1 | /* Inflate deflated data
|
---|
2 |
|
---|
3 | Copyright (C) 1997, 1998, 1999, 2002, 2006 Free Software
|
---|
4 | Foundation, Inc.
|
---|
5 |
|
---|
6 | This program is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2, or (at your option)
|
---|
9 | any later version.
|
---|
10 |
|
---|
11 | This program is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | GNU General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with this program; if not, write to the Free Software Foundation,
|
---|
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
---|
19 |
|
---|
20 | /* Not copyrighted 1992 by Mark Adler
|
---|
21 | version c10p1, 10 January 1993 */
|
---|
22 |
|
---|
23 | /* You can do whatever you like with this source file, though I would
|
---|
24 | prefer that if you modify it and redistribute it that you include
|
---|
25 | comments to that effect with your name and the date. Thank you.
|
---|
26 | [The history has been moved to the file ChangeLog.]
|
---|
27 | */
|
---|
28 |
|
---|
29 | /*
|
---|
30 | Inflate deflated (PKZIP's method 8 compressed) data. The compression
|
---|
31 | method searches for as much of the current string of bytes (up to a
|
---|
32 | length of 258) in the previous 32K bytes. If it doesn't find any
|
---|
33 | matches (of at least length 3), it codes the next byte. Otherwise, it
|
---|
34 | codes the length of the matched string and its distance backwards from
|
---|
35 | the current position. There is a single Huffman code that codes both
|
---|
36 | single bytes (called "literals") and match lengths. A second Huffman
|
---|
37 | code codes the distance information, which follows a length code. Each
|
---|
38 | length or distance code actually represents a base value and a number
|
---|
39 | of "extra" (sometimes zero) bits to get to add to the base value. At
|
---|
40 | the end of each deflated block is a special end-of-block (EOB) literal/
|
---|
41 | length code. The decoding process is basically: get a literal/length
|
---|
42 | code; if EOB then done; if a literal, emit the decoded byte; if a
|
---|
43 | length then get the distance and emit the referred-to bytes from the
|
---|
44 | sliding window of previously emitted data.
|
---|
45 |
|
---|
46 | There are (currently) three kinds of inflate blocks: stored, fixed, and
|
---|
47 | dynamic. The compressor deals with some chunk of data at a time, and
|
---|
48 | decides which method to use on a chunk-by-chunk basis. A chunk might
|
---|
49 | typically be 32K or 64K. If the chunk is uncompressible, then the
|
---|
50 | "stored" method is used. In this case, the bytes are simply stored as
|
---|
51 | is, eight bits per byte, with none of the above coding. The bytes are
|
---|
52 | preceded by a count, since there is no longer an EOB code.
|
---|
53 |
|
---|
54 | If the data is compressible, then either the fixed or dynamic methods
|
---|
55 | are used. In the dynamic method, the compressed data is preceded by
|
---|
56 | an encoding of the literal/length and distance Huffman codes that are
|
---|
57 | to be used to decode this block. The representation is itself Huffman
|
---|
58 | coded, and so is preceded by a description of that code. These code
|
---|
59 | descriptions take up a little space, and so for small blocks, there is
|
---|
60 | a predefined set of codes, called the fixed codes. The fixed method is
|
---|
61 | used if the block codes up smaller that way (usually for quite small
|
---|
62 | chunks), otherwise the dynamic method is used. In the latter case, the
|
---|
63 | codes are customized to the probabilities in the current block, and so
|
---|
64 | can code it much better than the pre-determined fixed codes.
|
---|
65 |
|
---|
66 | The Huffman codes themselves are decoded using a multi-level table
|
---|
67 | lookup, in order to maximize the speed of decoding plus the speed of
|
---|
68 | building the decoding tables. See the comments below that precede the
|
---|
69 | lbits and dbits tuning parameters.
|
---|
70 | */
|
---|
71 |
|
---|
72 |
|
---|
73 | /*
|
---|
74 | Notes beyond the 1.93a appnote.txt:
|
---|
75 |
|
---|
76 | 1. Distance pointers never point before the beginning of the output
|
---|
77 | stream.
|
---|
78 | 2. Distance pointers can point back across blocks, up to 32k away.
|
---|
79 | 3. There is an implied maximum of 7 bits for the bit length table and
|
---|
80 | 15 bits for the actual data.
|
---|
81 | 4. If only one code exists, then it is encoded using one bit. (Zero
|
---|
82 | would be more efficient, but perhaps a little confusing.) If two
|
---|
83 | codes exist, they are coded using one bit each (0 and 1).
|
---|
84 | 5. There is no way of sending zero distance codes--a dummy must be
|
---|
85 | sent if there are none. (History: a pre 2.0 version of PKZIP would
|
---|
86 | store blocks with no distance codes, but this was discovered to be
|
---|
87 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
|
---|
88 | zero distance codes, which is sent as one code of zero bits in
|
---|
89 | length.
|
---|
90 | 6. There are up to 286 literal/length codes. Code 256 represents the
|
---|
91 | end-of-block. Note however that the static length tree defines
|
---|
92 | 288 codes just to fill out the Huffman codes. Codes 286 and 287
|
---|
93 | cannot be used though, since there is no length base or extra bits
|
---|
94 | defined for them. Similarly, there are up to 30 distance codes.
|
---|
95 | However, static trees define 32 codes (all 5 bits) to fill out the
|
---|
96 | Huffman codes, but the last two had better not show up in the data.
|
---|
97 | 7. Unzip can check dynamic Huffman blocks for complete code sets.
|
---|
98 | The exception is that a single code would not be complete (see #4).
|
---|
99 | 8. The five bits following the block type is really the number of
|
---|
100 | literal codes sent minus 257.
|
---|
101 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
|
---|
102 | (1+6+6). Therefore, to output three times the length, you output
|
---|
103 | three codes (1+1+1), whereas to output four times the same length,
|
---|
104 | you only need two codes (1+3). Hmm.
