
---|
321 | coth
|
---|
322 | csc
|
---|
323 | csch
|
---|
324 | sec
|
---|
325 | sech
|
---|
326 | tan
|
---|
327 | tanh
|
---|
328 |
|
---|
329 | cannot be computed for all arguments because that would mean dividing
|
---|
330 | by zero or taking logarithm of zero. These situations cause fatal
|
---|
331 | runtime errors looking like this
|
---|
332 |
|
---|
333 | cot(0): Division by zero.
|
---|
334 | (Because in the definition of cot(0), the divisor sin(0) is 0)
|
---|
335 | Died at ...
|
---|
336 |
|
---|
337 | or
|
---|
338 |
|
---|
339 | atanh(-1): Logarithm of zero.
|
---|
340 | Died at...
|
---|
341 |
|
---|
342 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
|
---|
343 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
|
---|
344 | C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
|
---|
345 | C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
|
---|
346 | C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
|
---|
347 | pi>, where I<k> is any integer. atan2(0, 0) is undefined.
|
---|
348 |
|
---|
349 | =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
|
---|
350 |
|
---|
351 | Please note that some of the trigonometric functions can break out
|
---|
352 | from the B<real axis> into the B<complex plane>. For example
|
---|
353 | C<asin(2)> has no definition for plain real numbers but it has
|
---|
354 | definition for complex numbers.
|
---|
355 |
|
---|
356 | In Perl terms this means that supplying the usual Perl numbers (also
|
---|
357 | known as scalars, please see L<perldata>) as input for the
|
---|
358 | trigonometric functions might produce as output results that no more
|
---|
359 | are simple real numbers: instead they are complex numbers.
|
---|
360 |
|
---|
361 | The C<Math::Trig> handles this by using the C<Math::Complex> package
|
---|
362 | which knows how to handle complex numbers, please see L<Math::Complex>
|
---|
363 | for more information. In practice you need not to worry about getting
|
---|
364 | complex numbers as results because the C<Math::Complex> takes care of
|
---|
365 | details like for example how to display complex numbers. For example:
|
---|
366 |
|
---|
367 | print asin(2), "\n";
|
---|
368 |
|
---|
369 | should produce something like this (take or leave few last decimals):
|
---|
370 |
|
---|
371 | 1.5707963267949-1.31695789692482i
|
---|
372 |
|
---|
373 | That is, a complex number with the real part of approximately C<1.571>
|
---|
374 | and the imaginary part of approximately C<-1.317>.
|
---|
375 |
|
---|
376 | =head1 PLANE ANGLE CONVERSIONS
|
---|
377 |
|
---|
378 | (Plane, 2-dimensional) angles may be converted with the following functions.
|
---|
379 |
|
---|
380 | $radians = deg2rad($degrees);
|
---|
381 | $radians = grad2rad($gradians);
|
---|
382 |
|
---|
383 | $degrees = rad2deg($radians);
|
---|
384 | $degrees = grad2deg($gradians);
|
---|
385 |
|
---|
386 | $gradians = deg2grad($degrees);
|
---|
387 | $gradians = rad2grad($radians);
|
---|
388 |
|
---|
389 | The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
|
---|
390 | The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
|
---|
391 | If you don't want this, supply a true second argument:
|
---|
392 |
|
---|
393 | $zillions_of_radians = deg2rad($zillions_of_degrees, 1);
|
---|
394 | $negative_degrees = rad2deg($negative_radians, 1);
|
---|
395 |
|
---|
396 | You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
|
---|
397 | grad2grad().
|
---|
398 |
|
---|
399 | =head1 RADIAL COORDINATE CONVERSIONS
|
---|
400 |
|
---|
401 | B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
|
---|
402 | systems, explained shortly in more detail.
|
---|
403 |
|
---|
404 | You can import radial coordinate conversion functions by using the
|
---|
405 | C<:radial> tag:
|
---|
406 |
|
---|
407 | use Math::Trig ':radial';
|
---|
408 |
|
---|
409 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
|
---|
410 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
|
---|
411 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
|
---|
412 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
|
---|
413 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
|
---|
414 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
|
---|
415 |
|
---|
416 | B<All angles are in radians>.
|
---|
417 |
|
---|
418 | =head2 COORDINATE SYSTEMS
|
---|
419 |
|
---|
420 | B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates.
|
---|
421 |
|
---|
422 | Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
|
---|
423 | coordinates which define a point in three-dimensional space. They are
|
---|
424 | based on a sphere surface. The radius of the sphere is B<rho>, also
|
---|
425 | known as the I<radial> coordinate. The angle in the I<xy>-plane
|
---|
426 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
|
---|
427 | coordinate. The angle from the I<z>-axis is B<phi>, also known as the
|
---|
428 | I<polar> coordinate. The North Pole is therefore I<0, 0, rho>, and
|
---|
429 | the Gulf of Guinea (think of the missing big chunk of Africa) I<0,
|
---|
430 | pi/2, rho>. In geographical terms I<phi> is latitude (northward
|
---|
431 | positive, southward negative) and I<theta> is longitude (eastward
|
---|
432 | positive, westward negative).
