[3181] | 1 | /* hv.c
|
---|
| 2 | *
|
---|
| 3 | * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
---|
| 4 | * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
|
---|
| 5 | *
|
---|
| 6 | * You may distribute under the terms of either the GNU General Public
|
---|
| 7 | * License or the Artistic License, as specified in the README file.
|
---|
| 8 | *
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /*
|
---|
| 12 | * "I sit beside the fire and think of all that I have seen." --Bilbo
|
---|
| 13 | */
|
---|
| 14 |
|
---|
| 15 | /*
|
---|
| 16 | =head1 Hash Manipulation Functions
|
---|
| 17 |
|
---|
| 18 | A HV structure represents a Perl hash. It consists mainly of an array
|
---|
| 19 | of pointers, each of which points to a linked list of HE structures. The
|
---|
| 20 | array is indexed by the hash function of the key, so each linked list
|
---|
| 21 | represents all the hash entries with the same hash value. Each HE contains
|
---|
| 22 | a pointer to the actual value, plus a pointer to a HEK structure which
|
---|
| 23 | holds the key and hash value.
|
---|
| 24 |
|
---|
| 25 | =cut
|
---|
| 26 |
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | #include "EXTERN.h"
|
---|
| 30 | #define PERL_IN_HV_C
|
---|
| 31 | #define PERL_HASH_INTERNAL_ACCESS
|
---|
| 32 | #include "perl.h"
|
---|
| 33 |
|
---|
| 34 | #define HV_MAX_LENGTH_BEFORE_SPLIT 14
|
---|
| 35 |
|
---|
| 36 | STATIC void
|
---|
| 37 | S_more_he(pTHX)
|
---|
| 38 | {
|
---|
| 39 | register HE* he;
|
---|
| 40 | register HE* heend;
|
---|
| 41 | XPV *ptr;
|
---|
| 42 | Newx(ptr, PERL_ARENA_SIZE/sizeof(XPV), XPV);
|
---|
| 43 | ptr->xpv_pv = (char*)PL_he_arenaroot;
|
---|
| 44 | PL_he_arenaroot = ptr;
|
---|
| 45 |
|
---|
| 46 | he = (HE*)ptr;
|
---|
| 47 | heend = &he[PERL_ARENA_SIZE / sizeof(HE) - 1];
|
---|
| 48 | PL_he_root = ++he;
|
---|
| 49 | while (he < heend) {
|
---|
| 50 | HeNEXT(he) = (HE*)(he + 1);
|
---|
| 51 | he++;
|
---|
| 52 | }
|
---|
| 53 | HeNEXT(he) = 0;
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | STATIC HE*
|
---|
| 57 | S_new_he(pTHX)
|
---|
| 58 | {
|
---|
| 59 | HE* he;
|
---|
| 60 | LOCK_SV_MUTEX;
|
---|
| 61 | if (!PL_he_root)
|
---|
| 62 | S_more_he(aTHX);
|
---|
| 63 | he = PL_he_root;
|
---|
| 64 | PL_he_root = HeNEXT(he);
|
---|
| 65 | UNLOCK_SV_MUTEX;
|
---|
| 66 | return he;
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | STATIC void
|
---|
| 70 | S_del_he(pTHX_ HE *p)
|
---|
| 71 | {
|
---|
| 72 | LOCK_SV_MUTEX;
|
---|
| 73 | HeNEXT(p) = (HE*)PL_he_root;
|
---|
| 74 | PL_he_root = p;
|
---|
| 75 | UNLOCK_SV_MUTEX;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | #ifdef PURIFY
|
---|
| 79 |
|
---|
| 80 | #define new_HE() (HE*)safemalloc(sizeof(HE))
|
---|
| 81 | #define del_HE(p) safefree((char*)p)
|
---|
| 82 |
|
---|
| 83 | #else
|
---|
| 84 |
|
---|
| 85 | #define new_HE() new_he()
|
---|
| 86 | #define del_HE(p) del_he(p)
|
---|
| 87 |
|
---|
| 88 | #endif
|
---|
| 89 |
|
---|
| 90 | STATIC HEK *
|
---|
| 91 | S_save_hek_flags(pTHX_ const char *str, I32 len, U32 hash, int flags)
|
---|
| 92 | {
|
---|
| 93 | const int flags_masked = flags & HVhek_MASK;
|
---|
| 94 | char *k;
|
---|
| 95 | register HEK *hek;
|
---|
| 96 |
|
---|
| 97 | Newx(k, HEK_BASESIZE + len + 2, char);
|
---|
| 98 | hek = (HEK*)k;
|
---|
| 99 | Copy(str, HEK_KEY(hek), len, char);
|
---|
| 100 | HEK_KEY(hek)[len] = 0;
|
---|
| 101 | HEK_LEN(hek) = len;
|
---|
| 102 | HEK_HASH(hek) = hash;
|
---|
| 103 | HEK_FLAGS(hek) = (unsigned char)flags_masked;
|
---|
| 104 |
|
---|
| 105 | if (flags & HVhek_FREEKEY)
|
---|
| 106 | Safefree(str);
|
---|
| 107 | return hek;
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | /* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
|
---|
| 111 | * for tied hashes */
|
---|
| 112 |
|
---|
| 113 | void
|
---|
| 114 | Perl_free_tied_hv_pool(pTHX)
|
---|
| 115 | {
|
---|
| 116 | HE *he = PL_hv_fetch_ent_mh;
|
---|
| 117 | while (he) {
|
---|
| 118 | HE * const ohe = he;
|
---|
| 119 | Safefree(HeKEY_hek(he));
|
---|
| 120 | he = HeNEXT(he);
|
---|
| 121 | del_HE(ohe);
|
---|
| 122 | }
|
---|
| 123 | PL_hv_fetch_ent_mh = Nullhe;
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | #if defined(USE_ITHREADS)
|
---|
| 127 | HE *
|
---|
| 128 | Perl_he_dup(pTHX_ HE *e, bool shared, CLONE_PARAMS* param)
|
---|
| 129 | {
|
---|
| 130 | HE *ret;
|
---|
| 131 |
|
---|
| 132 | if (!e)
|
---|
| 133 | return Nullhe;
|
---|
| 134 | /* look for it in the table first */
|
---|
| 135 | ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
|
---|
| 136 | if (ret)
|
---|
| 137 | return ret;
|
---|
| 138 |
|
---|
| 139 | /* create anew and remember what it is */
|
---|
| 140 | ret = new_HE();
|
---|
| 141 | ptr_table_store(PL_ptr_table, e, ret);
|
---|
| 142 |
|
---|
| 143 | HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
|
---|
| 144 | if (HeKLEN(e) == HEf_SVKEY) {
|
---|
| 145 | char *k;
|
---|
| 146 | Newx(k, HEK_BASESIZE + sizeof(SV*), char);
|
---|
| 147 | HeKEY_hek(ret) = (HEK*)k;
|
---|
| 148 | HeKEY_sv(ret) = SvREFCNT_inc(sv_dup(HeKEY_sv(e), param));
|
---|
| 149 | }
|
---|
| 150 | else if (shared)
|
---|
| 151 | HeKEY_hek(ret) = share_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
|
---|
| 152 | HeKFLAGS(e));
|
---|
| 153 | else
|
---|
| 154 | HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
|
---|
| 155 | HeKFLAGS(e));
|
---|
| 156 | HeVAL(ret) = SvREFCNT_inc(sv_dup(HeVAL(e), param));
|
---|
| 157 | return ret;
|
---|
| 158 | }
|
---|
| 159 | #endif /* USE_ITHREADS */
|
---|
| 160 |
|
---|
| 161 | static void
|
---|
| 162 | S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
|
---|
| 163 | const char *msg)
|
---|
| 164 | {
|
---|
| 165 | SV *sv = sv_newmortal();
|
---|
| 166 | if (!(flags & HVhek_FREEKEY)) {
|
---|
| 167 | sv_setpvn(sv, key, klen);
|
---|
| 168 | }
|
---|
| 169 | else {
|
---|
| 170 | /* Need to free saved eventually assign to mortal SV */
|
---|
| 171 | /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
|
---|
| 172 | sv_usepvn(sv, (char *) key, klen);
|
---|
| 173 | }
|
---|
| 174 | if (flags & HVhek_UTF8) {
|
---|
| 175 | SvUTF8_on(sv);
|
---|
| 176 | }
|
---|
| 177 | Perl_croak(aTHX_ msg, sv);
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | /* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
|
---|
| 181 | * contains an SV* */
|
---|
| 182 |
|
---|
| 183 | #define HV_FETCH_ISSTORE 0x01
|
---|
| 184 | #define HV_FETCH_ISEXISTS 0x02
|
---|
| 185 | #define HV_FETCH_LVALUE 0x04
|
---|
| 186 | #define HV_FETCH_JUST_SV 0x08
|
---|
| 187 |
|
---|
| 188 | /*
|
---|
| 189 | =for apidoc hv_store
|
---|
| 190 |
|
---|
| 191 | Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
|
---|
| 192 | the length of the key. The C<hash> parameter is the precomputed hash
|
---|
| 193 | value; if it is zero then Perl will compute it. The return value will be
|
---|
| 194 | NULL if the operation failed or if the value did not need to be actually
|
---|
| 195 | stored within the hash (as in the case of tied hashes). Otherwise it can
|
---|
| 196 | be dereferenced to get the original C<SV*>. Note that the caller is
|
---|
| 197 | responsible for suitably incrementing the reference count of C<val> before
|
---|
| 198 | the call, and decrementing it if the function returned NULL. Effectively
|
---|
| 199 | a successful hv_store takes ownership of one reference to C<val>. This is
|
---|
| 200 | usually what you want; a newly created SV has a reference count of one, so
|
---|
| 201 | if all your code does is create SVs then store them in a hash, hv_store
|
---|
| 202 | will own the only reference to the new SV, and your code doesn't need to do
|
---|
| 203 | anything further to tidy up. hv_store is not implemented as a call to
|
---|
| 204 | hv_store_ent, and does not create a temporary SV for the key, so if your
|
---|
| 205 | key data is not already in SV form then use hv_store in preference to
|
---|
| 206 | hv_store_ent.
|
---|
| 207 |
|
---|
| 208 | See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
|
---|
| 209 | information on how to use this function on tied hashes.
|
---|
| 210 |
|
---|
| 211 | =cut
|
---|
| 212 | */
|
---|
| 213 |
|
---|
| 214 | SV**
|
---|
| 215 | Perl_hv_store(pTHX_ HV *hv, const char *key, I32 klen_i32, SV *val, U32 hash)
|
---|
| 216 | {
|
---|
| 217 | HE *hek;
|
---|
| 218 | STRLEN klen;
|
---|
| 219 | int flags;
|
---|
| 220 |
|
---|
| 221 | if (klen_i32 < 0) {
|
---|
| 222 | klen = -klen_i32;
|
---|
| 223 | flags = HVhek_UTF8;
|
---|
| 224 | } else {
|
---|
| 225 | klen = klen_i32;
|
---|
| 226 | flags = 0;
|
---|
| 227 | }
|
---|
| 228 | hek = hv_fetch_common (hv, NULL, key, klen, flags,
|
---|
| 229 | (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), val, hash);
|
---|
| 230 | return hek ? &HeVAL(hek) : NULL;
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | SV**
|
---|
| 234 | Perl_hv_store_flags(pTHX_ HV *hv, const char *key, I32 klen, SV *val,
|
---|
| 235 | register U32 hash, int flags)
|
---|
| 236 | {
|
---|
| 237 | HE * const hek = hv_fetch_common (hv, NULL, key, klen, flags,
|
---|
| 238 | (HV_FETCH_ISSTORE|HV_FETCH_JUST_SV), val, hash);
|
---|
| 239 | return hek ? &HeVAL(hek) : NULL;
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | /*
|
---|
| 243 | =for apidoc hv_store_ent
|
---|
| 244 |
|
---|
| 245 | Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
|
---|
| 246 | parameter is the precomputed hash value; if it is zero then Perl will
|
---|
| 247 | compute it. The return value is the new hash entry so created. It will be
|
---|
| 248 | NULL if the operation failed or if the value did not need to be actually
|
---|
| 249 | stored within the hash (as in the case of tied hashes). Otherwise the
|
---|
| 250 | contents of the return value can be accessed using the C<He?> macros
|
---|
| 251 | described here. Note that the caller is responsible for suitably
|
---|
| 252 | incrementing the reference count of C<val> before the call, and
|
---|
| 253 | decrementing it if the function returned NULL. Effectively a successful
|
---|
| 254 | hv_store_ent takes ownership of one reference to C<val>. This is
|
---|
| 255 | usually what you want; a newly created SV has a reference count of one, so
|
---|
| 256 | if all your code does is create SVs then store them in a hash, hv_store
|
---|
| 257 | will own the only reference to the new SV, and your code doesn't need to do
|
---|
| 258 | anything further to tidy up. Note that hv_store_ent only reads the C<key>;
|
---|
| 259 | unlike C<val> it does not take ownership of it, so maintaining the correct
|
---|
| 260 | reference count on C<key> is entirely the caller's responsibility. hv_store
|
---|
| 261 | is not implemented as a call to hv_store_ent, and does not create a temporary
|
---|
| 262 | SV for the key, so if your key data is not already in SV form then use
|
---|
| 263 | hv_store in preference to hv_store_ent.
|
---|
| 264 |
|
---|
| 265 | See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
|
---|
| 266 | information on how to use this function on tied hashes.
|
---|
| 267 |
|
---|
| 268 | =cut
|
---|
| 269 | */
|
---|
| 270 |
|
---|
| 271 | HE *
|
---|
| 272 | Perl_hv_store_ent(pTHX_ HV *hv, SV *keysv, SV *val, U32 hash)
|
---|
| 273 | {
|
---|
| 274 | return hv_fetch_common(hv, keysv, NULL, 0, 0, HV_FETCH_ISSTORE, val, hash);
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | /*
|
---|
| 278 | =for apidoc hv_exists
|
---|
| 279 |
|
---|
| 280 | Returns a boolean indicating whether the specified hash key exists. The
|
---|
| 281 | C<klen> is the length of the key.