|
---|
105 | 10. In the tree reconstruction algorithm, Code = Code + Increment
|
---|
106 | only if BitLength(i) is not zero. (Pretty obvious.)
|
---|
107 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
|
---|
108 | 12. Note: length code 284 can represent 227-258, but length code 285
|
---|
109 | really is 258. The last length deserves its own, short code
|
---|
110 | since it gets used a lot in very redundant files. The length
|
---|
111 | 258 is special since 258 - 3 (the min match length) is 255.
|
---|
112 | 13. The literal/length and distance code bit lengths are read as a
|
---|
113 | single stream of lengths. It is possible (and advantageous) for
|
---|
114 | a repeat code (16, 17, or 18) to go across the boundary between
|
---|
115 | the two sets of lengths.
|
---|
116 | */
|
---|
117 |
|
---|
118 | #ifdef RCSID
|
---|
119 | static char rcsid[] = "$Id: inflate.c,v 1.6 2006/12/20 23:30:17 eggert Exp $";
|
---|
120 | #endif
|
---|
121 |
|
---|
122 | #include <config.h>
|
---|
123 | #include "tailor.h"
|
---|
124 |
|
---|
125 | #if defined STDC_HEADERS || defined HAVE_STDLIB_H
|
---|
126 | # include <stdlib.h>
|
---|
127 | #endif
|
---|
128 |
|
---|
129 | #include "gzip.h"
|
---|
130 | #define slide window
|
---|
131 |
|
---|
132 | /* Huffman code lookup table entry--this entry is four bytes for machines
|
---|
133 | that have 16-bit pointers (e.g. PC's in the small or medium model).
|
---|
134 | Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
|
---|
135 | means that v is a literal, 16 < e < 32 means that v is a pointer to
|
---|
136 | the next table, which codes e - 16 bits, and lastly e == 99 indicates
|
---|
137 | an unused code. If a code with e == 99 is looked up, this implies an
|
---|
138 | error in the data. */
|
---|
139 | struct huft {
|
---|
140 | uch e; /* number of extra bits or operation */
|
---|
141 | uch b; /* number of bits in this code or subcode */
|
---|
142 | union {
|
---|
143 | ush n; /* literal, length base, or distance base */
|
---|
144 | struct huft *t; /* pointer to next level of table */
|
---|
145 | } v;
|
---|
146 | };
|
---|
147 |
|
---|
148 |
|
---|
149 | /* Function prototypes */
|
---|
150 | int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *,
|
---|
151 | struct huft **, int *));
|
---|
152 | int huft_free OF((struct huft *));
|
---|
153 | int inflate_codes OF((struct huft *, struct huft *, int, int));
|
---|
154 | int inflate_stored OF((void));
|
---|
155 | int inflate_fixed OF((void));
|
---|
156 | int inflate_dynamic OF((void));
|
---|
157 | int inflate_block OF((int *));
|
---|
158 | int inflate OF((void));
|
---|
159 |
|
---|
160 |
|
---|
161 | /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
|
---|
162 | stream to find repeated byte strings. This is implemented here as a
|
---|
163 | circular buffer. The index is updated simply by incrementing and then
|
---|
164 | and'ing with 0x7fff (32K-1). */
|
---|
165 | /* It is left to other modules to supply the 32K area. It is assumed
|
---|
166 | to be usable as if it were declared "uch slide[32768];" or as just
|
---|
167 | "uch *slide;" and then malloc'ed in the latter case. The definition
|
---|
168 | must be in unzip.h, included above. */
|
---|
169 | /* unsigned wp; current position in slide */
|
---|
170 | #define wp outcnt
|
---|
171 | #define flush_output(w) (wp=(w),flush_window())
|
---|
172 |
|
---|
173 | /* Tables for deflate from PKZIP's appnote.txt. */
|
---|
174 | static unsigned border[] = { /* Order of the bit length code lengths */
|
---|
175 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
---|
176 | static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
|
---|
177 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
---|
178 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
---|
179 | /* note: see note #13 above about the 258 in this list. */
|
---|
180 | static ush cplext[] = { /* Extra bits for literal codes 257..285 */
|
---|
181 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
|
---|
182 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
|
---|
183 | static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
|
---|
184 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
---|
185 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
---|
186 | 8193, 12289, 16385, 24577};
|
---|
187 | static ush cpdext[] = { /* Extra bits for distance codes */
|
---|
188 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
|
---|
189 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
|
---|
190 | 12, 12, 13, 13};
|
---|
191 |
|
---|
192 |
|
---|
193 |
|
---|
194 | /* Macros for inflate() bit peeking and grabbing.
|
---|
195 | The usage is:
|
---|
196 |
|
---|
197 | NEEDBITS(j)
|
---|
198 | x = b & mask_bits[j];
|
---|
199 | DUMPBITS(j)
|
---|
200 |
|
---|
201 | where NEEDBITS makes sure that b has at least j bits in it, and
|
---|
202 | DUMPBITS removes the bits from b. The macros use the variable k
|
---|
203 | for the number of bits in b. Normally, b and k are register
|
---|
204 | variables for speed, and are initialized at the beginning of a
|
---|
205 | routine that uses these macros from a global bit buffer and count.
|
---|
206 | The macros also use the variable w, which is a cached copy of wp.
|
---|
207 |
|
---|
208 | If we assume that EOB will be the longest code, then we will never
|
---|
209 | ask for bits with NEEDBITS that are beyond the end of the stream.
|
---|
210 | So, NEEDBITS should not read any more bytes than are needed to
|
---|
211 | meet the request. Then no bytes need to be "returned" to the buffer
|
---|
212 | at the end of the last block.
|
---|
213 |
|
---|
214 | However, this assumption is not true for fixed blocks--the EOB code
|
---|
215 | is 7 bits, but the other literal/length codes can be 8 or 9 bits.
