source: vendor/gcc/3.3.4/libjava/boehm.cc

Last change on this file was 1391, checked in by bird, 21 years ago

GCC v3.3.3 sources.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 16.4 KB
Line 
1// boehm.cc - interface between libjava and Boehm GC.
2
3/* Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation
4
5 This file is part of libgcj.
6
7This software is copyrighted work licensed under the terms of the
8Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9details. */
10
11#include <config.h>
12
13#include <stdio.h>
14
15#include <jvm.h>
16#include <gcj/cni.h>
17
18#include <java/lang/Class.h>
19#include <java/lang/reflect/Modifier.h>
20#include <java-interp.h>
21
22// More nastiness: the GC wants to define TRUE and FALSE. We don't
23// need the Java definitions (themselves a hack), so we undefine them.
24#undef TRUE
25#undef FALSE
26
27extern "C"
28{
29#include <private/gc_pmark.h>
30#include <gc_gcj.h>
31
32#ifdef THREAD_LOCAL_ALLOC
33# define GC_REDIRECT_TO_LOCAL
34# include <gc_local_alloc.h>
35#endif
36
37 // These aren't declared in any Boehm GC header.
38 void GC_finalize_all (void);
39 ptr_t GC_debug_generic_malloc (size_t size, int k, GC_EXTRA_PARAMS);
40};
41
42#define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
43 Top=GC_MARK_AND_PUSH((GC_PTR)Obj, Top, Limit, (GC_PTR *)Source)
44
45// `kind' index used when allocating Java arrays.
46static int array_kind_x;
47
48// Freelist used for Java arrays.
49static ptr_t *array_free_list;
50
51// Lock used to protect access to Boehm's GC_enable/GC_disable functions.
52static _Jv_Mutex_t disable_gc_mutex;
53
54
55
56
57// This is called by the GC during the mark phase. It marks a Java
58// object. We use `void *' arguments and return, and not what the
59// Boehm GC wants, to avoid pollution in our headers.
60void *
61_Jv_MarkObj (void *addr, void *msp, void *msl, void * /* env */)
62{
63 mse *mark_stack_ptr = (mse *) msp;
64 mse *mark_stack_limit = (mse *) msl;
65 jobject obj = (jobject) addr;
66
67 // FIXME: if env is 1, this object was allocated through the debug
68 // interface, and addr points to the beginning of the debug header.
69 // In that case, we should really add the size of the header to addr.
70
71 _Jv_VTable *dt = *(_Jv_VTable **) addr;
72 // The object might not yet have its vtable set, or it might
73 // really be an object on the freelist. In either case, the vtable slot
74 // will either be 0, or it will point to a cleared object.
75 // This assumes Java objects have size at least 3 words,
76 // including the header. But this should remain true, since this
77 // should only be used with debugging allocation or with large objects.
78 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
79 return mark_stack_ptr;
80 jclass klass = dt->clas;
81 ptr_t p;
82
83# ifndef JV_HASH_SYNCHRONIZATION
84 // Every object has a sync_info pointer.
85 p = (ptr_t) obj->sync_info;
86 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o1label);
87# endif
88 // Mark the object's class.
89 p = (ptr_t) klass;
90 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
91
92 if (__builtin_expect (klass == &java::lang::Class::class$, false))
93 {
94 // Currently we allocate some of the memory referenced from class objects
95 // as pointerfree memory, and then mark it more intelligently here.
96 // We ensure that the ClassClass mark descriptor forces invocation of
97 // this procedure.
98 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
99 // collector, we need to make sure that the class object is written whenever
100 // any of the subobjects are altered and may need rescanning. This may be tricky
101 // during construction, and this may not be the right way to do this with
102 // incremental collection.