|
---|
| 282 |
|
---|
| 283 | =cut
|
---|
| 284 | */
|
---|
| 285 |
|
---|
| 286 | bool
|
---|
| 287 | Perl_hv_exists(pTHX_ HV *hv, const char *key, I32 klen_i32)
|
---|
| 288 | {
|
---|
| 289 | STRLEN klen;
|
---|
| 290 | int flags;
|
---|
| 291 |
|
---|
| 292 | if (klen_i32 < 0) {
|
---|
| 293 | klen = -klen_i32;
|
---|
| 294 | flags = HVhek_UTF8;
|
---|
| 295 | } else {
|
---|
| 296 | klen = klen_i32;
|
---|
| 297 | flags = 0;
|
---|
| 298 | }
|
---|
| 299 | return hv_fetch_common(hv, NULL, key, klen, flags, HV_FETCH_ISEXISTS, 0, 0)
|
---|
| 300 | ? TRUE : FALSE;
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | /*
|
---|
| 304 | =for apidoc hv_fetch
|
---|
| 305 |
|
---|
| 306 | Returns the SV which corresponds to the specified key in the hash. The
|
---|
| 307 | C<klen> is the length of the key. If C<lval> is set then the fetch will be
|
---|
| 308 | part of a store. Check that the return value is non-null before
|
---|
| 309 | dereferencing it to an C<SV*>.
|
---|
| 310 |
|
---|
| 311 | See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
|
---|
| 312 | information on how to use this function on tied hashes.
|
---|
| 313 |
|
---|
| 314 | =cut
|
---|
| 315 | */
|
---|
| 316 |
|
---|
| 317 | SV**
|
---|
| 318 | Perl_hv_fetch(pTHX_ HV *hv, const char *key, I32 klen_i32, I32 lval)
|
---|
| 319 | {
|
---|
| 320 | HE *hek;
|
---|
| 321 | STRLEN klen;
|
---|
| 322 | int flags;
|
---|
| 323 |
|
---|
| 324 | if (klen_i32 < 0) {
|
---|
| 325 | klen = -klen_i32;
|
---|
| 326 | flags = HVhek_UTF8;
|
---|
| 327 | } else {
|
---|
| 328 | klen = klen_i32;
|
---|
| 329 | flags = 0;
|
---|
| 330 | }
|
---|
| 331 | hek = hv_fetch_common (hv, NULL, key, klen, flags,
|
---|
| 332 | HV_FETCH_JUST_SV | (lval ? HV_FETCH_LVALUE : 0),
|
---|
| 333 | Nullsv, 0);
|
---|
| 334 | return hek ? &HeVAL(hek) : NULL;
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | /*
|
---|
| 338 | =for apidoc hv_exists_ent
|
---|
| 339 |
|
---|
| 340 | Returns a boolean indicating whether the specified hash key exists. C<hash>
|
---|
| 341 | can be a valid precomputed hash value, or 0 to ask for it to be
|
---|
| 342 | computed.
|
---|
| 343 |
|
---|
| 344 | =cut
|
---|
| 345 | */
|
---|
| 346 |
|
---|
| 347 | bool
|
---|
| 348 | Perl_hv_exists_ent(pTHX_ HV *hv, SV *keysv, U32 hash)
|
---|
| 349 | {
|
---|
| 350 | return hv_fetch_common(hv, keysv, NULL, 0, 0, HV_FETCH_ISEXISTS, 0, hash)
|
---|
| 351 | ? TRUE : FALSE;
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | /* returns an HE * structure with the all fields set */
|
---|
| 355 | /* note that hent_val will be a mortal sv for MAGICAL hashes */
|
---|
| 356 | /*
|
---|
| 357 | =for apidoc hv_fetch_ent
|
---|
| 358 |
|
---|
| 359 | Returns the hash entry which corresponds to the specified key in the hash.
|
---|
| 360 | C<hash> must be a valid precomputed hash number for the given C<key>, or 0
|
---|
| 361 | if you want the function to compute it. IF C<lval> is set then the fetch
|
---|
| 362 | will be part of a store. Make sure the return value is non-null before
|
---|
| 363 | accessing it. The return value when C<tb> is a tied hash is a pointer to a
|
---|
| 364 | static location, so be sure to make a copy of the structure if you need to
|
---|
| 365 | store it somewhere.
|
---|
| 366 |
|
---|
| 367 | See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
|
---|
| 368 | information on how to use this function on tied hashes.
|
---|
| 369 |
|
---|
| 370 | =cut
|
---|
| 371 | */
|
---|
| 372 |
|
---|
| 373 | HE *
|
---|
| 374 | Perl_hv_fetch_ent(pTHX_ HV *hv, SV *keysv, I32 lval, register U32 hash)
|
---|
| 375 | {
|
---|
| 376 | return hv_fetch_common(hv, keysv, NULL, 0, 0,
|
---|
| 377 | (lval ? HV_FETCH_LVALUE : 0), Nullsv, hash);
|
---|
| 378 | }
|
---|
| 379 |
|
---|
| 380 | STATIC HE *
|
---|
| 381 | S_hv_fetch_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
|
---|
| 382 | int flags, int action, SV *val, register U32 hash)
|
---|
| 383 | {
|
---|
| 384 | XPVHV* xhv;
|
---|
| 385 | HE *entry;
|
---|
| 386 | HE **oentry;
|
---|
| 387 | SV *sv;
|
---|
| 388 | bool is_utf8;
|
---|
| 389 | int masked_flags;
|
---|
| 390 |
|
---|
| 391 | if (!hv)
|
---|
| 392 | return 0;
|
---|
| 393 |
|
---|
| 394 | if (keysv) {
|
---|
| 395 | if (flags & HVhek_FREEKEY)
|
---|
| 396 | Safefree(key);
|
---|
| 397 | key = SvPV_const(keysv, klen);
|
---|
| 398 | flags = 0;
|
---|
| 399 | is_utf8 = (SvUTF8(keysv) != 0);
|
---|
| 400 | } else {
|
---|
| 401 | is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
|
---|
| 402 | }
|
---|
| 403 |
|
---|
| 404 | xhv = (XPVHV*)SvANY(hv);
|
---|
| 405 | if (SvMAGICAL(hv)) {
|
---|
| 406 | if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS)))
|
---|
| 407 | {
|
---|
| 408 | if (mg_find((SV*)hv, PERL_MAGIC_tied) || SvGMAGICAL((SV*)hv)) {
|
---|
| 409 | sv = sv_newmortal();
|
---|
| 410 |
|
---|
| 411 | /* XXX should be able to skimp on the HE/HEK here when
|
---|
| 412 | HV_FETCH_JUST_SV is true. */
|
---|
| 413 |
|
---|
| 414 | if (!keysv) {
|
---|
| 415 | keysv = newSVpvn(key, klen);
|
---|
| 416 | if (is_utf8) {
|
---|
| 417 | SvUTF8_on(keysv);
|
---|
| 418 | }
|
---|
| 419 | } else {
|
---|
| 420 | keysv = newSVsv(keysv);
|
---|
| 421 | }
|
---|
| 422 | mg_copy((SV*)hv, sv, (char *)keysv, HEf_SVKEY);
|
---|
| 423 |
|
---|
| 424 | /* grab a fake HE/HEK pair from the pool or make a new one */
|
---|
| 425 | entry = PL_hv_fetch_ent_mh;
|
---|
| 426 | if (entry)
|
---|
| 427 | PL_hv_fetch_ent_mh = HeNEXT(entry);
|
---|
| 428 | else {
|
---|
| 429 | char *k;
|
---|
| 430 | entry = new_HE();
|
---|
| 431 | Newx(k, HEK_BASESIZE + sizeof(SV*), char);
|
---|
| 432 | HeKEY_hek(entry) = (HEK*)k;
|
---|
| 433 | }
|
---|
| 434 | HeNEXT(entry) = Nullhe;
|
---|
| 435 | HeSVKEY_set(entry, keysv);
|
---|
| 436 | HeVAL(entry) = sv;
|
---|
| 437 | sv_upgrade(sv, SVt_PVLV);
|
---|
| 438 | LvTYPE(sv) = 'T';
|
---|
| 439 | /* so we can free entry when freeing sv */
|
---|
| 440 | LvTARG(sv) = (SV*)entry;
|
---|
| 441 |
|
---|
| 442 | /* XXX remove at some point? */
|
---|
| 443 | if (flags & HVhek_FREEKEY)
|
---|
| 444 | Safefree(key);
|
---|
| 445 |
|
---|
| 446 | return entry;
|
---|
| 447 | }
|
---|
| 448 | #ifdef ENV_IS_CASELESS
|
---|
| 449 | else if (mg_find((SV*)hv, PERL_MAGIC_env)) {
|
---|
| 450 | U32 i;
|
---|
| 451 | for (i = 0; i < klen; ++i)
|
---|
| 452 | if (isLOWER(key[i])) {
|
---|
| 453 | /* Would be nice if we had a routine to do the
|
---|
| 454 | copy and upercase in a single pass through. */
|
---|
| 455 | const char *nkey = strupr(savepvn(key,klen));
|
---|
| 456 | /* Note that this fetch is for nkey (the uppercased
|
---|
| 457 | key) whereas the store is for key (the original) */
|
---|
| 458 | entry = hv_fetch_common(hv, Nullsv, nkey, klen,
|
---|
| 459 | HVhek_FREEKEY, /* free nkey */
|
---|
| 460 | 0 /* non-LVAL fetch */,
|
---|
| 461 | Nullsv /* no value */,
|
---|
| 462 | 0 /* compute hash */);
|
---|
| 463 | if (!entry && (action & HV_FETCH_LVALUE)) {
|
---|
| 464 | /* This call will free key if necessary.
|
---|
| 465 | Do it this way to encourage compiler to tail
|
---|
| 466 | call optimise. */
|
---|
| 467 | entry = hv_fetch_common(hv, keysv, key, klen,
|
---|
| 468 | flags, HV_FETCH_ISSTORE,
|
---|
| 469 | NEWSV(61,0), hash);
|
---|
| 470 | } else {
|
---|
| 471 | if (flags & HVhek_FREEKEY)
|
---|
| 472 | Safefree(key);
|
---|
| 473 | }
|
---|
| 474 | return entry;
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 | #endif
|
---|
| 478 | } /* ISFETCH */
|
---|
| 479 | else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
|
---|
| 480 | if (mg_find((SV*)hv, PERL_MAGIC_tied) || SvGMAGICAL((SV*)hv)) {
|
---|
| 481 | /* I don't understand why hv_exists_ent has svret and sv,
|
---|
| 482 | whereas hv_exists only had one. */
|
---|
| 483 | SV * const svret = sv_newmortal();
|
---|
| 484 | sv = sv_newmortal();
|
---|
| 485 |
|
---|
| 486 | if (keysv || is_utf8) {
|
---|
| 487 | if (!keysv) {
|
---|
| 488 | keysv = newSVpvn(key, klen);
|
---|
| 489 | SvUTF8_on(keysv);
|
---|
| 490 | } else {
|
---|
| 491 | keysv = newSVsv(keysv);
|
---|
| 492 | }
|
---|
| 493 | mg_copy((SV*)hv, sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
|
---|
| 494 | } else {
|
---|
| 495 | mg_copy((SV*)hv, sv, key, klen);
|
---|
| 496 | }
|
---|
| 497 | if (flags & HVhek_FREEKEY)
|
---|
| 498 | Safefree(key);
|
---|
| 499 | magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
|
---|
| 500 | /* This cast somewhat evil, but I'm merely using NULL/
|
---|
| 501 | not NULL to return the boolean exists.