|
---|
216 | (The EOB code is shorter than other codes because fixed blocks are
|
---|
217 | generally short. So, while a block always has an EOB, many other
|
---|
218 | literal/length codes have a significantly lower probability of
|
---|
219 | showing up at all.) However, by making the first table have a
|
---|
220 | lookup of seven bits, the EOB code will be found in that first
|
---|
221 | lookup, and so will not require that too many bits be pulled from
|
---|
222 | the stream.
|
---|
223 | */
|
---|
224 |
|
---|
225 | ulg bb; /* bit buffer */
|
---|
226 | unsigned bk; /* bits in bit buffer */
|
---|
227 |
|
---|
228 | ush mask_bits[] = {
|
---|
229 | 0x0000,
|
---|
230 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
|
---|
231 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
|
---|
232 | };
|
---|
233 |
|
---|
234 | #define GETBYTE() (inptr < insize ? inbuf[inptr++] : (wp = w, fill_inbuf(0)))
|
---|
235 |
|
---|
236 | #ifdef CRYPT
|
---|
237 | uch cc;
|
---|
238 | # define NEXTBYTE() \
|
---|
239 | (decrypt ? (cc = GETBYTE(), zdecode(cc), cc) : GETBYTE())
|
---|
240 | #else
|
---|
241 | # define NEXTBYTE() (uch)GETBYTE()
|
---|
242 | #endif
|
---|
243 | #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
|
---|
244 | #define DUMPBITS(n) {b>>=(n);k-=(n);}
|
---|
245 |
|
---|
246 |
|
---|
247 | /*
|
---|
248 | Huffman code decoding is performed using a multi-level table lookup.
|
---|
249 | The fastest way to decode is to simply build a lookup table whose
|
---|
250 | size is determined by the longest code. However, the time it takes
|
---|
251 | to build this table can also be a factor if the data being decoded
|
---|
252 | is not very long. The most common codes are necessarily the
|
---|
253 | shortest codes, so those codes dominate the decoding time, and hence
|
---|
254 | the speed. The idea is you can have a shorter table that decodes the
|
---|
255 | shorter, more probable codes, and then point to subsidiary tables for
|
---|
256 | the longer codes. The time it costs to decode the longer codes is
|
---|
257 | then traded against the time it takes to make longer tables.
|
---|
258 |
|
---|
259 | This results of this trade are in the variables lbits and dbits
|
---|
260 | below. lbits is the number of bits the first level table for literal/
|
---|
261 | length codes can decode in one step, and dbits is the same thing for
|
---|
262 | the distance codes. Subsequent tables are also less than or equal to
|
---|
263 | those sizes. These values may be adjusted either when all of the
|
---|
264 | codes are shorter than that, in which case the longest code length in
|
---|
265 | bits is used, or when the shortest code is *longer* than the requested
|
---|
266 | table size, in which case the length of the shortest code in bits is
|
---|
267 | used.
|
---|
268 |
|
---|
269 | There are two different values for the two tables, since they code a
|
---|
270 | different number of possibilities each. The literal/length table
|
---|
271 | codes 286 possible values, or in a flat code, a little over eight
|
---|
272 | bits. The distance table codes 30 possible values, or a little less
|
---|
273 | than five bits, flat. The optimum values for speed end up being
|
---|
274 | about one bit more than those, so lbits is 8+1 and dbits is 5+1.
|
---|
275 | The optimum values may differ though from machine to machine, and
|
---|
276 | possibly even between compilers. Your mileage may vary.
|
---|
277 | */
|
---|
278 |
|
---|
279 |
|
---|
280 | int lbits = 9; /* bits in base literal/length lookup table */
|
---|
281 | int dbits = 6; /* bits in base distance lookup table */
|
---|
282 |
|
---|
283 |
|
---|
284 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
|
---|
285 | #define BMAX 16 /* maximum bit length of any code (16 for explode) */
|
---|
286 | #define N_MAX 288 /* maximum number of codes in any set */
|
---|
287 |
|
---|
288 |
|
---|
289 | unsigned hufts; /* track memory usage */
|
---|
290 |
|
---|
291 |
|
---|
292 | int huft_build(b, n, s, d, e, t, m)
|
---|
293 | unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
|
---|
294 | unsigned n; /* number of codes (assumed <= N_MAX) */
|
---|
295 | unsigned s; /* number of simple-valued codes (0..s-1) */
|
---|
296 | ush *d; /* list of base values for non-simple codes */
|
---|
297 | ush *e; /* list of extra bits for non-simple codes */
|
---|
298 | struct huft **t; /* result: starting table */
|
---|
299 | int *m; /* maximum lookup bits, returns actual */
|
---|
300 | /* Given a list of code lengths and a maximum table size, make a set of
|
---|
301 | tables to decode that set of codes. Return zero on success, one if