103 // If we overflow the mark stack, we will rescan the class object, so we should
104 // be OK. The same applies if we redo the mark phase because win32 unmapped part
105 // of our root set. - HB
106 jclass c = (jclass) addr;
107
108 p = (ptr_t) c->name;
109 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c3label);
110 p = (ptr_t) c->superclass;
111 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c4label);
112 for (int i = 0; i < c->constants.size; ++i)
113 {
114 /* FIXME: We could make this more precise by using the tags -KKT */
115 p = (ptr_t) c->constants.data[i].p;
116 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5label);
117 }
118
119#ifdef INTERPRETER
120 if (_Jv_IsInterpretedClass (c))
121 {
122 p = (ptr_t) c->constants.tags;
123 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5alabel);
124 p = (ptr_t) c->constants.data;
125 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5blabel);
126 p = (ptr_t) c->vtable;
127 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5clabel);
128 }
129#endif
130
131 // If the class is an array, then the methods field holds a
132 // pointer to the element class. If the class is primitive,
133 // then the methods field holds a pointer to the array class.
134 p = (ptr_t) c->methods;
135 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c6label);
136
137 // The vtable might have been set, but the rest of the class
138 // could still be uninitialized. If this is the case, then
139 // c.isArray will SEGV. We check for this, and if it is the
140 // case we just return.
141 if (__builtin_expect (c->name == NULL, false))
142 return mark_stack_ptr;
143
144 if (! c->isArray() && ! c->isPrimitive())
145 {
146 // Scan each method in the cases where `methods' really
147 // points to a methods structure.
148 for (int i = 0; i < c->method_count; ++i)
149 {
150 p = (ptr_t) c->methods[i].name;
151 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
152 cm1label);
153 p = (ptr_t) c->methods[i].signature;
154 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
155 cm2label);
156 }
157 }
158
159 // Mark all the fields.
160 p = (ptr_t) c->fields;
161 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8label);
162 for (int i = 0; i < c->field_count; ++i)
163 {
164 _Jv_Field* field = &c->fields[i];
165
166#ifndef COMPACT_FIELDS
167 p = (ptr_t) field->name;
168 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8alabel);
169#endif
170 p = (ptr_t) field->type;
171 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8blabel);
172
173 // For the interpreter, we also need to mark the memory
174 // containing static members
175 if ((field->flags & java::lang::reflect::Modifier::STATIC))
176 {
177 p = (ptr_t) field->u.addr;
178 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8clabel);
179
180 // also, if the static member is a reference,
181 // mark also the value pointed to. We check for isResolved
182 // since marking can happen before memory is allocated for
183 // static members.
184 if (JvFieldIsRef (field) && field->isResolved())
185 {
186 jobject val = *(jobject*) field->u.addr;
187 p = (ptr_t) val;
188 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
189 c, c8elabel);
190 }
191 }
192 }
193
194 p = (ptr_t) c->vtable;
195 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c9label);
196 p = (ptr_t) c->interfaces;
197 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cAlabel);
198 for (int i = 0; i < c->interface_count; ++i)
199 {
200 p = (ptr_t) c->interfaces[i];
201 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cClabel);
202 }
203 p = (ptr_t) c->loader;
204 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cBlabel);
205 p = (ptr_t) c->arrayclass;
206 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cDlabel);
207 p = (ptr_t) c->protectionDomain;
208 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cPlabel);
209
210#ifdef INTERPRETER
211 if (_Jv_IsInterpretedClass (c))
212 {
213 _Jv_InterpClass* ic = (_Jv_InterpClass*) c;
214
215 p = (ptr_t) ic->interpreted_methods;
216 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cElabel);
217
218 for (int i = 0; i < c->method_count; i++)
219 {
220 p = (ptr_t) ic->interpreted_methods[i];
221 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, \
222 cFlabel);
223
224 // Mark the direct-threaded code.
225 if ((c->methods[i].accflags
226 & java::lang::reflect::Modifier::NATIVE) == 0)
227 {
228 _Jv_InterpMethod *im
229 = (_Jv_InterpMethod *) ic->interpreted_methods[i];
230 if (im)
231 {
232 p = (ptr_t) im->prepared;
233 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, \
234 cFlabel);
235 }
236 }
237
238 // The interpreter installs a heap-allocated trampoline
239 // here, so we'll mark it.
240 p = (ptr_t) c->methods[i].ncode;
241 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
242 cm3label);
243 }
244
245 p = (ptr_t) ic->field_initializers;
246 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cGlabel);
247
248 }
249#endif
250
251 }
252 else
253 {
254 // NOTE: each class only holds information about the class
255 // itself. So we must do the marking for the entire inheritance
256 // tree in order to mark all fields. FIXME: what about
257 // interfaces? We skip Object here, because Object only has a
258 // sync_info, and we handled that earlier.