|
---|
| 502 | And I know hv is not NULL. */
|
---|
| 503 | return SvTRUE(svret) ? (HE *)hv : NULL;
|
---|
| 504 | }
|
---|
| 505 | #ifdef ENV_IS_CASELESS
|
---|
| 506 | else if (mg_find((SV*)hv, PERL_MAGIC_env)) {
|
---|
| 507 | /* XXX This code isn't UTF8 clean. */
|
---|
| 508 | char * const keysave = (char * const)key;
|
---|
| 509 | /* Will need to free this, so set FREEKEY flag. */
|
---|
| 510 | key = savepvn(key,klen);
|
---|
| 511 | key = (const char*)strupr((char*)key);
|
---|
| 512 | is_utf8 = 0;
|
---|
| 513 | hash = 0;
|
---|
| 514 | keysv = 0;
|
---|
| 515 |
|
---|
| 516 | if (flags & HVhek_FREEKEY) {
|
---|
| 517 | Safefree(keysave);
|
---|
| 518 | }
|
---|
| 519 | flags |= HVhek_FREEKEY;
|
---|
| 520 | }
|
---|
| 521 | #endif
|
---|
| 522 | } /* ISEXISTS */
|
---|
| 523 | else if (action & HV_FETCH_ISSTORE) {
|
---|
| 524 | bool needs_copy;
|
---|
| 525 | bool needs_store;
|
---|
| 526 | hv_magic_check (hv, &needs_copy, &needs_store);
|
---|
| 527 | if (needs_copy) {
|
---|
| 528 | const bool save_taint = PL_tainted;
|
---|
| 529 | if (keysv || is_utf8) {
|
---|
| 530 | if (!keysv) {
|
---|
| 531 | keysv = newSVpvn(key, klen);
|
---|
| 532 | SvUTF8_on(keysv);
|
---|
| 533 | }
|
---|
| 534 | if (PL_tainting)
|
---|
| 535 | PL_tainted = SvTAINTED(keysv);
|
---|
| 536 | keysv = sv_2mortal(newSVsv(keysv));
|
---|
| 537 | mg_copy((SV*)hv, val, (char*)keysv, HEf_SVKEY);
|
---|
| 538 | } else {
|
---|
| 539 | mg_copy((SV*)hv, val, key, klen);
|
---|
| 540 | }
|
---|
| 541 |
|
---|
| 542 | TAINT_IF(save_taint);
|
---|
| 543 | if (!xhv->xhv_array /* !HvARRAY(hv) */ && !needs_store) {
|
---|
| 544 | if (flags & HVhek_FREEKEY)
|
---|
| 545 | Safefree(key);
|
---|
| 546 | return Nullhe;
|
---|
| 547 | }
|
---|
| 548 | #ifdef ENV_IS_CASELESS
|
---|
| 549 | else if (mg_find((SV*)hv, PERL_MAGIC_env)) {
|
---|
| 550 | /* XXX This code isn't UTF8 clean. */
|
---|
| 551 | const char *keysave = key;
|
---|
| 552 | /* Will need to free this, so set FREEKEY flag. */
|
---|
| 553 | key = savepvn(key,klen);
|
---|
| 554 | key = (const char*)strupr((char*)key);
|
---|
| 555 | is_utf8 = 0;
|
---|
| 556 | hash = 0;
|
---|
| 557 | keysv = 0;
|
---|
| 558 |
|
---|
| 559 | if (flags & HVhek_FREEKEY) {
|
---|
| 560 | Safefree(keysave);
|
---|
| 561 | }
|
---|
| 562 | flags |= HVhek_FREEKEY;
|
---|
| 563 | }
|
---|
| 564 | #endif
|
---|
| 565 | }
|
---|
| 566 | } /* ISSTORE */
|
---|
| 567 | } /* SvMAGICAL */
|
---|
| 568 |
|
---|
| 569 | if (!xhv->xhv_array /* !HvARRAY(hv) */) {
|
---|
| 570 | if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
|
---|
| 571 | #ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
|
---|
| 572 | || (SvRMAGICAL((SV*)hv) && mg_find((SV*)hv, PERL_MAGIC_env))
|
---|
| 573 | #endif
|
---|
| 574 | ) {
|
---|
| 575 | char *array;
|
---|
| 576 | Newxz(array,
|
---|
| 577 | PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
|
---|
| 578 | char);
|
---|
| 579 | HvARRAY(hv) = (HE**)array;
|
---|
| 580 | }
|
---|
| 581 | #ifdef DYNAMIC_ENV_FETCH
|
---|
| 582 | else if (action & HV_FETCH_ISEXISTS) {
|
---|
| 583 | /* for an %ENV exists, if we do an insert it's by a recursive
|
---|
| 584 | store call, so avoid creating HvARRAY(hv) right now. */
|
---|
| 585 | }
|
---|
| 586 | #endif
|
---|
| 587 | else {
|
---|
| 588 | /* XXX remove at some point? */
|
---|
| 589 | if (flags & HVhek_FREEKEY)
|
---|
| 590 | Safefree(key);
|
---|
| 591 |
|
---|
| 592 | return 0;
|
---|
| 593 | }
|
---|
| 594 | }
|
---|
| 595 |
|
---|
| 596 | if (is_utf8) {
|
---|
| 597 | char * const keysave = (char * const)key;
|
---|
| 598 | key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
|
---|
| 599 | if (is_utf8)
|
---|
| 600 | flags |= HVhek_UTF8;
|
---|
| 601 | else
|
---|
| 602 | flags &= ~HVhek_UTF8;
|
---|
| 603 | if (key != keysave) {
|
---|
| 604 | if (flags & HVhek_FREEKEY)
|
---|
| 605 | Safefree(keysave);
|
---|
| 606 | flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
|
---|
| 607 | }
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 | if (HvREHASH(hv)) {
|
---|
| 611 | PERL_HASH_INTERNAL(hash, key, klen);
|
---|
| 612 | /* We don't have a pointer to the hv, so we have to replicate the
|
---|
| 613 | flag into every HEK, so that hv_iterkeysv can see it. */
|
---|
| 614 | /* And yes, you do need this even though you are not "storing" because
|
---|
| 615 | you can flip the flags below if doing an lval lookup. (And that
|
---|
| 616 | was put in to give the semantics Andreas was expecting.) */
|
---|
| 617 | flags |= HVhek_REHASH;
|
---|
| 618 | } else if (!hash) {
|
---|
| 619 | /* Not enough shared hash key scalars around to make this worthwhile
|
---|
| 620 | (about 4% slowdown in perlbench with this in)
|
---|
| 621 | if (keysv && (SvIsCOW_shared_hash(keysv))) {
|
---|
| 622 | hash = SvSHARED_HASH(keysv);
|
---|
| 623 | } else
|
---|
| 624 | */
|
---|
| 625 | {
|
---|
| 626 | PERL_HASH(hash, key, klen);
|
---|
| 627 | }
|
---|
| 628 | }
|
---|
| 629 |
|
---|
| 630 | masked_flags = (flags & HVhek_MASK);
|
---|
| 631 |
|
---|
| 632 | #ifdef DYNAMIC_ENV_FETCH
|
---|
| 633 | if (!xhv->xhv_array /* !HvARRAY(hv) */) entry = Null(HE*);
|
---|
| 634 | else
|
---|
| 635 | #endif
|
---|
| 636 | {
|
---|
| 637 | /* entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)]; */
|
---|
| 638 | entry = ((HE**)xhv->xhv_array)[hash & (I32) xhv->xhv_max];
|
---|
| 639 | }
|
---|
| 640 | for (; entry; entry = HeNEXT(entry)) {
|
---|
| 641 | if (!HeKEY_hek(entry))
|
---|
| 642 | continue;
|
---|
| 643 | if (HeHASH(entry) != hash) /* strings can't be equal */
|
---|
| 644 | continue;
|
---|
| 645 | if (HeKLEN(entry) != (I32)klen)
|
---|
| 646 | continue;
|
---|
| 647 | if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
|
---|
| 648 | continue;
|
---|
| 649 | if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
|
---|
| 650 | continue;
|
---|
| 651 |
|
---|
| 652 | if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
|
---|
| 653 | if (HeKFLAGS(entry) != masked_flags) {
|
---|
| 654 | /* We match if HVhek_UTF8 bit in our flags and hash key's
|
---|
| 655 | match. But if entry was set previously with HVhek_WASUTF8
|
---|
| 656 | and key now doesn't (or vice versa) then we should change
|
---|
| 657 | the key's flag, as this is assignment. */
|
---|
| 658 | if (HvSHAREKEYS(hv)) {
|
---|
| 659 | /* Need to swap the key we have for a key with the flags we
|
---|
| 660 | need. As keys are shared we can't just write to the
|
---|
| 661 | flag, so we share the new one, unshare the old one. */
|
---|
| 662 | HEK *new_hek = share_hek_flags(key, klen, hash,
|
---|
| 663 | masked_flags);
|
---|
| 664 | unshare_hek (HeKEY_hek(entry));
|
---|
| 665 | HeKEY_hek(entry) = new_hek;
|
---|
| 666 | }
|
---|
| 667 | else
|
---|
| 668 | HeKFLAGS(entry) = masked_flags;
|
---|
| 669 | if (masked_flags & HVhek_ENABLEHVKFLAGS)
|
---|
| 670 | HvHASKFLAGS_on(hv);
|
---|
| 671 | }
|
---|
| 672 | if (HeVAL(entry) == &PL_sv_placeholder) {
|
---|
| 673 | /* yes, can store into placeholder slot */
|
---|
| 674 | if (action & HV_FETCH_LVALUE) {
|
---|
| 675 | if (SvMAGICAL(hv)) {
|
---|
| 676 | /* This preserves behaviour with the old hv_fetch
|
---|
| 677 | implementation which at this point would bail out
|
---|
| 678 | with a break; (at "if we find a placeholder, we
|
---|
| 679 | pretend we haven't found anything")
|
---|
| 680 |
|
---|
| 681 | That break mean that if a placeholder were found, it
|
---|
| 682 | caused a call into hv_store, which in turn would
|
---|
| 683 | check magic, and if there is no magic end up pretty
|
---|
| 684 | much back at this point (in hv_store's code). */
|
---|
| 685 | break;
|
---|
| 686 | }
|
---|
| 687 | /* LVAL fetch which actaully needs a store. */
|
---|
| 688 | val = NEWSV(61,0);
|
---|
| 689 | xhv->xhv_placeholders--;
|
---|
| 690 | } else {
|
---|
| 691 | /* store */
|
---|
| 692 | if (val != &PL_sv_placeholder)
|
---|
| 693 | xhv->xhv_placeholders--;
|
---|
| 694 | }
|
---|
| 695 | HeVAL(entry) = val;
|
---|
| 696 | } else if (action & HV_FETCH_ISSTORE) {
|
---|
| 697 | SvREFCNT_dec(HeVAL(entry));
|
---|
| 698 | HeVAL(entry) = val;
|
---|
| 699 | }
|
---|
| 700 | } else if (HeVAL(entry) == &PL_sv_placeholder) {
|
---|
| 701 | /* if we find a placeholder, we pretend we haven't found
|
---|
| 702 | anything */
|
---|
| 703 | break;
|
---|
| 704 | }
|
---|
| 705 | if (flags & HVhek_FREEKEY)
|
---|
| 706 | Safefree(key);
|
---|
| 707 | return entry;
|
---|
| 708 | }
|
---|
| 709 | #ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
|
---|
| 710 | if (!(action & HV_FETCH_ISSTORE)
|
---|
| 711 | && SvRMAGICAL((SV*)hv) && mg_find((SV*)hv, PERL_MAGIC_env)) {
|
---|
| 712 | unsigned long len;
|
---|
| 713 | const char * const env = PerlEnv_ENVgetenv_len(key,&len);
|
---|
| 714 | if (env) {
|
---|
| 715 | sv = newSVpvn(env,len);
|
---|
| 716 | SvTAINTED_on(sv);
|
---|
| 717 | return hv_fetch_common(hv,keysv,key,klen,flags,HV_FETCH_ISSTORE,sv,
|
---|
| 718 | hash);
|
---|
| 719 | }
|
---|
| 720 | }
|
---|
| 721 | #endif
|
---|
| 722 |
|
---|
| 723 | if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
|
---|
| 724 | S_hv_notallowed(aTHX_ flags, key, klen,
|
---|
| 725 | "Attempt to access disallowed key '%"SVf"' in"
|
---|
| 726 | " a restricted hash");
|
---|
| 727 | }
|
---|
| 728 | if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
|
---|
| 729 | /* Not doing some form of store, so return failure. */
|
---|
| 730 | if (flags & HVhek_FREEKEY)
|
---|
| 731 | Safefree(key);
|
---|
| 732 | return 0;
|
---|
| 733 | }
|
---|
| 734 | if (action & HV_FETCH_LVALUE) {
|
---|
| 735 | val = NEWSV(61,0);
|
---|
| 736 | if (SvMAGICAL(hv)) {
|
---|
| 737 | /* At this point the old hv_fetch code would call to hv_store,
|
---|
| 738 | which in turn might do some tied magic. So we need to make that
|
---|
| 739 | magic check happen. */
|
---|
| 740 | /* gonna assign to this, so it better be there */
|
---|
| 741 | return hv_fetch_common(hv, keysv, key, klen, flags,
|
---|
| 742 | HV_FETCH_ISSTORE, val, hash);
|
---|
| 743 | /* XXX Surely that could leak if the fetch-was-store fails?
|
---|
| 744 | Just like the hv_fetch. */
|
---|
| 745 | }
|
---|
| 746 | }
|
---|
| 747 |
|
---|
| 748 | /* Welcome to hv_store... */
|
---|
| 749 |
|
---|
| 750 | if (!xhv->xhv_array) {
|
---|
| 751 | /* Not sure if we can get here. I think the only case of oentry being
|
---|
| 752 | NULL is for %ENV with dynamic env fetch. But that should disappear
|
---|
| 753 | with magic in the previous code. */
|
---|
| 754 | char *array;
|
---|
| 755 | Newxz(array,
|
---|
| 756 | PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
|
---|
| 757 | char);
|
---|
| 758 | HvARRAY(hv) = (HE**)array;
|
---|
| 759 | }
|
---|
| 760 |
|
---|
| 761 | oentry = &((HE**)xhv->xhv_array)[hash & (I32) xhv->xhv_max];
|
---|
| 762 |
|
---|
| 763 | entry = new_HE();
|
---|
| 764 | /* share_hek_flags will do the free for us. This might be considered
|
---|
| 765 | bad API design. */
|
---|
| 766 | if (HvSHAREKEYS(hv))
|
---|
| 767 | HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
|
---|
| 768 | else /* gotta do the real thing */
|
---|
| 769 | HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
|
---|
| 770 | HeVAL(entry) = val;
|
---|
| 771 | HeNEXT(entry) = *oentry;
|
---|
| 772 | *oentry = entry;
|
---|
| 773 |
|
---|
| 774 | if (val == &PL_sv_placeholder)
|
---|
| 775 | xhv->xhv_placeholders++;
|
---|
| 776 | if (masked_flags & HVhek_ENABLEHVKFLAGS)
|
---|
| 777 | HvHASKFLAGS_on(hv);
|
---|
| 778 |
|
---|
| 779 | {
|
---|
| 780 | const HE *counter = HeNEXT(entry);
|
---|
| 781 |
|
---|
| 782 | xhv->xhv_keys++; /* HvKEYS(hv)++ */
|
---|
| 783 | if (!counter) { /* initial entry? */
|
---|
| 784 | xhv->xhv_fill++; /* HvFILL(hv)++ */
|
---|
| 785 | } else if (xhv->xhv_keys > (IV)xhv->xhv_max) {
|
---|
| 786 | hsplit(hv);
|
---|
| 787 | } else if(!HvREHASH(hv)) {
|
---|
| 788 | U32 n_links = 1;
|
---|
| 789 |
|
---|
| 790 | while ((counter = HeNEXT(counter)))
|
---|
| 791 | n_links++;
|
---|
| 792 |
|
---|
| 793 | if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
|
---|
| 794 | /* Use only the old HvKEYS(hv) > HvMAX(hv) condition to limit
|
---|
| 795 | bucket splits on a rehashed hash, as we're not going to
|
---|
| 796 | split it again, and if someone is lucky (evil) enough to
|
---|
| 797 | get all the keys in one list they could exhaust our memory
|
---|
| 798 | as we repeatedly double the number of buckets on every
|
---|
| 799 | entry. Linear search feels a less worse thing to do. */
|
---|
| 800 | hsplit(hv);
|
---|
| 801 | }
|
---|
| 802 | }
|
---|
| 803 | }
|
---|
| 804 |
|
---|
| 805 | return entry;
|
---|
| 806 | }
|
---|
| 807 |
|
---|
| 808 | STATIC void
|
---|
| 809 | S_hv_magic_check(pTHX_ HV *hv, bool *needs_copy, bool *needs_store)
|
---|
| 810 | {
|
---|
| 811 | const MAGIC *mg = SvMAGIC(hv);
|
---|
| 812 | *needs_copy = FALSE;
|
---|
| 813 | *needs_store = TRUE;
|
---|
| 814 | while (mg) {
|
---|
| 815 | if (isUPPER(mg->mg_type)) {
|
---|
| 816 | *needs_copy = TRUE;
|
---|
| 817 | if (mg->mg_type == PERL_MAGIC_tied) {
|
---|
| 818 | *needs_store = FALSE;
|
---|
| 819 | return; /* We've set all there is to set. */
|
---|
| 820 | }
|
---|
| 821 | }
|
---|
| 822 | mg = mg->mg_moremagic;
|
---|
| 823 | }
|
---|
| 824 | }
|
---|
| 825 |
|
---|
| 826 | /*
|
---|
| 827 | =for apidoc hv_scalar
|
---|
| 828 |
|
---|
| 829 | Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
|
---|
| 830 |
|
---|
| 831 | =cut
|
---|
| 832 | */
|
---|
| 833 |
|
---|
| 834 | SV *
|
---|
| 835 | Perl_hv_scalar(pTHX_ HV *hv)
|
---|
| 836 | {
|
---|
| 837 | SV *sv;
|
---|
| 838 |
|
---|
| 839 | if (SvRMAGICAL(hv)) {
|
---|
| 840 | MAGIC * const mg = mg_find((SV*)hv, PERL_MAGIC_tied);
|
---|
| 841 | if (mg)
|
---|
| 842 | return magic_scalarpack(hv, mg);
|
---|
| 843 | }
|
---|
| 844 |
|
---|
| 845 | sv = sv_newmortal();
|
---|
| 846 | if (HvFILL((HV*)hv))
|
---|
| 847 | Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
|
---|
| 848 | (long)HvFILL(hv), (long)HvMAX(hv) + 1);
|
---|
| 849 | else
|
---|
| 850 | sv_setiv(sv, 0);
|
---|
| 851 |
|
---|
| 852 | return sv;
|
---|
| 853 | }
|
---|
| 854 |
|
---|
| 855 | /*
|
---|
| 856 | =for apidoc hv_delete
|
---|
| 857 |
|
---|
| 858 | Deletes a key/value pair in the hash. The value SV is removed from the
|
---|
| 859 | hash and returned to the caller. The C<klen> is the length of the key.