|
---|
302 | the given code set is incomplete (the tables are still built in this
|
---|
303 | case), two if the input is invalid (all zero length codes or an
|
---|
304 | oversubscribed set of lengths), and three if not enough memory. */
|
---|
305 | {
|
---|
306 | unsigned a; /* counter for codes of length k */
|
---|
307 | unsigned c[BMAX+1]; /* bit length count table */
|
---|
308 | unsigned f; /* i repeats in table every f entries */
|
---|
309 | int g; /* maximum code length */
|
---|
310 | int h; /* table level */
|
---|
311 | register unsigned i; /* counter, current code */
|
---|
312 | register unsigned j; /* counter */
|
---|
313 | register int k; /* number of bits in current code */
|
---|
314 | int l; /* bits per table (returned in m) */
|
---|
315 | register unsigned *p; /* pointer into c[], b[], or v[] */
|
---|
316 | register struct huft *q; /* points to current table */
|
---|
317 | struct huft r; /* table entry for structure assignment */
|
---|
318 | struct huft *u[BMAX]; /* table stack */
|
---|
319 | unsigned v[N_MAX]; /* values in order of bit length */
|
---|
320 | register int w; /* bits before this table == (l * h) */
|
---|
321 | unsigned x[BMAX+1]; /* bit offsets, then code stack */
|
---|
322 | unsigned *xp; /* pointer into x */
|
---|
323 | int y; /* number of dummy codes added */
|
---|
324 | unsigned z; /* number of entries in current table */
|
---|
325 |
|
---|
326 |
|
---|
327 | /* Generate counts for each bit length */
|
---|
328 | memzero(c, sizeof(c));
|
---|
329 | p = b; i = n;
|
---|
330 | do {
|
---|
331 | Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
|
---|
332 | n-i, *p));
|
---|
333 | c[*p]++; /* assume all entries <= BMAX */
|
---|
334 | p++; /* Can't combine with above line (Solaris bug) */
|
---|
335 | } while (--i);
|
---|
336 | if (c[0] == n) /* null input--all zero length codes */
|
---|
337 | {
|
---|
338 | q = (struct huft *) malloc (2 * sizeof *q);
|
---|
339 | if (!q)
|
---|
340 | return 3;
|
---|
341 | hufts += 2;
|
---|
342 | q[0].v.t = (struct huft *) NULL;
|
---|
343 | q[1].e = 99; /* invalid code marker */
|
---|
344 | q[1].b = 1;
|
---|
345 | *t = q + 1;
|
---|
346 | *m = 1;
|
---|
347 | return 0;
|
---|
348 | }
|
---|
349 |
|
---|
350 |
|
---|
351 | /* Find minimum and maximum length, bound *m by those */
|
---|
352 | l = *m;
|
---|
353 | for (j = 1; j <= BMAX; j++)
|
---|
354 | if (c[j])
|
---|
355 | break;
|
---|
356 | k = j; /* minimum code length */
|
---|
357 | if ((unsigned)l < j)
|
---|
358 | l = j;
|
---|
359 | for (i = BMAX; i; i--)
|
---|
360 | if (c[i])
|
---|
361 | break;
|
---|
362 | g = i; /* maximum code length */
|
---|
363 | if ((unsigned)l > i)
|
---|
364 | l = i;
|
---|
365 | *m = l;
|
---|
366 |
|
---|
367 |
|
---|
368 | /* Adjust last length count to fill out codes, if needed */
|
---|
369 | for (y = 1 << j; j < i; j++, y <<= 1)
|
---|
370 | if ((y -= c[j]) < 0)
|
---|
371 | return 2; /* bad input: more codes than bits */
|
---|
372 | if ((y -= c[i]) < 0)
|
---|
373 | return 2;
|
---|
374 | c[i] += y;
|
---|
375 |
|
---|
376 |
|
---|
377 | /* Generate starting offsets into the value table for each length */
|
---|
378 | x[1] = j = 0;
|
---|
379 | p = c + 1; xp = x + 2;
|
---|
380 | while (--i) { /* note that i == g from above */
|
---|
381 | *xp++ = (j += *p++);
|
---|
382 | }
|
---|
383 |
|
---|
384 |
|
---|
385 | /* Make a table of values in order of bit lengths */
|
---|
386 | p = b; i = 0;
|
---|
387 | do {
|
---|
388 | if ((j = *p++) != 0)
|
---|
389 | v[x[j]++] = i;
|
---|
390 | } while (++i < n);
|
---|
391 | n = x[g]; /* set n to length of v */
|
---|
392 |
|
---|
393 |
|
---|
394 | /* Generate the Huffman codes and for each, make the table entries */
|
---|
395 | x[0] = i = 0; /* first Huffman code is zero */
|
---|
396 | p = v; /* grab values in bit order */
|
---|
397 | h = -1; /* no tables yet--level -1 */
|
---|
398 | w = -l; /* bits decoded == (l * h) */
|
---|
399 | u[0] = (struct huft *)NULL; /* just to keep compilers happy */
|
---|
400 | q = (struct huft *)NULL; /* ditto */
|
---|
401 | z = 0; /* ditto */
|
---|
402 |
|
---|
403 | /* go through the bit lengths (k already is bits in shortest code) */
|
---|
404 | for (; k <= g; k++)
|
---|
405 | {
|
---|
406 | a = c[k];
|
---|
407 | while (a--)
|
---|
408 | {
|
---|
409 | /* here i is the Huffman code of length k bits for value *p */
|
---|
410 | /* make tables up to required level */
|
---|
411 | while (k > w + l)
|
---|
412 | {
|
---|
413 | h++;
|
---|
414 | w += l; /* previous table always l bits */
|
---|
415 |
|
---|
416 | /* compute minimum size table less than or equal to l bits */
|
---|