|
---|
433 |
|
---|
434 | B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
|
---|
435 | some texts define the I<phi> to start from the horizontal plane, some
|
---|
436 | texts use I<r> in place of I<rho>.
|
---|
437 |
|
---|
438 | Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
|
---|
439 | coordinates which define a point in three-dimensional space. They are
|
---|
440 | based on a cylinder surface. The radius of the cylinder is B<rho>,
|
---|
441 | also known as the I<radial> coordinate. The angle in the I<xy>-plane
|
---|
442 | (around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
|
---|
443 | coordinate. The third coordinate is the I<z>, pointing up from the
|
---|
444 | B<theta>-plane.
|
---|
445 |
|
---|
446 | =head2 3-D ANGLE CONVERSIONS
|
---|
447 |
|
---|
448 | Conversions to and from spherical and cylindrical coordinates are
|
---|
449 | available. Please notice that the conversions are not necessarily
|
---|
450 | reversible because of the equalities like I<pi> angles being equal to
|
---|
451 | I<-pi> angles.
|
---|
452 |
|
---|
453 | =over 4
|
---|
454 |
|
---|
455 | =item cartesian_to_cylindrical
|
---|
456 |
|
---|
457 | ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
|
---|
458 |
|
---|
459 | =item cartesian_to_spherical
|
---|
460 |
|
---|
461 | ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
|
---|
462 |
|
---|
463 | =item cylindrical_to_cartesian
|
---|
464 |
|
---|
465 | ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
|
---|
466 |
|
---|
467 | =item cylindrical_to_spherical
|
---|
468 |
|
---|
469 | ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
|
---|
470 |
|
---|
471 | Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
|
---|
472 |
|
---|
473 | =item spherical_to_cartesian
|
---|
474 |
|
---|
475 | ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
|
---|
476 |
|
---|
477 | =item spherical_to_cylindrical
|
---|
478 |
|
---|
479 | ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
|
---|
480 |
|
---|
481 | Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
|
---|
482 |
|
---|
483 | =back
|
---|
484 |
|
---|
485 | =head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
|
---|
486 |
|
---|
487 | You can compute spherical distances, called B<great circle distances>,
|
---|
488 | by importing the great_circle_distance() function:
|
---|
489 |
|
---|
490 | use Math::Trig 'great_circle_distance';
|
---|
491 |
|
---|
492 | $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
|
---|
493 |
|
---|
494 | The I<great circle distance> is the shortest distance between two
|
---|
495 | points on a sphere. The distance is in C<$rho> units. The C<$rho> is
|
---|
496 | optional, it defaults to 1 (the unit sphere), therefore the distance
|
---|
497 | defaults to radians.
|
---|
498 |
|
---|
499 | If you think geographically the I<theta> are longitudes: zero at the
|
---|
500 | Greenwhich meridian, eastward positive, westward negative--and the
|
---|
501 | I<phi> are latitudes: zero at the North Pole, northward positive,
|
---|
502 | southward negative. B<NOTE>: this formula thinks in mathematics, not
|
---|
503 | geographically: the I<phi> zero is at the North Pole, not at the
|
---|
504 | Equator on the west coast of Africa (Bay of Guinea). You need to
|
---|
505 | subtract your geographical coordinates from I<pi/2> (also known as 90
|
---|
506 | degrees).
|
---|
507 |
|
---|
508 | $distance = great_circle_distance($lon0, pi/2 - $lat0,
|
---|
509 | $lon1, pi/2 - $lat1, $rho);
|
---|
510 |
|
---|
511 | The direction you must follow the great circle (also known as I<bearing>)
|
---|
512 | can be computed by the great_circle_direction() function:
|
---|
513 |
|
---|
514 | use Math::Trig 'great_circle_direction';
|
---|
515 |
|
---|
516 | $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
|
---|
517 |
|
---|
518 | (Alias 'great_circle_bearing' is also available.)
|
---|
519 | The result is in radians, zero indicating straight north, pi or -pi
|
---|
520 | straight south, pi/2 straight west, and -pi/2 straight east.
|
---|
521 |
|
---|
522 | You can inversely compute the destination if you know the
|
---|
523 | starting point, direction, and distance:
|
---|
524 |
|
---|
525 | use Math::Trig 'great_circle_destination';
|
---|
526 |
|
---|
527 | # thetad and phid are the destination coordinates,
|
---|
528 | # dird is the final direction at the destination.