|
---|
| 860 | The C<flags> value will normally be zero; if set to G_DISCARD then NULL
|
---|
| 861 | will be returned.
|
---|
| 862 |
|
---|
| 863 | =cut
|
---|
| 864 | */
|
---|
| 865 |
|
---|
| 866 | SV *
|
---|
| 867 | Perl_hv_delete(pTHX_ HV *hv, const char *key, I32 klen_i32, I32 flags)
|
---|
| 868 | {
|
---|
| 869 | STRLEN klen;
|
---|
| 870 | int k_flags = 0;
|
---|
| 871 |
|
---|
| 872 | if (klen_i32 < 0) {
|
---|
| 873 | klen = -klen_i32;
|
---|
| 874 | k_flags |= HVhek_UTF8;
|
---|
| 875 | } else {
|
---|
| 876 | klen = klen_i32;
|
---|
| 877 | }
|
---|
| 878 | return hv_delete_common(hv, NULL, key, klen, k_flags, flags, 0);
|
---|
| 879 | }
|
---|
| 880 |
|
---|
| 881 | /*
|
---|
| 882 | =for apidoc hv_delete_ent
|
---|
| 883 |
|
---|
| 884 | Deletes a key/value pair in the hash. The value SV is removed from the
|
---|
| 885 | hash and returned to the caller. The C<flags> value will normally be zero;
|
---|
| 886 | if set to G_DISCARD then NULL will be returned. C<hash> can be a valid
|
---|
| 887 | precomputed hash value, or 0 to ask for it to be computed.
|
---|
| 888 |
|
---|
| 889 | =cut
|
---|
| 890 | */
|
---|
| 891 |
|
---|
| 892 | SV *
|
---|
| 893 | Perl_hv_delete_ent(pTHX_ HV *hv, SV *keysv, I32 flags, U32 hash)
|
---|
| 894 | {
|
---|
| 895 | return hv_delete_common(hv, keysv, NULL, 0, 0, flags, hash);
|
---|
| 896 | }
|
---|
| 897 |
|
---|
| 898 | STATIC SV *
|
---|
| 899 | S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
|
---|
| 900 | int k_flags, I32 d_flags, U32 hash)
|
---|
| 901 | {
|
---|
| 902 | register XPVHV* xhv;
|
---|
| 903 | register HE *entry;
|
---|
| 904 | register HE **oentry;
|
---|
| 905 | HE *const *first_entry;
|
---|
| 906 | SV *sv;
|
---|
| 907 | bool is_utf8;
|
---|
| 908 | int masked_flags;
|
---|
| 909 |
|
---|
| 910 | if (!hv)
|
---|
| 911 | return Nullsv;
|
---|
| 912 |
|
---|
| 913 | if (keysv) {
|
---|
| 914 | if (k_flags & HVhek_FREEKEY)
|
---|
| 915 | Safefree(key);
|
---|
| 916 | key = SvPV_const(keysv, klen);
|
---|
| 917 | k_flags = 0;
|
---|
| 918 | is_utf8 = (SvUTF8(keysv) != 0);
|
---|
| 919 | } else {
|
---|
| 920 | is_utf8 = ((k_flags & HVhek_UTF8) ? TRUE : FALSE);
|
---|
| 921 | }
|
---|
| 922 |
|
---|
| 923 | if (SvRMAGICAL(hv)) {
|
---|
| 924 | bool needs_copy;
|
---|
| 925 | bool needs_store;
|
---|
| 926 | hv_magic_check (hv, &needs_copy, &needs_store);
|
---|
| 927 |
|
---|
| 928 | if (needs_copy) {
|
---|
| 929 | entry = hv_fetch_common(hv, keysv, key, klen,
|
---|
| 930 | k_flags & ~HVhek_FREEKEY, HV_FETCH_LVALUE,
|
---|
| 931 | Nullsv, hash);
|
---|
| 932 | sv = entry ? HeVAL(entry) : NULL;
|
---|
| 933 | if (sv) {
|
---|
| 934 | if (SvMAGICAL(sv)) {
|
---|
| 935 | mg_clear(sv);
|
---|
| 936 | }
|
---|
| 937 | if (!needs_store) {
|
---|
| 938 | if (mg_find(sv, PERL_MAGIC_tiedelem)) {
|
---|
| 939 | /* No longer an element */
|
---|
| 940 | sv_unmagic(sv, PERL_MAGIC_tiedelem);
|
---|
| 941 | return sv;
|
---|
| 942 | }
|
---|
| 943 | return Nullsv; /* element cannot be deleted */
|
---|
| 944 | }
|
---|
| 945 | #ifdef ENV_IS_CASELESS
|
---|
| 946 | else if (mg_find((SV*)hv, PERL_MAGIC_env)) {
|
---|
| 947 | /* XXX This code isn't UTF8 clean. */
|
---|
| 948 | keysv = sv_2mortal(newSVpvn(key,klen));
|
---|
| 949 | if (k_flags & HVhek_FREEKEY) {
|
---|
| 950 | Safefree(key);
|
---|
| 951 | }
|
---|
| 952 | key = strupr(SvPVX(keysv));
|
---|
| 953 | is_utf8 = 0;
|
---|
| 954 | k_flags = 0;
|
---|
| 955 | hash = 0;
|
---|
| 956 | }
|
---|
| 957 | #endif
|
---|
| 958 | }
|
---|
| 959 | }
|
---|
| 960 | }
|
---|
| 961 | xhv = (XPVHV*)SvANY(hv);
|
---|
| 962 | if (!xhv->xhv_array /* !HvARRAY(hv) */)
|
---|
| 963 | return Nullsv;
|
---|
| 964 |
|
---|
| 965 | if (is_utf8) {
|
---|
| 966 | const char *keysave = key;
|
---|
| 967 | key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
|
---|
| 968 |
|
---|
| 969 | if (is_utf8)
|
---|
| 970 | k_flags |= HVhek_UTF8;
|
---|
| 971 | else
|
---|
| 972 | k_flags &= ~HVhek_UTF8;
|
---|
| 973 | if (key != keysave) {
|
---|
| 974 | if (k_flags & HVhek_FREEKEY) {
|
---|
| 975 | /* This shouldn't happen if our caller does what we expect,
|
---|
| 976 | but strictly the API allows it. */
|
---|
| 977 | Safefree(keysave);
|
---|
| 978 | }
|
---|
| 979 | k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
|
---|
| 980 | }
|
---|
| 981 | HvHASKFLAGS_on((SV*)hv);
|
---|
| 982 | }
|
---|
| 983 |
|
---|
| 984 | if (HvREHASH(hv)) {
|
---|
| 985 | PERL_HASH_INTERNAL(hash, key, klen);
|
---|
| 986 | } else if (!hash) {
|
---|
| 987 | /* Not enough shared hash key scalars around to make this worthwhile
|
---|
| 988 | (about 4% slowdown in perlbench with this in)
|
---|
| 989 | if (keysv && (SvIsCOW_shared_hash(keysv))) {
|
---|
| 990 | hash = SvSHARED_HASH(keysv);
|
---|
| 991 | } else
|
---|
| 992 | */
|
---|
| 993 | {
|
---|
| 994 | PERL_HASH(hash, key, klen);
|
---|
| 995 | }
|
---|
| 996 | }
|
---|
| 997 |
|
---|
| 998 | masked_flags = (k_flags & HVhek_MASK);
|
---|
| 999 |
|
---|
| 1000 | /* oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)]; */
|
---|
| 1001 | first_entry = oentry = &((HE**)xhv->xhv_array)[hash & (I32) xhv->xhv_max];
|
---|
| 1002 | entry = *oentry;
|
---|
| 1003 | for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
|
---|
| 1004 | if (HeHASH(entry) != hash) /* strings can't be equal */
|
---|
| 1005 | continue;
|
---|
| 1006 | if (HeKLEN(entry) != (I32)klen)
|
---|
| 1007 | continue;
|
---|
| 1008 | if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
|
---|
| 1009 | continue;
|
---|
| 1010 | if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
|
---|
| 1011 | continue;
|
---|
| 1012 |
|
---|
| 1013 | /* if placeholder is here, it's already been deleted.... */
|
---|
| 1014 | if (HeVAL(entry) == &PL_sv_placeholder)
|
---|
| 1015 | {
|
---|
| 1016 | if (k_flags & HVhek_FREEKEY)
|
---|
| 1017 | Safefree(key);
|
---|
| 1018 | return Nullsv;
|
---|
| 1019 | }
|
---|
| 1020 | else if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
|
---|
| 1021 | S_hv_notallowed(aTHX_ k_flags, key, klen,
|
---|
| 1022 | "Attempt to delete readonly key '%"SVf"' from"
|
---|
| 1023 | " a restricted hash");
|
---|
| 1024 | }
|
---|
| 1025 | if (k_flags & HVhek_FREEKEY)
|
---|
| 1026 | Safefree(key);
|
---|
| 1027 |
|
---|
| 1028 | if (d_flags & G_DISCARD)
|
---|
| 1029 | sv = Nullsv;
|
---|
| 1030 | else {
|
---|
| 1031 | sv = sv_2mortal(HeVAL(entry));
|
---|
| 1032 | HeVAL(entry) = &PL_sv_placeholder;
|
---|
| 1033 | }
|
---|
| 1034 |
|
---|
| 1035 | /*
|
---|
| 1036 | * If a restricted hash, rather than really deleting the entry, put
|
---|
| 1037 | * a placeholder there. This marks the key as being "approved", so
|
---|
| 1038 | * we can still access via not-really-existing key without raising
|
---|
| 1039 | * an error.