417 | z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
|
---|
418 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
|
---|
419 | { /* too few codes for k-w bit table */
|
---|
420 | f -= a + 1; /* deduct codes from patterns left */
|
---|
421 | xp = c + k;
|
---|
422 | if (j < z)
|
---|
423 | while (++j < z) /* try smaller tables up to z bits */
|
---|
424 | {
|
---|
425 | if ((f <<= 1) <= *++xp)
|
---|
426 | break; /* enough codes to use up j bits */
|
---|
427 | f -= *xp; /* else deduct codes from patterns */
|
---|
428 | }
|
---|
429 | }
|
---|
430 | z = 1 << j; /* table entries for j-bit table */
|
---|
431 |
|
---|
432 | /* allocate and link in new table */
|
---|
433 | if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
|
---|
434 | (struct huft *)NULL)
|
---|
435 | {
|
---|
436 | if (h)
|
---|
437 | huft_free(u[0]);
|
---|
438 | return 3; /* not enough memory */
|
---|
439 | }
|
---|
440 | hufts += z + 1; /* track memory usage */
|
---|
441 | *t = q + 1; /* link to list for huft_free() */
|
---|
442 | *(t = &(q->v.t)) = (struct huft *)NULL;
|
---|
443 | u[h] = ++q; /* table starts after link */
|
---|
444 |
|
---|
445 | /* connect to last table, if there is one */
|
---|
446 | if (h)
|
---|
447 | {
|
---|
448 | x[h] = i; /* save pattern for backing up */
|
---|
449 | r.b = (uch)l; /* bits to dump before this table */
|
---|
450 | r.e = (uch)(16 + j); /* bits in this table */
|
---|
451 | r.v.t = q; /* pointer to this table */
|
---|
452 | j = i >> (w - l); /* (get around Turbo C bug) */
|
---|
453 | u[h-1][j] = r; /* connect to last table */
|
---|
454 | }
|
---|
455 | }
|
---|
456 |
|
---|
457 | /* set up table entry in r */
|
---|
458 | r.b = (uch)(k - w);
|
---|
459 | if (p >= v + n)
|
---|
460 | r.e = 99; /* out of values--invalid code */
|
---|
461 | else if (*p < s)
|
---|
462 | {
|
---|
463 | r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
|
---|
464 | r.v.n = (ush)(*p); /* simple code is just the value */
|
---|
465 | p++; /* one compiler does not like *p++ */
|
---|
466 | }
|
---|
467 | else
|
---|
468 | {
|
---|
469 | r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
|
---|
470 | r.v.n = d[*p++ - s];
|
---|
471 | }
|
---|
472 |
|
---|
473 | /* fill code-like entries with r */
|
---|
474 | f = 1 << (k - w);
|
---|
475 | for (j = i >> w; j < z; j += f)
|
---|
476 | q[j] = r;
|
---|
477 |
|
---|
478 | /* backwards increment the k-bit code i */
|
---|
479 | for (j = 1 << (k - 1); i & j; j >>= 1)
|
---|
480 | i ^= j;
|
---|
481 | i ^= j;
|
---|
482 |
|
---|
483 | /* backup over finished tables */
|
---|
484 | while ((i & ((1 << w) - 1)) != x[h])
|
---|
485 | {
|
---|
486 | h--; /* don't need to update q */
|
---|
487 | w -= l;
|
---|
488 | }
|
---|
489 | }
|
---|
490 | }
|
---|
491 |
|
---|
492 |
|
---|
493 | /* Return true (1) if we were given an incomplete table */
|
---|
494 | return y != 0 && g != 1;
|
---|
495 | }
|
---|
496 |
|
---|
497 |
|
---|
498 |
|
---|
499 | int huft_free(t)
|
---|
500 | struct huft *t; /* table to free */
|
---|
501 | /* Free the malloc'ed tables built by huft_build(), which makes a linked
|
---|
502 | list of the tables it made, with the links in a dummy first entry of
|
---|
503 | each table. */
|
---|
504 | {
|
---|
505 | register struct huft *p, *q;
|
---|
506 |
|
---|
507 |
|
---|
508 | /* Go through linked list, freeing from the malloced (t[-1]) address. */
|
---|
509 | p = t;
|
---|
510 | while (p != (struct huft *)NULL)
|
---|
511 | {
|
---|
512 | q = (--p)->v.t;
|
---|
513 | free((char*)p);
|
---|
514 | p = q;
|
---|
515 | }
|
---|
516 | return 0;
|
---|
517 | }
|
---|
518 |
|
---|
519 |
|
---|
520 | int inflate_codes(tl, td, bl, bd)
|
---|
521 | struct huft *tl, *td; /* literal/length and distance decoder tables */
|
---|
522 | int bl, bd; /* number of bits decoded by tl[] and td[] */
|
---|
523 | /* inflate (decompress) the codes in a deflated (compressed) block.
|
---|
524 | Return an error code or zero if it all goes ok. */
|
---|
525 | {
|
---|
526 | register unsigned e; /* table entry flag/number of extra bits */
|
---|
527 | unsigned n, d; /* length and index for copy */
|
---|
528 | unsigned w; /* current window position */
|
---|
529 | struct huft *t; /* pointer to table entry */
|
---|
530 | unsigned ml, md; /* masks for bl and bd bits */
|
---|
531 | register ulg b; /* bit buffer */
|
---|
532 | register unsigned k; /* number of bits in bit buffer */
|
---|
533 |
|
---|
534 |
|
---|
535 | /* make local copies of globals */
|
---|
536 | b = bb; /* initialize bit buffer */
|
---|
537 | k = bk;
|
---|
538 | w = wp; /* initialize window position */
|
---|
539 |
|
---|
540 | /* inflate the coded data */
|
---|