|
---|
529 |
|
---|
530 | ($thetad, $phid, $dird) =
|
---|
531 | great_circle_destination($theta, $phi, $direction, $distance);
|
---|
532 |
|
---|
533 | or the midpoint if you know the end points:
|
---|
534 |
|
---|
535 | use Math::Trig 'great_circle_midpoint';
|
---|
536 |
|
---|
537 | ($thetam, $phim) =
|
---|
538 | great_circle_midpoint($theta0, $phi0, $theta1, $phi1);
|
---|
539 |
|
---|
540 | The great_circle_midpoint() is just a special case of
|
---|
541 |
|
---|
542 | use Math::Trig 'great_circle_waypoint';
|
---|
543 |
|
---|
544 | ($thetai, $phii) =
|
---|
545 | great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way);
|
---|
546 |
|
---|
547 | Where the $way is a value from zero ($theta0, $phi0) to one ($theta1,
|
---|
548 | $phi1). Note that antipodal points (where their distance is I<pi>
|
---|
549 | radians) do not have waypoints between them (they would have an an
|
---|
550 | "equator" between them), and therefore C<undef> is returned for
|
---|
551 | antipodal points. If the points are the same and the distance
|
---|
552 | therefore zero and all waypoints therefore identical, the first point
|
---|
553 | (either point) is returned.
|
---|
554 |
|
---|
555 | The thetas, phis, direction, and distance in the above are all in radians.
|
---|
556 |
|
---|
557 | You can import all the great circle formulas by
|
---|
558 |
|
---|
559 | use Math::Trig ':great_circle';
|
---|
560 |
|
---|
561 | Notice that the resulting directions might be somewhat surprising if
|
---|
562 | you are looking at a flat worldmap: in such map projections the great
|
---|
563 | circles quite often do not look like the shortest routes-- but for
|
---|
564 | example the shortest possible routes from Europe or North America to
|
---|
565 | Asia do often cross the polar regions.
|
---|
566 |
|
---|
567 | =head1 EXAMPLES
|
---|
568 |
|
---|
569 | To calculate the distance between London (51.3N 0.5W) and Tokyo
|
---|
570 | (35.7N 139.8E) in kilometers:
|
---|
571 |
|
---|
572 | use Math::Trig qw(great_circle_distance deg2rad);
|
---|
573 |
|
---|
574 | # Notice the 90 - latitude: phi zero is at the North Pole.
|
---|
575 | sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) }
|
---|
576 | my @L = NESW( -0.5, 51.3);
|
---|
577 | my @T = NESW(139.8, 35.7);
|
---|
578 | my $km = great_circle_distance(@L, @T, 6378); # About 9600 km.
|
---|
579 |
|
---|
580 | The direction you would have to go from London to Tokyo (in radians,
|
---|
581 | straight north being zero, straight east being pi/2).
|
---|
582 |
|
---|
583 | use Math::Trig qw(great_circle_direction);
|
---|
584 |
|
---|
585 | my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi.
|
---|
586 |
|
---|
587 | The midpoint between London and Tokyo being
|
---|
588 |
|
---|
589 | use Math::Trig qw(great_circle_midpoint);
|
---|
590 |
|
---|
591 | my @M = great_circle_midpoint(@L, @T);
|
---|
592 |
|
---|
593 | or about 68.11N 24.74E, in the Finnish Lapland.
|
---|
594 |
|
---|
595 | =head2 CAVEAT FOR GREAT CIRCLE FORMULAS
|
---|
596 |
|
---|
597 | The answers may be off by few percentages because of the irregular
|
---|
598 | (slightly aspherical) form of the Earth. The errors are at worst
|
---|
599 | about 0.55%, but generally below 0.3%.
|
---|
600 |
|
---|
601 | =head1 BUGS
|
---|
602 |
|
---|
603 | Saying C<use Math::Trig;> exports many mathematical routines in the
|
---|
604 | caller environment and even overrides some (C<sin>, C<cos>). This is
|
---|
605 | construed as a feature by the Authors, actually... ;-)
|
---|
606 |
|
---|
607 | The code is not optimized for speed, especially because we use
|
---|
608 | C<Math::Complex> and thus go quite near complex numbers while doing
|
---|
609 | the computations even when the arguments are not. This, however,
|
---|
610 | cannot be completely avoided if we want things like C<asin(2)> to give
|
---|
611 | an answer instead of giving a fatal runtime error.
|
---|
612 |
|
---|
613 | Do not attempt navigation using these formulas.
|
---|
614 |
|
---|
615 | =head1 AUTHORS
|
---|
616 |
|
---|
617 | Jarkko Hietaniemi <F<jhi@iki.fi>> and
|
---|
618 | Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>.
|
---|
619 |
|
---|
620 | =cut
|
---|
621 |
|
---|
622 | # eof
|
---|