|
---|
| 1040 | */
|
---|
| 1041 | if (SvREADONLY(hv)) {
|
---|
| 1042 | SvREFCNT_dec(HeVAL(entry));
|
---|
| 1043 | HeVAL(entry) = &PL_sv_placeholder;
|
---|
| 1044 | /* We'll be saving this slot, so the number of allocated keys
|
---|
| 1045 | * doesn't go down, but the number placeholders goes up */
|
---|
| 1046 | xhv->xhv_placeholders++; /* HvPLACEHOLDERS(hv)++ */
|
---|
| 1047 | } else {
|
---|
| 1048 | *oentry = HeNEXT(entry);
|
---|
| 1049 | if(!*first_entry) {
|
---|
| 1050 | xhv->xhv_fill--; /* HvFILL(hv)-- */
|
---|
| 1051 | }
|
---|
| 1052 | if (entry == xhv->xhv_eiter /* HvEITER(hv) */)
|
---|
| 1053 | HvLAZYDEL_on(hv);
|
---|
| 1054 | else
|
---|
| 1055 | hv_free_ent(hv, entry);
|
---|
| 1056 | xhv->xhv_keys--; /* HvKEYS(hv)-- */
|
---|
| 1057 | if (xhv->xhv_keys == 0)
|
---|
| 1058 | HvHASKFLAGS_off(hv);
|
---|
| 1059 | }
|
---|
| 1060 | return sv;
|
---|
| 1061 | }
|
---|
| 1062 | if (SvREADONLY(hv)) {
|
---|
| 1063 | S_hv_notallowed(aTHX_ k_flags, key, klen,
|
---|
| 1064 | "Attempt to delete disallowed key '%"SVf"' from"
|
---|
| 1065 | " a restricted hash");
|
---|
| 1066 | }
|
---|
| 1067 |
|
---|
| 1068 | if (k_flags & HVhek_FREEKEY)
|
---|
| 1069 | Safefree(key);
|
---|
| 1070 | return Nullsv;
|
---|
| 1071 | }
|
---|
| 1072 |
|
---|
| 1073 | STATIC void
|
---|
| 1074 | S_hsplit(pTHX_ HV *hv)
|
---|
| 1075 | {
|
---|
| 1076 | register XPVHV* xhv = (XPVHV*)SvANY(hv);
|
---|
| 1077 | const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
|
---|
| 1078 | register I32 newsize = oldsize * 2;
|
---|
| 1079 | register I32 i;
|
---|
| 1080 | register char *a = xhv->xhv_array; /* HvARRAY(hv) */
|
---|
| 1081 | register HE **aep;
|
---|
| 1082 | register HE **oentry;
|
---|
| 1083 | int longest_chain = 0;
|
---|
| 1084 | int was_shared;
|
---|
| 1085 |
|
---|
| 1086 | /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
|
---|
| 1087 | hv, (int) oldsize);*/
|
---|
| 1088 |
|
---|
| 1089 | if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
|
---|
| 1090 | /* Can make this clear any placeholders first for non-restricted hashes,
|
---|
| 1091 | even though Storable rebuilds restricted hashes by putting in all the
|
---|
| 1092 | placeholders (first) before turning on the readonly flag, because
|
---|
| 1093 | Storable always pre-splits the hash. */
|
---|
| 1094 | hv_clear_placeholders(hv);
|
---|
| 1095 | }
|
---|
| 1096 |
|
---|
| 1097 | PL_nomemok = TRUE;
|
---|
| 1098 | #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
|
---|
| 1099 | Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
|
---|
| 1100 | if (!a) {
|
---|
| 1101 | PL_nomemok = FALSE;
|
---|
| 1102 | return;
|
---|
| 1103 | }
|
---|
| 1104 | #else
|
---|
| 1105 | Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
|
---|
| 1106 | if (!a) {
|
---|
| 1107 | PL_nomemok = FALSE;
|
---|
| 1108 | return;
|
---|
| 1109 | }
|
---|
| 1110 | Copy(xhv->xhv_array /* HvARRAY(hv) */, a, oldsize * sizeof(HE*), char);
|
---|
| 1111 | if (oldsize >= 64) {
|
---|
| 1112 | offer_nice_chunk(xhv->xhv_array /* HvARRAY(hv) */,
|
---|
| 1113 | PERL_HV_ARRAY_ALLOC_BYTES(oldsize));
|
---|
| 1114 | }
|
---|
| 1115 | else
|
---|
| 1116 | Safefree(xhv->xhv_array /* HvARRAY(hv) */);
|
---|
| 1117 | #endif
|
---|
| 1118 |
|
---|
| 1119 | PL_nomemok = FALSE;
|
---|
| 1120 | Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
|
---|
| 1121 | xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
|
---|
| 1122 | xhv->xhv_array = a; /* HvARRAY(hv) = a */
|
---|
| 1123 | aep = (HE**)a;
|
---|
| 1124 |
|
---|
| 1125 | for (i=0; i<oldsize; i++,aep++) {
|
---|
| 1126 | int left_length = 0;
|
---|
| 1127 | int right_length = 0;
|
---|
| 1128 | register HE *entry;
|
---|
| 1129 | register HE **bep;
|
---|
| 1130 |
|
---|
| 1131 | if (!*aep) /* non-existent */
|
---|
| 1132 | continue;
|
---|
| 1133 | bep = aep+oldsize;
|
---|
| 1134 | for (oentry = aep, entry = *aep; entry; entry = *oentry) {
|
---|
| 1135 | if ((HeHASH(entry) & newsize) != (U32)i) {
|
---|
| 1136 | *oentry = HeNEXT(entry);
|
---|
| 1137 | HeNEXT(entry) = *bep;
|
---|
| 1138 | if (!*bep)
|
---|
| 1139 | xhv->xhv_fill++; /* HvFILL(hv)++ */
|
---|
| 1140 | *bep = entry;
|
---|
| 1141 | right_length++;
|
---|
| 1142 | continue;
|
---|
| 1143 | }
|
---|
| 1144 | else {
|
---|
| 1145 | oentry = &HeNEXT(entry);
|
---|
| 1146 | left_length++;
|
---|
| 1147 | }
|
---|
| 1148 | }
|
---|
| 1149 | if (!*aep) /* everything moved */
|
---|
| 1150 | xhv->xhv_fill--; /* HvFILL(hv)-- */
|
---|
| 1151 | /* I think we don't actually need to keep track of the longest length,
|
---|
| 1152 | merely flag if anything is too long. But for the moment while
|
---|
| 1153 | developing this code I'll track it. */
|
---|
| 1154 | if (left_length > longest_chain)
|
---|
| 1155 | longest_chain = left_length;
|
---|
| 1156 | if (right_length > longest_chain)
|
---|
| 1157 | longest_chain = right_length;
|
---|
| 1158 | }
|
---|
| 1159 |
|
---|
| 1160 |
|
---|
| 1161 | /* Pick your policy for "hashing isn't working" here: */
|
---|
| 1162 | if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
|
---|
| 1163 | || HvREHASH(hv)) {
|
---|
| 1164 | return;
|
---|
| 1165 | }
|
---|
| 1166 |
|
---|
| 1167 | if (hv == PL_strtab) {
|
---|
| 1168 | /* Urg. Someone is doing something nasty to the string table.
|
---|
| 1169 | Can't win. */
|
---|
| 1170 | return;
|
---|
| 1171 | }
|
---|
| 1172 |
|
---|
| 1173 | /* Awooga. Awooga. Pathological data. */
|
---|
| 1174 | /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", hv,
|
---|
| 1175 | longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
|
---|
| 1176 |
|
---|
| 1177 | ++newsize;
|
---|
| 1178 | Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
|
---|
| 1179 | was_shared = HvSHAREKEYS(hv);
|
---|
| 1180 |
|
---|
| 1181 | xhv->xhv_fill = 0;
|
---|
| 1182 | HvSHAREKEYS_off(hv);
|
---|
| 1183 | HvREHASH_on(hv);
|
---|
| 1184 |
|
---|
| 1185 | aep = (HE **) xhv->xhv_array;
|
---|
| 1186 |
|
---|
| 1187 | for (i=0; i<newsize; i++,aep++) {
|
---|
| 1188 | register HE *entry = *aep;
|
---|
| 1189 | while (entry) {
|
---|
| 1190 | /* We're going to trash this HE's next pointer when we chain it
|
---|
| 1191 | into the new hash below, so store where we go next. */
|
---|
| 1192 | HE * const next = HeNEXT(entry);
|
---|
| 1193 | UV hash;
|
---|
| 1194 | HE **bep;
|
---|
| 1195 |
|
---|
| 1196 | /* Rehash it */
|
---|
| 1197 | PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
|
---|
| 1198 |
|
---|
| 1199 | if (was_shared) {
|
---|
| 1200 | /* Unshare it. */
|
---|
| 1201 | HEK * const new_hek
|
---|
| 1202 | = save_hek_flags(HeKEY(entry), HeKLEN(entry),
|
---|
| 1203 | hash, HeKFLAGS(entry));
|
---|
| 1204 | unshare_hek (HeKEY_hek(entry));
|
---|
| 1205 | HeKEY_hek(entry) = new_hek;
|
---|
| 1206 | } else {
|
---|
| 1207 | /* Not shared, so simply write the new hash in. */
|
---|
| 1208 | HeHASH(entry) = hash;
|
---|
| 1209 | }
|
---|
| 1210 | /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
|
---|
| 1211 | HEK_REHASH_on(HeKEY_hek(entry));
|
---|
| 1212 | /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
|
---|
| 1213 |
|
---|
| 1214 | /* Copy oentry to the correct new chain. */
|
---|
| 1215 | bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
|
---|
| 1216 | if (!*bep)
|
---|
| 1217 | xhv->xhv_fill++; /* HvFILL(hv)++ */
|
---|
| 1218 | HeNEXT(entry) = *bep;
|
---|
| 1219 | *bep = entry;
|
---|
| 1220 |
|
---|
| 1221 | entry = next;
|
---|
| 1222 | }
|
---|
| 1223 | }
|
---|
| 1224 | Safefree (xhv->xhv_array);
|
---|
| 1225 | xhv->xhv_array = a; /* HvARRAY(hv) = a */
|
---|
| 1226 | }
|
---|
| 1227 |
|
---|
| 1228 | void
|
---|
| 1229 | Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
|
---|
| 1230 | {
|
---|
| 1231 | register XPVHV* xhv = (XPVHV*)SvANY(hv);
|
---|
| 1232 | const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
|
---|
| 1233 | register I32 newsize;
|
---|
| 1234 | register I32 i;
|
---|
| 1235 | register char *a;
|
---|
| 1236 | register HE **aep;
|
---|
| 1237 | register HE *entry;
|
---|
| 1238 | register HE **oentry;
|
---|
| 1239 |
|
---|
| 1240 | newsize = (I32) newmax; /* possible truncation here */
|
---|
| 1241 | if (newsize != newmax || newmax <= oldsize)
|
---|
| 1242 | return;
|
---|
| 1243 | while ((newsize & (1 + ~newsize)) != newsize) {
|
---|
| 1244 | newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
|
---|
| 1245 | }
|
---|
| 1246 | if (newsize < newmax)
|
---|
| 1247 | newsize *= 2;
|
---|
| 1248 | if (newsize < newmax)
|
---|
| 1249 | return; /* overflow detection */
|
---|
| 1250 |
|
---|
| 1251 | a = xhv->xhv_array; /* HvARRAY(hv) */
|
---|
| 1252 | if (a) {
|
---|
| 1253 | PL_nomemok = TRUE;
|
---|
| 1254 | #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
|
---|
| 1255 | Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
|
---|
| 1256 | if (!a) {
|
---|
| 1257 | PL_nomemok = FALSE;
|
---|
| 1258 | return;
|
---|
| 1259 | }
|
---|
| 1260 | #else
|
---|
| 1261 | Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
|
---|
| 1262 | if (!a) {
|
---|
| 1263 | PL_nomemok = FALSE;
|
---|
| 1264 | return;
|
---|
| 1265 | }
|
---|
| 1266 | Copy(xhv->xhv_array /* HvARRAY(hv) */, a, oldsize * sizeof(HE*), char);
|
---|
| 1267 | if (oldsize >= 64) {
|
---|
| 1268 | offer_nice_chunk(xhv->xhv_array /* HvARRAY(hv) */,
|
---|
| 1269 | PERL_HV_ARRAY_ALLOC_BYTES(oldsize));
|
---|
| 1270 | }
|
---|
| 1271 | else
|
---|
| 1272 | Safefree(xhv->xhv_array /* HvARRAY(hv) */);
|
---|
| 1273 | #endif
|
---|
| 1274 | PL_nomemok = FALSE;
|
---|
| 1275 | Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
|
---|
| 1276 | }
|
---|
| 1277 | else {
|
---|
| 1278 | Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
|
---|
| 1279 | }
|
---|
| 1280 | xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
|
---|
| 1281 | xhv->xhv_array = a; /* HvARRAY(hv) = a */
|
---|
| 1282 | if (!xhv->xhv_fill /* !HvFILL(hv) */) /* skip rest if no entries */
|
---|
| 1283 | return;
|
---|
| 1284 |
|
---|
| 1285 | aep = (HE**)a;
|
---|
| 1286 | for (i=0; i<oldsize; i++,aep++) {
|
---|
| 1287 | if (!*aep) /* non-existent */
|
---|
| 1288 | continue;
|
---|
| 1289 | for (oentry = aep, entry = *aep; entry; entry = *oentry) {
|
---|
| 1290 | register I32 j;
|
---|
| 1291 | if ((j = (HeHASH(entry) & newsize)) != i) {
|
---|
| 1292 | j -= i;
|
---|
| 1293 | *oentry = HeNEXT(entry);
|
---|
| 1294 | if (!(HeNEXT(entry) = aep[j]))
|
---|
| 1295 | xhv->xhv_fill++; /* HvFILL(hv)++ */
|
---|
| 1296 | aep[j] = entry;
|
---|
| 1297 | continue;
|
---|
| 1298 | }
|
---|
| 1299 | else
|
---|
| 1300 | oentry = &HeNEXT(entry);
|
---|
| 1301 | }
|
---|
| 1302 | if (!*aep) /* everything moved */
|
---|
| 1303 | xhv->xhv_fill--; /* HvFILL(hv)-- */
|
---|
| 1304 | }
|
---|
| 1305 | }
|
---|
| 1306 |
|
---|
| 1307 | /*
|
---|
| 1308 | =for apidoc newHV
|
---|
| 1309 |
|
---|
| 1310 | Creates a new HV. The reference count is set to 1.