541 | ml = mask_bits[bl]; /* precompute masks for speed */
|
---|
542 | md = mask_bits[bd];
|
---|
543 | for (;;) /* do until end of block */
|
---|
544 | {
|
---|
545 | NEEDBITS((unsigned)bl)
|
---|
546 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
|
---|
547 | do {
|
---|
548 | if (e == 99)
|
---|
549 | return 1;
|
---|
550 | DUMPBITS(t->b)
|
---|
551 | e -= 16;
|
---|
552 | NEEDBITS(e)
|
---|
553 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
|
---|
554 | DUMPBITS(t->b)
|
---|
555 | if (e == 16) /* then it's a literal */
|
---|
556 | {
|
---|
557 | slide[w++] = (uch)t->v.n;
|
---|
558 | Tracevv((stderr, "%c", slide[w-1]));
|
---|
559 | if (w == WSIZE)
|
---|
560 | {
|
---|
561 | flush_output(w);
|
---|
562 | w = 0;
|
---|
563 | }
|
---|
564 | }
|
---|
565 | else /* it's an EOB or a length */
|
---|
566 | {
|
---|
567 | /* exit if end of block */
|
---|
568 | if (e == 15)
|
---|
569 | break;
|
---|
570 |
|
---|
571 | /* get length of block to copy */
|
---|
572 | NEEDBITS(e)
|
---|
573 | n = t->v.n + ((unsigned)b & mask_bits[e]);
|
---|
574 | DUMPBITS(e);
|
---|
575 |
|
---|
576 | /* decode distance of block to copy */
|
---|
577 | NEEDBITS((unsigned)bd)
|
---|
578 | if ((e = (t = td + ((unsigned)b & md))->e) > 16)
|
---|
579 | do {
|
---|
580 | if (e == 99)
|
---|
581 | return 1;
|
---|
582 | DUMPBITS(t->b)
|
---|
583 | e -= 16;
|
---|
584 | NEEDBITS(e)
|
---|
585 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
|
---|
586 | DUMPBITS(t->b)
|
---|
587 | NEEDBITS(e)
|
---|
588 | d = w - t->v.n - ((unsigned)b & mask_bits[e]);
|
---|
589 | DUMPBITS(e)
|
---|
590 | Tracevv((stderr,"\\[%d,%d]", w-d, n));
|
---|
591 |
|
---|
592 | /* do the copy */
|
---|
593 | do {
|
---|
594 | n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
|
---|
595 | #if !defined(NOMEMCPY) && !defined(DEBUG)
|
---|
596 | if (w - d >= e) /* (this test assumes unsigned comparison) */
|
---|
597 | {
|
---|
598 | memcpy(slide + w, slide + d, e);
|
---|
599 | w += e;
|
---|
600 | d += e;
|
---|
601 | }
|
---|
602 | else /* do it slow to avoid memcpy() overlap */
|
---|
603 | #endif /* !NOMEMCPY */
|
---|
604 | do {
|
---|
605 | slide[w++] = slide[d++];
|
---|
606 | Tracevv((stderr, "%c", slide[w-1]));
|
---|
607 | } while (--e);
|
---|
608 | if (w == WSIZE)
|
---|
609 | {
|
---|
610 | flush_output(w);
|
---|
611 | w = 0;
|
---|
612 | }
|
---|
613 | } while (n);
|
---|
614 | }
|
---|
615 | }
|
---|
616 |
|
---|
617 |
|
---|
618 | /* restore the globals from the locals */
|
---|
619 | wp = w; /* restore global window pointer */
|
---|
620 | bb = b; /* restore global bit buffer */
|
---|
621 | bk = k;
|
---|
622 |
|
---|
623 | /* done */
|
---|
624 | return 0;
|
---|
625 | }
|
---|
626 |
|
---|
627 |
|
---|
628 |
|
---|
629 | int inflate_stored()
|
---|
630 | /* "decompress" an inflated type 0 (stored) block. */
|
---|
631 | {
|
---|
632 | unsigned n; /* number of bytes in block */
|
---|
633 | unsigned w; /* current window position */
|
---|
634 | register ulg b; /* bit buffer */
|
---|
635 | register unsigned k; /* number of bits in bit buffer */
|
---|
636 |
|
---|
637 |
|
---|
638 | /* make local copies of globals */
|
---|
639 | b = bb; /* initialize bit buffer */
|
---|
640 | k = bk;
|
---|
641 | w = wp; /* initialize window position */
|
---|
642 |
|
---|
643 |
|
---|
644 | /* go to byte boundary */
|
---|
645 | n = k & 7;
|
---|
646 | DUMPBITS(n);
|
---|
647 |
|
---|
648 |
|
---|
649 | /* get the length and its complement */
|
---|
650 | NEEDBITS(16)
|
---|
651 | n = ((unsigned)b & 0xffff);
|
---|
652 | DUMPBITS(16)
|
---|
653 | NEEDBITS(16)
|
---|
654 | if (n != (unsigned)((~b) & 0xffff))
|
---|
655 | return 1; /* error in compressed data */
|
---|
656 | DUMPBITS(16)
|
---|
657 |
|
---|
658 |
|
---|
659 | /* read and output the compressed data */
|
---|
660 | while (n--)
|
---|
661 | {
|
---|
662 | NEEDBITS(8)
|
---|
663 | slide[w++] = (uch)b;
|
---|
664 | if (w == WSIZE)
|
---|
665 | {
|
---|
666 | flush_output(w);
|
---|
667 | w = 0;
|
---|
668 | }
|
---|
669 | DUMPBITS(8)
|
---|
670 | }
|
---|
671 |
|
---|
672 |
|
---|
673 | /* restore the globals from the locals */
|
---|
674 | wp = w; /* restore global window pointer */
|
---|
675 | bb = b; /* restore global bit buffer */
|
---|
676 | bk = k;
|
---|
677 | return 0;
|
---|
678 | }
|
---|
679 |
|
---|
680 |
|
---|
681 |
|
---|
682 | int inflate_fixed()
|
---|
683 | /* decompress an inflated type 1 (fixed Huffman codes) block. We should
|
---|
684 | either replace this with a custom decoder, or at least precompute the
|
---|
685 | Huffman tables. */
|
---|
686 | {
|
---|
687 | int i; /* temporary variable */
|
---|