|
---|
| 1311 |
|
---|
| 1312 | =cut
|
---|
| 1313 | */
|
---|
| 1314 |
|
---|
| 1315 | HV *
|
---|
| 1316 | Perl_newHV(pTHX)
|
---|
| 1317 | {
|
---|
| 1318 | register XPVHV* xhv;
|
---|
| 1319 | HV * const hv = (HV*)NEWSV(502,0);
|
---|
| 1320 |
|
---|
| 1321 | sv_upgrade((SV *)hv, SVt_PVHV);
|
---|
| 1322 | xhv = (XPVHV*)SvANY(hv);
|
---|
| 1323 | SvPOK_off(hv);
|
---|
| 1324 | SvNOK_off(hv);
|
---|
| 1325 | #ifndef NODEFAULT_SHAREKEYS
|
---|
| 1326 | HvSHAREKEYS_on(hv); /* key-sharing on by default */
|
---|
| 1327 | #endif
|
---|
| 1328 |
|
---|
| 1329 | xhv->xhv_max = 7; /* HvMAX(hv) = 7 (start with 8 buckets) */
|
---|
| 1330 | xhv->xhv_fill = 0; /* HvFILL(hv) = 0 */
|
---|
| 1331 | xhv->xhv_pmroot = 0; /* HvPMROOT(hv) = 0 */
|
---|
| 1332 | (void)hv_iterinit(hv); /* so each() will start off right */
|
---|
| 1333 | return hv;
|
---|
| 1334 | }
|
---|
| 1335 |
|
---|
| 1336 | HV *
|
---|
| 1337 | Perl_newHVhv(pTHX_ HV *ohv)
|
---|
| 1338 | {
|
---|
| 1339 | HV * const hv = newHV();
|
---|
| 1340 | STRLEN hv_max, hv_fill;
|
---|
| 1341 |
|
---|
| 1342 | if (!ohv || (hv_fill = HvFILL(ohv)) == 0)
|
---|
| 1343 | return hv;
|
---|
| 1344 | hv_max = HvMAX(ohv);
|
---|
| 1345 |
|
---|
| 1346 | if (!SvMAGICAL((SV *)ohv)) {
|
---|
| 1347 | /* It's an ordinary hash, so copy it fast. AMS 20010804 */
|
---|
| 1348 | STRLEN i;
|
---|
| 1349 | const bool shared = !!HvSHAREKEYS(ohv);
|
---|
| 1350 | HE **ents, ** const oents = (HE **)HvARRAY(ohv);
|
---|
| 1351 | char *a;
|
---|
| 1352 | Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
|
---|
| 1353 | ents = (HE**)a;
|
---|
| 1354 |
|
---|
| 1355 | /* In each bucket... */
|
---|
| 1356 | for (i = 0; i <= hv_max; i++) {
|
---|
| 1357 | HE *prev = NULL, *ent = NULL;
|
---|
| 1358 | HE *oent = oents[i];
|
---|
| 1359 |
|
---|
| 1360 | if (!oent) {
|
---|
| 1361 | ents[i] = NULL;
|
---|
| 1362 | continue;
|
---|
| 1363 | }
|
---|
| 1364 |
|
---|
| 1365 | /* Copy the linked list of entries. */
|
---|
| 1366 | for (; oent; oent = HeNEXT(oent)) {
|
---|
| 1367 | const U32 hash = HeHASH(oent);
|
---|
| 1368 | const char * const key = HeKEY(oent);
|
---|
| 1369 | const STRLEN len = HeKLEN(oent);
|
---|
| 1370 | const int flags = HeKFLAGS(oent);
|
---|
| 1371 |
|
---|
| 1372 | ent = new_HE();
|
---|
| 1373 | HeVAL(ent) = newSVsv(HeVAL(oent));
|
---|
| 1374 | HeKEY_hek(ent)
|
---|
| 1375 | = shared ? share_hek_flags(key, len, hash, flags)
|
---|
| 1376 | : save_hek_flags(key, len, hash, flags);
|
---|
| 1377 | if (prev)
|
---|
| 1378 | HeNEXT(prev) = ent;
|
---|
| 1379 | else
|
---|
| 1380 | ents[i] = ent;
|
---|
| 1381 | prev = ent;
|
---|
| 1382 | HeNEXT(ent) = NULL;
|
---|
| 1383 | }
|
---|
| 1384 | }
|
---|
| 1385 |
|
---|
| 1386 | HvMAX(hv) = hv_max;
|
---|
| 1387 | HvFILL(hv) = hv_fill;
|
---|
| 1388 | HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
|
---|
| 1389 | HvARRAY(hv) = ents;
|
---|
| 1390 | } /* not magical */
|
---|
| 1391 | else {
|
---|
| 1392 | /* Iterate over ohv, copying keys and values one at a time. */
|
---|
| 1393 | HE *entry;
|
---|
| 1394 | const I32 riter = HvRITER_get(ohv);
|
---|
| 1395 | HE * const eiter = HvEITER_get(ohv);
|
---|
| 1396 |
|
---|
| 1397 | /* Can we use fewer buckets? (hv_max is always 2^n-1) */
|
---|
| 1398 | while (hv_max && hv_max + 1 >= hv_fill * 2)
|
---|
| 1399 | hv_max = hv_max / 2;
|
---|
| 1400 | HvMAX(hv) = hv_max;
|
---|
| 1401 |
|
---|
| 1402 | hv_iterinit(ohv);
|
---|
| 1403 | while ((entry = hv_iternext_flags(ohv, 0))) {
|
---|
| 1404 | hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
|
---|
| 1405 | newSVsv(HeVAL(entry)), HeHASH(entry),
|
---|
| 1406 | HeKFLAGS(entry));
|
---|
| 1407 | }
|
---|
| 1408 | HvRITER_set(ohv, riter);
|
---|
| 1409 | HvEITER_set(ohv, eiter);
|
---|
| 1410 | }
|
---|
| 1411 |
|
---|
| 1412 | return hv;
|
---|
| 1413 | }
|
---|
| 1414 |
|
---|
| 1415 | void
|
---|
| 1416 | Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
|
---|
| 1417 | {
|
---|
| 1418 | SV *val;
|
---|
| 1419 |
|
---|
| 1420 | if (!entry)
|
---|
| 1421 | return;
|
---|
| 1422 | val = HeVAL(entry);
|
---|
| 1423 | if (val && isGV(val) && GvCVu(val) && HvNAME_get(hv))
|
---|
| 1424 | PL_sub_generation++; /* may be deletion of method from stash */
|
---|
| 1425 | SvREFCNT_dec(val);
|
---|
| 1426 | if (HeKLEN(entry) == HEf_SVKEY) {
|
---|
| 1427 | SvREFCNT_dec(HeKEY_sv(entry));
|
---|
| 1428 | Safefree(HeKEY_hek(entry));
|
---|
| 1429 | }
|
---|
| 1430 | else if (HvSHAREKEYS(hv))
|
---|
| 1431 | unshare_hek(HeKEY_hek(entry));
|
---|
| 1432 | else
|
---|
| 1433 | Safefree(HeKEY_hek(entry));
|
---|
| 1434 | del_HE(entry);
|
---|
| 1435 | }
|
---|
| 1436 |
|
---|
| 1437 | void
|
---|
| 1438 | Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
|
---|
| 1439 | {
|
---|
| 1440 | if (!entry)
|
---|
| 1441 | return;
|
---|
| 1442 | /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
|
---|
| 1443 | sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
|
---|
| 1444 | if (HeKLEN(entry) == HEf_SVKEY) {
|
---|
| 1445 | sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
|
---|
| 1446 | }
|
---|
| 1447 | hv_free_ent(hv, entry);
|
---|
| 1448 | }
|
---|
| 1449 |
|
---|
| 1450 | /*
|
---|
| 1451 | =for apidoc hv_clear
|
---|
| 1452 |
|
---|
| 1453 | Clears a hash, making it empty.
|
---|
| 1454 |
|
---|
| 1455 | =cut
|
---|
| 1456 | */
|
---|
| 1457 |
|
---|
| 1458 | void
|
---|
| 1459 | Perl_hv_clear(pTHX_ HV *hv)
|
---|
| 1460 | {
|
---|
| 1461 | register XPVHV* xhv;
|
---|
| 1462 | if (!hv)
|
---|
| 1463 | return;
|
---|
| 1464 |
|
---|
| 1465 | xhv = (XPVHV*)SvANY(hv);
|
---|
| 1466 |
|
---|
| 1467 | if (SvREADONLY(hv) && xhv->xhv_array != NULL) {
|
---|
| 1468 | /* restricted hash: convert all keys to placeholders */
|
---|
| 1469 | STRLEN i;
|
---|
| 1470 | for (i = 0; i <= xhv->xhv_max; i++) {
|
---|
| 1471 | HE *entry = ((HE**)xhv->xhv_array)[i];
|
---|
| 1472 | for (; entry; entry = HeNEXT(entry)) {
|
---|
| 1473 | /* not already placeholder */
|
---|
| 1474 | if (HeVAL(entry) != &PL_sv_placeholder) {
|
---|
| 1475 | if (HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
|
---|
| 1476 | SV* keysv = hv_iterkeysv(entry);
|
---|
| 1477 | Perl_croak(aTHX_
|
---|
| 1478 | "Attempt to delete readonly key '%"SVf"' from a restricted hash",
|
---|
| 1479 | keysv);
|
---|
| 1480 | }
|
---|
| 1481 | SvREFCNT_dec(HeVAL(entry));
|
---|
| 1482 | HeVAL(entry) = &PL_sv_placeholder;
|
---|
| 1483 | xhv->xhv_placeholders++; /* HvPLACEHOLDERS(hv)++ */
|
---|
| 1484 | }
|
---|
| 1485 | }
|
---|
| 1486 | }
|
---|
| 1487 | goto reset;
|
---|
| 1488 | }
|
---|
| 1489 |
|
---|
| 1490 | hfreeentries(hv);
|
---|
| 1491 | xhv->xhv_placeholders = 0; /* HvPLACEHOLDERS(hv) = 0 */
|
---|
| 1492 | if (xhv->xhv_array /* HvARRAY(hv) */)
|
---|
| 1493 | (void)memzero(xhv->xhv_array /* HvARRAY(hv) */,
|
---|
| 1494 | (xhv->xhv_max+1 /* HvMAX(hv)+1 */) * sizeof(HE*));
|
---|
| 1495 |
|
---|
| 1496 | if (SvRMAGICAL(hv))
|
---|
| 1497 | mg_clear((SV*)hv);
|
---|
| 1498 |
|
---|
| 1499 | HvHASKFLAGS_off(hv);
|
---|
| 1500 | HvREHASH_off(hv);
|
---|
| 1501 | reset:
|
---|
| 1502 | HvEITER_set(hv, NULL);
|
---|
| 1503 | }
|
---|
| 1504 |
|
---|
| 1505 | /*
|
---|
| 1506 | =for apidoc hv_clear_placeholders
|
---|
| 1507 |
|
---|
| 1508 | Clears any placeholders from a hash. If a restricted hash has any of its keys
|
---|
| 1509 | marked as readonly and the key is subsequently deleted, the key is not actually
|
---|
| 1510 | deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
|
---|
| 1511 | it so it will be ignored by future operations such as iterating over the hash,
|
---|
| 1512 | but will still allow the hash to have a value reassigned to the key at some
|
---|
| 1513 | future point. This function clears any such placeholder keys from the hash.
|
---|
| 1514 | See Hash::Util::lock_keys() for an example of its use.
|
---|
| 1515 |
|
---|
| 1516 | =cut
|
---|
| 1517 | */
|
---|
| 1518 |
|
---|
| 1519 | void
|
---|
| 1520 | Perl_hv_clear_placeholders(pTHX_ HV *hv)
|
---|
| 1521 | {
|
---|
| 1522 | I32 items = (I32)HvPLACEHOLDERS_get(hv);
|
---|
| 1523 | I32 i;
|
---|
| 1524 |
|
---|
| 1525 | if (items == 0)
|
---|
| 1526 | return;
|
---|
| 1527 |
|
---|
| 1528 | i = HvMAX(hv);
|
---|
| 1529 | do {
|
---|
| 1530 | /* Loop down the linked list heads */
|
---|
| 1531 | bool first = 1;
|
---|
| 1532 | HE **oentry = &(HvARRAY(hv))[i];
|
---|
| 1533 | HE *entry = *oentry;
|
---|
| 1534 |
|
---|
| 1535 | if (!entry)
|
---|
| 1536 | continue;
|
---|
| 1537 |
|
---|
| 1538 | for (; entry; entry = *oentry) {
|
---|
| 1539 | if (HeVAL(entry) == &PL_sv_placeholder) {
|
---|
| 1540 | *oentry = HeNEXT(entry);
|
---|
| 1541 | if (first && !*oentry)
|
---|
| 1542 | HvFILL(hv)--; /* This linked list is now empty. */
|
---|
| 1543 | if (entry == HvEITER_get(hv))
|
---|
| 1544 | HvLAZYDEL_on(hv);
|
---|
| 1545 | else
|
---|
| 1546 | hv_free_ent(hv, entry);
|
---|
| 1547 |
|
---|
| 1548 | if (--items == 0) {
|
---|
| 1549 | /* Finished. */
|
---|
| 1550 | HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
|
---|
| 1551 | if (HvKEYS(hv) == 0)
|
---|
| 1552 | HvHASKFLAGS_off(hv);
|
---|
| 1553 | HvPLACEHOLDERS_set(hv, 0);
|
---|
| 1554 | return;
|
---|
| 1555 | }
|
---|
| 1556 | } else {
|
---|
| 1557 | oentry = &HeNEXT(entry);
|
---|
| 1558 | first = 0;
|
---|
| 1559 | }
|
---|
| 1560 | }
|
---|
| 1561 | } while (--i >= 0);
|
---|
| 1562 | /* You can't get here, hence assertion should always fail. */
|
---|
| 1563 | assert (items == 0);
|
---|
| 1564 | assert (0);
|
---|
| 1565 | }
|
---|
| 1566 |
|
---|
| 1567 | STATIC void
|
---|
| 1568 | S_hfreeentries(pTHX_ HV *hv)
|
---|
| 1569 | {
|
---|
| 1570 | register HE **array;
|
---|
| 1571 | register HE *entry;
|
---|
| 1572 | I32 riter;
|
---|
| 1573 | I32 max;
|
---|
| 1574 |
|
---|
| 1575 |
|
---|
| 1576 | if (!HvARRAY(hv))
|
---|
| 1577 | return;
|
---|
| 1578 |
|
---|
| 1579 | riter = 0;
|
---|
| 1580 | max = HvMAX(hv);
|
---|
| 1581 | array = HvARRAY(hv);
|
---|
| 1582 | /* make everyone else think the array is empty, so that the destructors
|
---|
| 1583 | * called for freed entries can't recusively mess with us */
|
---|
| 1584 | HvARRAY(hv) = Null(HE**);
|
---|
| 1585 | HvFILL(hv) = 0;
|
---|
| 1586 | ((XPVHV*) SvANY(hv))->xhv_keys = 0;
|
---|
| 1587 |
|
---|
| 1588 | entry = array[0];
|
---|
| 1589 | for (;;) {
|
---|
| 1590 | if (entry) {
|
---|
| 1591 | register HE * const oentry = entry;
|
---|
| 1592 | entry = HeNEXT(entry);
|
---|
| 1593 | hv_free_ent(hv, oentry);
|
---|
| 1594 | }
|
---|
| 1595 | if (!entry) {
|
---|
| 1596 | if (++riter > max)
|
---|
| 1597 | break;
|
---|
| 1598 | entry = array[riter];
|
---|
| 1599 | }
|
---|
| 1600 | }
|
---|
| 1601 | HvARRAY(hv) = array;
|
---|
| 1602 | (void)hv_iterinit(hv);
|
---|
| 1603 | }
|
---|
| 1604 |
|
---|
| 1605 | /*
|
---|
| 1606 | =for apidoc hv_undef
|
---|
| 1607 |
|
---|
| 1608 | Undefines the hash.
|
---|
| 1609 |
|
---|
| 1610 | =cut
|
---|
| 1611 | */
|
---|
| 1612 |
|
---|
| 1613 | void
|
---|
| 1614 | Perl_hv_undef(pTHX_ HV *hv)
|
---|
| 1615 | {
|
---|
| 1616 | register XPVHV* xhv;
|
---|
| 1617 | const char *name;
|
---|
| 1618 | if (!hv)
|
---|
| 1619 | return;
|
---|
| 1620 | xhv = (XPVHV*)SvANY(hv);
|
---|
| 1621 | hfreeentries(hv);
|
---|
| 1622 | Safefree(xhv->xhv_array /* HvARRAY(hv) */);
|
---|
| 1623 | if ((name = HvNAME_get(hv))) {
|
---|
| 1624 | /* FIXME - strlen HvNAME */
|
---|
| 1625 | if(PL_stashcache)
|
---|
| 1626 | hv_delete(PL_stashcache, name, strlen(name), G_DISCARD);
|
---|
| 1627 | hv_name_set(hv, Nullch, 0, 0);
|
---|
| 1628 | }
|
---|
| 1629 | xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
|
---|
| 1630 | xhv->xhv_array = 0; /* HvARRAY(hv) = 0 */
|
---|
| 1631 | xhv->xhv_placeholders = 0; /* HvPLACEHOLDERS(hv) = 0 */
|
---|
| 1632 |
|
---|
| 1633 | if (SvRMAGICAL(hv))
|
---|
| 1634 | mg_clear((SV*)hv);
|
---|
| 1635 | }
|
---|
| 1636 |
|
---|
| 1637 | /*
|
---|
| 1638 | =for apidoc hv_iterinit
|
---|
| 1639 |
|
---|
| 1640 | Prepares a starting point to traverse a hash table. Returns the number of
|
---|
| 1641 | keys in the hash (i.e. the same as C<HvKEYS(tb)>). The return value is
|
---|
| 1642 | currently only meaningful for hashes without tie magic.
|
---|
| 1643 |
|
---|
| 1644 | NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
|
---|
| 1645 | hash buckets that happen to be in use. If you still need that esoteric
|
---|
| 1646 | value, you can get it through the macro C<HvFILL(tb)>.
|
---|
| 1647 |
|
---|
| 1648 |
|
---|
| 1649 | =cut
|
---|
| 1650 | */
|
---|
| 1651 |
|
---|
| 1652 | I32
|
---|
| 1653 | Perl_hv_iterinit(pTHX_ HV *hv)
|
---|
| 1654 | {
|
---|
| 1655 | register XPVHV* xhv;
|
---|
| 1656 | HE *entry;
|
---|
| 1657 |
|
---|
| 1658 | if (!hv)
|
---|
| 1659 | Perl_croak(aTHX_ "Bad hash");
|
---|
| 1660 | xhv = (XPVHV*)SvANY(hv);
|
---|
| 1661 | entry = xhv->xhv_eiter; /* HvEITER(hv) */
|
---|
| 1662 | if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
|
---|
| 1663 | HvLAZYDEL_off(hv);
|
---|
| 1664 | hv_free_ent(hv, entry);
|
---|
| 1665 | }
|
---|
| 1666 | xhv->xhv_riter = -1; /* HvRITER(hv) = -1 */
|
---|
| 1667 | xhv->xhv_eiter = Null(HE*); /* HvEITER(hv) = Null(HE*) */
|
---|
| 1668 | /* used to be xhv->xhv_fill before 5.004_65 */
|
---|
| 1669 | return HvTOTALKEYS(hv);
|
---|
| 1670 | }
|
---|
| 1671 | /*
|
---|
| 1672 | =for apidoc hv_iternext
|
---|
| 1673 |
|
---|
| 1674 | Returns entries from a hash iterator. See C<hv_iterinit>.
|
---|
| 1675 |
|
---|
| 1676 | You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
|
---|
| 1677 | iterator currently points to, without losing your place or invalidating your
|
---|
| 1678 | iterator. Note that in this case the current entry is deleted from the hash
|
---|
| 1679 | with your iterator holding the last reference to it. Your iterator is flagged
|
---|
| 1680 | to free the entry on the next call to C<hv_iternext>, so you must not discard
|
---|
| 1681 | your iterator immediately else the entry will leak - call C<hv_iternext> to
|
---|
| 1682 | trigger the resource deallocation.
|
---|
| 1683 |
|
---|
| 1684 | =cut
|
---|
| 1685 | */
|
---|
| 1686 |
|
---|
| 1687 | HE *
|
---|
| 1688 | Perl_hv_iternext(pTHX_ HV *hv)
|
---|
| 1689 | {
|
---|
| 1690 | return hv_iternext_flags(hv, 0);
|
---|
| 1691 | }
|
---|
| 1692 |
|
---|
| 1693 | /*
|
---|
| 1694 | =for apidoc hv_iternext_flags
|
---|
| 1695 |
|
---|
| 1696 | Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
|
---|
| 1697 | The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
|
---|
| 1698 | set the placeholders keys (for restricted hashes) will be returned in addition
|
---|
| 1699 | to normal keys. By default placeholders are automatically skipped over.
|
---|
| 1700 | Currently a placeholder is implemented with a value that is
|
---|
| 1701 | C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
|
---|
| 1702 | restricted hashes may change, and the implementation currently is
|
---|
| 1703 | insufficiently abstracted for any change to be tidy.
|
---|
| 1704 |
|
---|
| 1705 | =cut
|
---|
| 1706 | */
|
---|
| 1707 |
|
---|
| 1708 | HE *
|
---|
| 1709 | Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
|
---|
| 1710 | {
|
---|
| 1711 | register XPVHV* xhv;
|
---|
| 1712 | register HE *entry;
|
---|
| 1713 | HE *oldentry;
|
---|
| 1714 | MAGIC* mg;
|
---|
| 1715 |
|
---|
| 1716 | if (!hv)
|
---|
| 1717 | Perl_croak(aTHX_ "Bad hash");
|
---|
| 1718 | xhv = (XPVHV*)SvANY(hv);
|
---|
| 1719 | oldentry = entry = xhv->xhv_eiter; /* HvEITER(hv) */
|
---|
| 1720 |
|
---|
| 1721 | if ((mg = SvTIED_mg((SV*)hv, PERL_MAGIC_tied))) {
|
---|
| 1722 | SV *key = sv_newmortal();
|
---|
| 1723 | if (entry) {
|
---|
| 1724 | sv_setsv(key, HeSVKEY_force(entry));
|
---|
| 1725 | SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
|
---|
| 1726 | }
|
---|
| 1727 | else {
|
---|
| 1728 | char *k;
|
---|
| 1729 | HEK *hek;
|
---|
| 1730 |
|
---|
| 1731 | /* one HE per MAGICAL hash */
|
---|
| 1732 | xhv->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
|
---|
| 1733 | Zero(entry, 1, HE);
|
---|
| 1734 | Newxz(k, HEK_BASESIZE + sizeof(SV*), char);
|
---|
| 1735 | hek = (HEK*)k;
|
---|
| 1736 | HeKEY_hek(entry) = hek;
|
---|
| 1737 | HeKLEN(entry) = HEf_SVKEY;
|
---|
| 1738 | }
|
---|
| 1739 | magic_nextpack((SV*) hv,mg,key);
|
---|
| 1740 | if (SvOK(key)) {
|
---|
| 1741 | /* force key to stay around until next time */
|
---|
| 1742 | HeSVKEY_set(entry, SvREFCNT_inc(key));
|
---|
| 1743 | return entry; /* beware, hent_val is not set */
|
---|
| 1744 | }
|
---|
| 1745 | if (HeVAL(entry))
|
---|
| 1746 | SvREFCNT_dec(HeVAL(entry));
|
---|
| 1747 | Safefree(HeKEY_hek(entry));
|
---|
| 1748 | del_HE(entry);
|
---|
| 1749 | xhv->xhv_eiter = Null(HE*); /* HvEITER(hv) = Null(HE*) */
|
---|
| 1750 | return Null(HE*);
|
---|
| 1751 | }
|
---|
| 1752 | #ifdef DYNAMIC_ENV_FETCH /* set up %ENV for iteration */
|
---|
| 1753 | if (!entry && SvRMAGICAL((SV*)hv) && mg_find((SV*)hv, PERL_MAGIC_env)) {
|
---|
| 1754 | prime_env_iter();
|
---|
| 1755 | #ifdef VMS
|
---|
| 1756 | /* The prime_env_iter() on VMS just loaded up new hash values
|
---|
| 1757 | * so the iteration count needs to be reset back to the beginning
|
---|
| 1758 | */
|
---|
| 1759 | hv_iterinit(hv);
|
---|
| 1760 | oldentry = entry = xhv->xhv_eiter; /* HvEITER(hv) */
|
---|
| 1761 | #endif
|
---|
| 1762 | }
|
---|
| 1763 | #endif
|
---|
| 1764 |
|
---|
| 1765 | if (!xhv->xhv_array /* !HvARRAY(hv) */)
|
---|
| 1766 | Newz(506, xhv->xhv_array /* HvARRAY(hv) */,
|
---|
| 1767 | PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
|
---|
| 1768 | char);
|
---|
| 1769 | /* At start of hash, entry is NULL. */
|
---|
| 1770 | if (entry)
|
---|
| 1771 | {
|
---|
| 1772 | entry = HeNEXT(entry);
|
---|
| 1773 | if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
|
---|
| 1774 | /*
|
---|
| 1775 | * Skip past any placeholders -- don't want to include them in
|
---|
| 1776 | * any iteration.
|
---|
| 1777 | */
|
---|
| 1778 | while (entry && HeVAL(entry) == &PL_sv_placeholder) {
|
---|
| 1779 | entry = HeNEXT(entry);
|
---|
| 1780 | }
|
---|
| 1781 | }
|
---|
| 1782 | }
|
---|
| 1783 | while (!entry) {
|
---|
| 1784 | /* OK. Come to the end of the current list. Grab the next one. */
|
---|
| 1785 |
|
---|
| 1786 | xhv->xhv_riter++; /* HvRITER(hv)++ */
|
---|
| 1787 | if (xhv->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
|
---|
| 1788 | /* There is no next one. End of the hash. */
|
---|
| 1789 | xhv->xhv_riter = -1; /* HvRITER(hv) = -1 */
|
---|
| 1790 | break;
|
---|
| 1791 | }
|
---|
| 1792 | /* entry = (HvARRAY(hv))[HvRITER(hv)]; */
|
---|
| 1793 | entry = ((HE**)xhv->xhv_array)[xhv->xhv_riter];
|
---|
| 1794 |
|
---|
| 1795 | if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
|
---|
| 1796 | /* If we have an entry, but it's a placeholder, don't count it.
|
---|
| 1797 | Try the next. */
|
---|
| 1798 | while (entry && HeVAL(entry) == &PL_sv_placeholder)
|
---|
| 1799 | entry = HeNEXT(entry);
|
---|
| 1800 | }
|
---|
| 1801 | /* Will loop again if this linked list starts NULL
|
---|
| 1802 | (for HV_ITERNEXT_WANTPLACEHOLDERS)
|
---|
| 1803 | or if we run through it and find only placeholders. */
|
---|
| 1804 | }
|
---|
| 1805 |
|
---|
| 1806 | if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
|
---|
| 1807 | HvLAZYDEL_off(hv);
|
---|
| 1808 | hv_free_ent(hv, oldentry);
|
---|
| 1809 | }
|
---|
| 1810 |
|
---|
| 1811 | /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
|
---|
| 1812 | PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", hv, entry);*/
|
---|
| 1813 |
|
---|
| 1814 | xhv->xhv_eiter = entry; /* HvEITER(hv) = entry */
|
---|
| 1815 | return entry;
|
---|
| 1816 | }
|
---|
| 1817 |
|
---|
| 1818 | /*
|
---|
| 1819 | =for apidoc hv_iterkey
|
---|
| 1820 |
|
---|
| 1821 | Returns the key from the current position of the hash iterator. See
|
---|
| 1822 | C<hv_iterinit>.
|
---|
| 1823 |
|
---|
| 1824 | =cut
|
---|
| 1825 | */
|
---|
| 1826 |
|
---|
| 1827 | char *
|
---|
| 1828 | Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
|
---|
| 1829 | {
|
---|
| 1830 | if (HeKLEN(entry) == HEf_SVKEY) {
|
---|
| 1831 | STRLEN len;
|
---|
| 1832 | char *p = SvPV(HeKEY_sv(entry), len);
|
---|
| 1833 | *retlen = len;
|
---|
| 1834 | return p;
|
---|
| 1835 | }
|
---|
| 1836 | else {
|
---|
| 1837 | *retlen = HeKLEN(entry);
|
---|
| 1838 | return HeKEY(entry);
|
---|
| 1839 | }
|
---|
| 1840 | }
|
---|
| 1841 |
|
---|
| 1842 | /* unlike hv_iterval(), this always returns a mortal copy of the key */
|
---|
| 1843 | /*
|
---|
| 1844 | =for apidoc hv_iterkeysv
|
---|
| 1845 |
|
---|
| 1846 | Returns the key as an C<SV*> from the current position of the hash
|
---|
| 1847 | iterator. The return value will always be a mortal copy of the key. Also
|
---|
| 1848 | see C<hv_iterinit>.
|
---|
| 1849 |
|
---|
| 1850 | =cut
|
---|
| 1851 | */
|
---|
| 1852 |
|
---|
| 1853 | SV *
|
---|
| 1854 | Perl_hv_iterkeysv(pTHX_ register HE *entry)
|
---|
| 1855 | {
|
---|
| 1856 | return sv_2mortal(newSVhek(HeKEY_hek(entry)));
|
---|
| 1857 | }
|
---|
| 1858 |
|
---|
| 1859 | /*
|
---|
| 1860 | =for apidoc hv_iterval
|
---|
| 1861 |
|
---|
| 1862 | Returns the value from the current position of the hash iterator. See
|
---|
| 1863 | C<hv_iterkey>.