688 | struct huft *tl; /* literal/length code table */
|
---|
689 | struct huft *td; /* distance code table */
|
---|
690 | int bl; /* lookup bits for tl */
|
---|
691 | int bd; /* lookup bits for td */
|
---|
692 | unsigned l[288]; /* length list for huft_build */
|
---|
693 |
|
---|
694 |
|
---|
695 | /* set up literal table */
|
---|
696 | for (i = 0; i < 144; i++)
|
---|
697 | l[i] = 8;
|
---|
698 | for (; i < 256; i++)
|
---|
699 | l[i] = 9;
|
---|
700 | for (; i < 280; i++)
|
---|
701 | l[i] = 7;
|
---|
702 | for (; i < 288; i++) /* make a complete, but wrong code set */
|
---|
703 | l[i] = 8;
|
---|
704 | bl = 7;
|
---|
705 | if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
|
---|
706 | return i;
|
---|
707 |
|
---|
708 |
|
---|
709 | /* set up distance table */
|
---|
710 | for (i = 0; i < 30; i++) /* make an incomplete code set */
|
---|
711 | l[i] = 5;
|
---|
712 | bd = 5;
|
---|
713 | if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
|
---|
714 | {
|
---|
715 | huft_free(tl);
|
---|
716 | return i;
|
---|
717 | }
|
---|
718 |
|
---|
719 |
|
---|
720 | /* decompress until an end-of-block code */
|
---|
721 | if (inflate_codes(tl, td, bl, bd))
|
---|
722 | return 1;
|
---|
723 |
|
---|
724 |
|
---|
725 | /* free the decoding tables, return */
|
---|
726 | huft_free(tl);
|
---|
727 | huft_free(td);
|
---|
728 | return 0;
|
---|
729 | }
|
---|
730 |
|
---|
731 |
|
---|
732 |
|
---|
733 | int inflate_dynamic()
|
---|
734 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */
|
---|
735 | {
|
---|
736 | int i; /* temporary variables */
|
---|
737 | unsigned j;
|
---|
738 | unsigned l; /* last length */
|
---|
739 | unsigned m; /* mask for bit lengths table */
|
---|
740 | unsigned n; /* number of lengths to get */
|
---|
741 | unsigned w; /* current window position */
|
---|
742 | struct huft *tl; /* literal/length code table */
|
---|
743 | struct huft *td; /* distance code table */
|
---|
744 | int bl; /* lookup bits for tl */
|
---|
745 | int bd; /* lookup bits for td */
|
---|
746 | unsigned nb; /* number of bit length codes */
|
---|
747 | unsigned nl; /* number of literal/length codes */
|
---|
748 | unsigned nd; /* number of distance codes */
|
---|
749 | #ifdef PKZIP_BUG_WORKAROUND
|
---|
750 | unsigned ll[288+32]; /* literal/length and distance code lengths */
|
---|
751 | #else
|
---|
752 | unsigned ll[286+30]; /* literal/length and distance code lengths */
|
---|
753 | #endif
|
---|
754 | register ulg b; /* bit buffer */
|
---|
755 | register unsigned k; /* number of bits in bit buffer */
|
---|
756 |
|
---|
757 |
|
---|
758 | /* make local bit buffer */
|
---|
759 | b = bb;
|
---|
760 | k = bk;
|
---|
761 | w = wp;
|
---|
762 |
|
---|
763 |
|
---|
764 | /* read in table lengths */
|
---|
765 | NEEDBITS(5)
|
---|
766 | nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
|
---|
767 | DUMPBITS(5)
|
---|
768 | NEEDBITS(5)
|
---|
769 | nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
|
---|
770 | DUMPBITS(5)
|
---|
771 | NEEDBITS(4)
|
---|
772 | nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
|
---|
773 | DUMPBITS(4)
|
---|
774 | #ifdef PKZIP_BUG_WORKAROUND
|
---|
775 | if (nl > 288 || nd > 32)
|
---|
776 | #else
|
---|
777 | if (nl > 286 || nd > 30)
|
---|
778 | #endif
|
---|
779 | return 1; /* bad lengths */
|
---|
780 |
|
---|
781 |
|
---|
782 | /* read in bit-length-code lengths */
|
---|
783 | for (j = 0; j < nb; j++)
|
---|
784 | {
|
---|
785 | NEEDBITS(3)
|
---|
786 | ll[border[j]] = (unsigned)b & 7;
|
---|
787 | DUMPBITS(3)
|
---|
788 | }
|
---|
789 | for (; j < 19; j++)
|
---|
790 | ll[border[j]] = 0;
|
---|
791 |
|
---|
792 |
|
---|
793 | /* build decoding table for trees--single level, 7 bit lookup */
|
---|
794 | bl = 7;
|
---|
795 | if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
|
---|
796 | {
|
---|
797 | if (i == 1)
|
---|
798 | huft_free(tl);
|
---|
799 | return i; /* incomplete code set */
|
---|
800 | }
|
---|
801 |
|
---|
802 | if (tl == NULL) /* Grrrhhh */
|
---|
803 | return 2;
|
---|
804 |
|
---|
805 | /* read in literal and distance code lengths */
|
---|
806 | n = nl + nd;
|
---|
807 | m = mask_bits[bl];
|
---|
808 | i = l = 0;
|
---|
809 | while ((unsigned)i < n)
|
---|
810 | {
|
---|
811 | NEEDBITS((unsigned)bl)
|
---|
812 | j = (td = tl + ((unsigned)b & m))->b;
|
---|
813 | DUMPBITS(j)
|
---|
814 | j = td->v.n;
|
---|
815 | if (j < 16) /* length of code in bits (0..15) */
|
---|
816 | ll[i++] = l = j; /* save last length in l */
|
---|
817 | else if (j == 16) /* repeat last length 3 to 6 times */
|
---|
818 | {
|
---|
819 | NEEDBITS(2)
|
---|
820 | j = 3 + ((unsigned)b & 3);
|
---|
821 | DUMPBITS(2)
|
---|