|
---|
| 1864 |
|
---|
| 1865 | =cut
|
---|
| 1866 | */
|
---|
| 1867 |
|
---|
| 1868 | SV *
|
---|
| 1869 | Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
|
---|
| 1870 | {
|
---|
| 1871 | if (SvRMAGICAL(hv)) {
|
---|
| 1872 | if (mg_find((SV*)hv, PERL_MAGIC_tied)) {
|
---|
| 1873 | SV* sv = sv_newmortal();
|
---|
| 1874 | if (HeKLEN(entry) == HEf_SVKEY)
|
---|
| 1875 | mg_copy((SV*)hv, sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
|
---|
| 1876 | else
|
---|
| 1877 | mg_copy((SV*)hv, sv, HeKEY(entry), HeKLEN(entry));
|
---|
| 1878 | return sv;
|
---|
| 1879 | }
|
---|
| 1880 | }
|
---|
| 1881 | return HeVAL(entry);
|
---|
| 1882 | }
|
---|
| 1883 |
|
---|
| 1884 | /*
|
---|
| 1885 | =for apidoc hv_iternextsv
|
---|
| 1886 |
|
---|
| 1887 | Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
|
---|
| 1888 | operation.
|
---|
| 1889 |
|
---|
| 1890 | =cut
|
---|
| 1891 | */
|
---|
| 1892 |
|
---|
| 1893 | SV *
|
---|
| 1894 | Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
|
---|
| 1895 | {
|
---|
| 1896 | HE *he;
|
---|
| 1897 | if ( (he = hv_iternext_flags(hv, 0)) == NULL)
|
---|
| 1898 | return NULL;
|
---|
| 1899 | *key = hv_iterkey(he, retlen);
|
---|
| 1900 | return hv_iterval(hv, he);
|
---|
| 1901 | }
|
---|
| 1902 |
|
---|
| 1903 | /*
|
---|
| 1904 | =for apidoc hv_magic
|
---|
| 1905 |
|
---|
| 1906 | Adds magic to a hash. See C<sv_magic>.
|
---|
| 1907 |
|
---|
| 1908 | =cut
|
---|
| 1909 | */
|
---|
| 1910 |
|
---|
| 1911 | void
|
---|
| 1912 | Perl_hv_magic(pTHX_ HV *hv, GV *gv, int how)
|
---|
| 1913 | {
|
---|
| 1914 | sv_magic((SV*)hv, (SV*)gv, how, Nullch, 0);
|
---|
| 1915 | }
|
---|
| 1916 |
|
---|
| 1917 | #if 0 /* use the macro from hv.h instead */
|
---|
| 1918 |
|
---|
| 1919 | char*
|
---|
| 1920 | Perl_sharepvn(pTHX_ const char *sv, I32 len, U32 hash)
|
---|
| 1921 | {
|
---|
| 1922 | return HEK_KEY(share_hek(sv, len, hash));
|
---|
| 1923 | }
|
---|
| 1924 |
|
---|
| 1925 | #endif
|
---|
| 1926 |
|
---|
| 1927 | /* possibly free a shared string if no one has access to it
|
---|
| 1928 | * len and hash must both be valid for str.
|
---|
| 1929 | */
|
---|
| 1930 | void
|
---|
| 1931 | Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
|
---|
| 1932 | {
|
---|
| 1933 | unshare_hek_or_pvn (NULL, str, len, hash);
|
---|
| 1934 | }
|
---|
| 1935 |
|
---|
| 1936 |
|
---|
| 1937 | void
|
---|
| 1938 | Perl_unshare_hek(pTHX_ HEK *hek)
|
---|
| 1939 | {
|
---|
| 1940 | unshare_hek_or_pvn(hek, NULL, 0, 0);
|
---|
| 1941 | }
|
---|
| 1942 |
|
---|
| 1943 | /* possibly free a shared string if no one has access to it
|
---|
| 1944 | hek if non-NULL takes priority over the other 3, else str, len and hash
|
---|
| 1945 | are used. If so, len and hash must both be valid for str.
|
---|
| 1946 | */
|
---|
| 1947 | STATIC void
|
---|
| 1948 | S_unshare_hek_or_pvn(pTHX_ HEK *hek, const char *str, I32 len, U32 hash)
|
---|
| 1949 | {
|
---|
| 1950 | register XPVHV* xhv;
|
---|
| 1951 | register HE *entry;
|
---|
| 1952 | register HE **oentry;
|
---|
| 1953 | HE **first;
|
---|
| 1954 | bool found = 0;
|
---|
| 1955 | bool is_utf8 = FALSE;
|
---|
| 1956 | int k_flags = 0;
|
---|
| 1957 | const char * const save = str;
|
---|
| 1958 |
|
---|
| 1959 | if (hek) {
|
---|
| 1960 | hash = HEK_HASH(hek);
|
---|
| 1961 | } else if (len < 0) {
|
---|
| 1962 | STRLEN tmplen = -len;
|
---|
| 1963 | is_utf8 = TRUE;
|
---|
| 1964 | /* See the note in hv_fetch(). --jhi */
|
---|
| 1965 | str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
|
---|
| 1966 | len = tmplen;
|
---|
| 1967 | if (is_utf8)
|
---|
| 1968 | k_flags = HVhek_UTF8;
|
---|
| 1969 | if (str != save)
|
---|
| 1970 | k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
|
---|
| 1971 | }
|
---|
| 1972 |
|
---|
| 1973 | /* what follows is the moral equivalent of:
|
---|
| 1974 | if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
|
---|
| 1975 | if (--*Svp == Nullsv)
|
---|
| 1976 | hv_delete(PL_strtab, str, len, G_DISCARD, hash);
|
---|
| 1977 | } */
|
---|
| 1978 | xhv = (XPVHV*)SvANY(PL_strtab);
|
---|
| 1979 | /* assert(xhv_array != 0) */
|
---|
| 1980 | LOCK_STRTAB_MUTEX;
|
---|
| 1981 | /* oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)]; */
|
---|
| 1982 | first = oentry = &((HE**)xhv->xhv_array)[hash & (I32) xhv->xhv_max];
|
---|
| 1983 | if (hek) {
|
---|
| 1984 | for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
|
---|
| 1985 | if (HeKEY_hek(entry) != hek)
|
---|
| 1986 | continue;
|
---|
| 1987 | found = 1;
|
---|
| 1988 | break;
|
---|
| 1989 | }
|
---|
| 1990 | } else {
|
---|
| 1991 | const int flags_masked = k_flags & HVhek_MASK;
|
---|
| 1992 | for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
|
---|
| 1993 | if (HeHASH(entry) != hash) /* strings can't be equal */
|
---|
| 1994 | continue;
|
---|
| 1995 | if (HeKLEN(entry) != len)
|
---|
| 1996 | continue;
|
---|
| 1997 | if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
|
---|
| 1998 | continue;
|
---|
| 1999 | if (HeKFLAGS(entry) != flags_masked)
|
---|
| 2000 | continue;
|
---|
| 2001 | found = 1;
|
---|
| 2002 | break;
|
---|
| 2003 | }
|
---|
| 2004 | }
|
---|
| 2005 |
|
---|
| 2006 | if (found) {
|
---|
| 2007 | if (--HeVAL(entry) == Nullsv) {
|
---|
| 2008 | *oentry = HeNEXT(entry);
|
---|
| 2009 | if (!*first) {
|
---|
| 2010 | /* There are now no entries in our slot. */
|
---|
| 2011 | xhv->xhv_fill--; /* HvFILL(hv)-- */
|
---|
| 2012 | }
|
---|
| 2013 | Safefree(HeKEY_hek(entry));
|
---|
| 2014 | del_HE(entry);
|
---|
| 2015 | xhv->xhv_keys--; /* HvKEYS(hv)-- */
|
---|
| 2016 | }
|
---|
| 2017 | }
|
---|
| 2018 |
|
---|
| 2019 | UNLOCK_STRTAB_MUTEX;
|
---|
| 2020 | if (!found && ckWARN_d(WARN_INTERNAL))
|
---|
| 2021 | Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
|
---|
| 2022 | "Attempt to free non-existent shared string '%s'%s"
|
---|
| 2023 | pTHX__FORMAT,
|
---|
| 2024 | hek ? HEK_KEY(hek) : str,
|
---|
| 2025 | ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
|
---|
| 2026 | if (k_flags & HVhek_FREEKEY)
|
---|
| 2027 | Safefree(str);
|
---|
| 2028 | }
|
---|
| 2029 |
|
---|
| 2030 | /* get a (constant) string ptr from the global string table
|
---|
| 2031 | * string will get added if it is not already there.
|
---|
| 2032 | * len and hash must both be valid for str.
|
---|
| 2033 | */
|
---|
| 2034 | HEK *
|
---|
| 2035 | Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
|
---|
| 2036 | {
|
---|
| 2037 | bool is_utf8 = FALSE;
|
---|
| 2038 | int flags = 0;
|
---|
| 2039 | const char * const save = str;
|
---|
| 2040 |
|
---|
| 2041 | if (len < 0) {
|
---|
| 2042 | STRLEN tmplen = -len;
|
---|
| 2043 | is_utf8 = TRUE;
|
---|
| 2044 | /* See the note in hv_fetch(). --jhi */
|
---|
| 2045 | str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
|
---|
| 2046 | len = tmplen;
|
---|
| 2047 | /* If we were able to downgrade here, then than means that we were passed
|
---|
| 2048 | in a key which only had chars 0-255, but was utf8 encoded. */
|
---|
| 2049 | if (is_utf8)
|
---|
| 2050 | flags = HVhek_UTF8;
|
---|
| 2051 | /* If we found we were able to downgrade the string to bytes, then
|
---|
| 2052 | we should flag that it needs upgrading on keys or each. Also flag
|
---|
| 2053 | that we need share_hek_flags to free the string. */
|
---|
| 2054 | if (str != save)
|
---|
| 2055 | flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
|
---|
| 2056 | }
|
---|
| 2057 |
|
---|
| 2058 | return share_hek_flags (str, len, hash, flags);
|
---|
| 2059 | }
|
---|
| 2060 |
|
---|
| 2061 | STATIC HEK *
|
---|
| 2062 | S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
|
---|
| 2063 | {
|
---|
| 2064 | register XPVHV* xhv;
|
---|
| 2065 | register HE *entry;
|
---|
| 2066 | register HE **oentry;
|
---|
| 2067 | I32 found = 0;
|
---|
| 2068 | const int flags_masked = flags & HVhek_MASK;
|
---|
| 2069 |
|
---|
| 2070 | /* what follows is the moral equivalent of:
|
---|
| 2071 |
|
---|
| 2072 | if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
|
---|
| 2073 | hv_store(PL_strtab, str, len, Nullsv, hash);
|
---|
| 2074 |
|
---|
| 2075 | Can't rehash the shared string table, so not sure if it's worth
|
---|
| 2076 | counting the number of entries in the linked list
|
---|
| 2077 | */
|
---|
| 2078 | xhv = (XPVHV*)SvANY(PL_strtab);
|
---|
| 2079 | /* assert(xhv_array != 0) */
|
---|
| 2080 | LOCK_STRTAB_MUTEX;
|
---|
| 2081 | /* oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)]; */
|
---|
| 2082 | oentry = &((HE**)xhv->xhv_array)[hash & (I32) xhv->xhv_max];
|
---|
| 2083 | for (entry = *oentry; entry; entry = HeNEXT(entry)) {
|
---|
| 2084 | if (HeHASH(entry) != hash) /* strings can't be equal */
|
---|
| 2085 | continue;
|
---|
| 2086 | if (HeKLEN(entry) != len)
|
---|
| 2087 | continue;
|
---|
| 2088 | if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
|
---|
| 2089 | continue;
|
---|
| 2090 | if (HeKFLAGS(entry) != flags_masked)
|
---|
| 2091 | continue;
|
---|
| 2092 | found = 1;
|
---|
| 2093 | break;
|
---|
| 2094 | }
|
---|
| 2095 | if (!found) {
|
---|
| 2096 | /* What used to be head of the list.
|
---|
| 2097 | If this is NULL, then we're the first entry for this slot, which
|
---|
| 2098 | means we need to increate fill. */
|
---|
| 2099 | const HE *old_first = *oentry;
|
---|
| 2100 | entry = new_HE();
|
---|
| 2101 | HeKEY_hek(entry) = save_hek_flags(str, len, hash, flags_masked);
|
---|
| 2102 | HeVAL(entry) = Nullsv;
|
---|
| 2103 | HeNEXT(entry) = *oentry;
|
---|
| 2104 | *oentry = entry;
|
---|
| 2105 | xhv->xhv_keys++; /* HvKEYS(hv)++ */
|
---|
| 2106 | if (!old_first) { /* initial entry? */
|
---|
| 2107 | xhv->xhv_fill++; /* HvFILL(hv)++ */
|
---|
| 2108 | } else if (xhv->xhv_keys > (IV)xhv->xhv_max /* HvKEYS(hv) > HvMAX(hv) */) {
|
---|
| 2109 | hsplit(PL_strtab);
|
---|
| 2110 | }
|
---|
| 2111 | }
|
---|
| 2112 |
|
---|
| 2113 | ++HeVAL(entry); /* use value slot as REFCNT */
|
---|
| 2114 | UNLOCK_STRTAB_MUTEX;
|
---|
| 2115 |
|
---|
| 2116 | if (flags & HVhek_FREEKEY)
|
---|
| 2117 | Safefree(str);
|
---|
| 2118 |
|
---|
| 2119 | return HeKEY_hek(entry);
|
---|
| 2120 | }
|
---|
| 2121 |
|
---|
| 2122 | /*
|
---|
| 2123 | * Local variables:
|
---|
| 2124 | * c-indentation-style: bsd
|
---|
| 2125 | * c-basic-offset: 4
|
---|
| 2126 | * indent-tabs-mode: t
|
---|
| 2127 | * End:
|
---|
| 2128 | *
|
---|
| 2129 | * ex: set ts=8 sts=4 sw=4 noet:
|
---|
| 2130 | */
|
---|