822 | if ((unsigned)i + j > n)
|
---|
823 | return 1;
|
---|
824 | while (j--)
|
---|
825 | ll[i++] = l;
|
---|
826 | }
|
---|
827 | else if (j == 17) /* 3 to 10 zero length codes */
|
---|
828 | {
|
---|
829 | NEEDBITS(3)
|
---|
830 | j = 3 + ((unsigned)b & 7);
|
---|
831 | DUMPBITS(3)
|
---|
832 | if ((unsigned)i + j > n)
|
---|
833 | return 1;
|
---|
834 | while (j--)
|
---|
835 | ll[i++] = 0;
|
---|
836 | l = 0;
|
---|
837 | }
|
---|
838 | else /* j == 18: 11 to 138 zero length codes */
|
---|
839 | {
|
---|
840 | NEEDBITS(7)
|
---|
841 | j = 11 + ((unsigned)b & 0x7f);
|
---|
842 | DUMPBITS(7)
|
---|
843 | if ((unsigned)i + j > n)
|
---|
844 | return 1;
|
---|
845 | while (j--)
|
---|
846 | ll[i++] = 0;
|
---|
847 | l = 0;
|
---|
848 | }
|
---|
849 | }
|
---|
850 |
|
---|
851 |
|
---|
852 | /* free decoding table for trees */
|
---|
853 | huft_free(tl);
|
---|
854 |
|
---|
855 |
|
---|
856 | /* restore the global bit buffer */
|
---|
857 | bb = b;
|
---|
858 | bk = k;
|
---|
859 |
|
---|
860 |
|
---|
861 | /* build the decoding tables for literal/length and distance codes */
|
---|
862 | bl = lbits;
|
---|
863 | if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
|
---|
864 | {
|
---|
865 | if (i == 1) {
|
---|
866 | Trace ((stderr, " incomplete literal tree\n"));
|
---|
867 | huft_free(tl);
|
---|
868 | }
|
---|
869 | return i; /* incomplete code set */
|
---|
870 | }
|
---|
871 | bd = dbits;
|
---|
872 | if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
|
---|
873 | {
|
---|
874 | if (i == 1) {
|
---|
875 | Trace ((stderr, " incomplete distance tree\n"));
|
---|
876 | #ifdef PKZIP_BUG_WORKAROUND
|
---|
877 | i = 0;
|
---|
878 | }
|
---|
879 | #else
|
---|
880 | huft_free(td);
|
---|
881 | }
|
---|
882 | huft_free(tl);
|
---|
883 | return i; /* incomplete code set */
|
---|
884 | #endif
|
---|
885 | }
|
---|
886 |
|
---|
887 |
|
---|
888 | /* decompress until an end-of-block code */
|
---|
889 | if (inflate_codes(tl, td, bl, bd))
|
---|
890 | return 1;
|
---|
891 |
|
---|
892 |
|
---|
893 | /* free the decoding tables, return */
|
---|
894 | huft_free(tl);
|
---|
895 | huft_free(td);
|
---|
896 | return 0;
|
---|
897 | }
|
---|
898 |
|
---|
899 |
|
---|
900 |
|
---|
901 | int inflate_block(e)
|
---|
902 | int *e; /* last block flag */
|
---|
903 | /* decompress an inflated block */
|
---|
904 | {
|
---|
905 | unsigned t; /* block type */
|
---|
906 | unsigned w; /* current window position */
|
---|
907 | register ulg b; /* bit buffer */
|
---|
908 | register unsigned k; /* number of bits in bit buffer */
|
---|
909 |
|
---|
910 |
|
---|
911 | /* make local bit buffer */
|
---|
912 | b = bb;
|
---|
913 | k = bk;
|
---|
914 | w = wp;
|
---|
915 |
|
---|
916 |
|
---|
917 | /* read in last block bit */
|
---|
918 | NEEDBITS(1)
|
---|
919 | *e = (int)b & 1;
|
---|
920 | DUMPBITS(1)
|
---|
921 |
|
---|
922 |
|
---|
923 | /* read in block type */
|
---|
924 | NEEDBITS(2)
|
---|
925 | t = (unsigned)b & 3;
|
---|
926 | DUMPBITS(2)
|
---|
927 |
|
---|
928 |
|
---|
929 | /* restore the global bit buffer */
|
---|
930 | bb = b;
|
---|
931 | bk = k;
|
---|
932 |
|
---|
933 |
|
---|
934 | /* inflate that block type */
|
---|
935 | if (t == 2)
|
---|
936 | return inflate_dynamic();
|
---|
937 | if (t == 0)
|
---|
938 | return inflate_stored();
|
---|
939 | if (t == 1)
|
---|
940 | return inflate_fixed();
|
---|
941 |
|
---|
942 |
|
---|
943 | /* bad block type */
|
---|
944 | return 2;
|
---|
945 | }
|
---|
946 |
|
---|
947 |
|
---|
948 |
|
---|
949 | int inflate()
|
---|
950 | /* decompress an inflated entry */
|
---|
951 | {
|
---|
952 | int e; /* last block flag */
|
---|
953 | int r; /* result code */
|
---|
954 | unsigned h; /* maximum struct huft's malloc'ed */
|
---|
955 |
|
---|
956 |
|
---|
957 | /* initialize window, bit buffer */
|
---|
958 | wp = 0;
|
---|
959 | bk = 0;
|
---|
960 | bb = 0;
|
---|
961 |
|
---|
962 |
|
---|
963 | /* decompress until the last block */
|
---|
964 | h = 0;
|
---|
965 | do {
|
---|
966 | hufts = 0;
|
---|
967 | if ((r = inflate_block(&e)) != 0)
|
---|
968 | return r;
|
---|
969 | if (hufts > h)
|
---|
970 | h = hufts;
|
---|
971 | } while (!e);
|
---|
972 |
|
---|
973 | /* Undo too much lookahead. The next read will be byte aligned so we
|
---|
974 | * can discard unused bits in the last meaningful byte.
|
---|
975 | */
|
---|
976 | while (bk >= 8) {
|
---|
977 | bk -= 8;
|
---|
978 | inptr--;
|
---|
979 | }
|
---|
980 |
|
---|
981 | /* flush out slide */
|
---|
982 | flush_output(wp);
|
---|
983 |
|
---|
984 |
|
---|
985 | /* return success */
|
---|
986 | Trace ((stderr, "<%u> ", h));
|
---|
987 | return 0;
|
---|
988 | }
|
---|