259 // Note: occasionally `klass' can be null. For instance, this
260 // can happen if a GC occurs between the point where an object
261 // is allocated and where the vtbl slot is set.
262 while (klass && klass != &java::lang::Object::class$)
263 {
264 jfieldID field = JvGetFirstInstanceField (klass);
265 jint max = JvNumInstanceFields (klass);
266
267 for (int i = 0; i < max; ++i)
268 {
269 if (JvFieldIsRef (field))
270 {
271 jobject val = JvGetObjectField (obj, field);
272 p = (ptr_t) val;
273 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
274 obj, elabel);
275 }
276 field = field->getNextField ();
277 }
278 klass = klass->getSuperclass();
279 }
280 }
281
282 return mark_stack_ptr;
283}
284
285// This is called by the GC during the mark phase. It marks a Java
286// array (of objects). We use `void *' arguments and return, and not
287// what the Boehm GC wants, to avoid pollution in our headers.
288void *
289_Jv_MarkArray (void *addr, void *msp, void *msl, void * /*env*/)
290{
291 mse *mark_stack_ptr = (mse *) msp;
292 mse *mark_stack_limit = (mse *) msl;
293 jobjectArray array = (jobjectArray) addr;
294
295 _Jv_VTable *dt = *(_Jv_VTable **) addr;
296 // Assumes size >= 3 words. That's currently true since arrays have
297 // a vtable, sync pointer, and size. If the sync pointer goes away,
298 // we may need to round up the size.
299 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
300 return mark_stack_ptr;
301 jclass klass = dt->clas;
302 ptr_t p;
303
304# ifndef JV_HASH_SYNCHRONIZATION
305 // Every object has a sync_info pointer.
306 p = (ptr_t) array->sync_info;
307 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e1label);
308# endif
309 // Mark the object's class.
310 p = (ptr_t) klass;
311 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, &(dt -> clas), o2label);
312
313 for (int i = 0; i < JvGetArrayLength (array); ++i)
314 {
315 jobject obj = elements (array)[i];
316 p = (ptr_t) obj;
317 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e2label);
318 }
319
320 return mark_stack_ptr;
321}
322
323// Generate a GC marking descriptor for a class.
324//
325// We assume that the gcj mark proc has index 0. This is a dubious assumption,
326// since another one could be registered first. But the compiler also
327// knows this, so in that case everything else will break, too.
328#define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
329void *
330_Jv_BuildGCDescr(jclass)
331{
332 /* FIXME: We should really look at the class and build the descriptor. */
333 return (void *)(GCJ_DEFAULT_DESCR);
334}
335
336// Allocate some space that is known to be pointer-free.
337void *
338_Jv_AllocBytes (jsize size)
339{
340 void *r = GC_MALLOC_ATOMIC (size);
341 // We have to explicitly zero memory here, as the GC doesn't
342 // guarantee that PTRFREE allocations are zeroed. Note that we
343 // don't have to do this for other allocation types because we set
344 // the `ok_init' flag in the type descriptor.
345 memset (r, 0, size);
346 return r;
347}
348
349// Allocate space for a new Java array.
350// Used only for arrays of objects.
351void *
352_Jv_AllocArray (jsize size, jclass klass)
353{
354 void *obj;
355 const jsize min_heap_addr = 16*1024;
356 // A heuristic. If size is less than this value, the size
357 // stored in the array can't possibly be misinterpreted as
358 // a pointer. Thus we lose nothing by scanning the object
359 // completely conservatively, since no misidentification can
360 // take place.
361
362#ifdef GC_DEBUG
363 // There isn't much to lose by scanning this conservatively.
364 // If we didn't, the mark proc would have to understand that
365 // it needed to skip the header.
366 obj = GC_MALLOC(size);
367#else
368 if (size < min_heap_addr)
369 obj = GC_MALLOC(size);
370 else
371 obj = GC_generic_malloc (size, array_kind_x);
372#endif
373 *((_Jv_VTable **) obj) = klass->vtable;
374 return obj;
375}
376
377/* Allocate space for a new non-Java object, which does not have the usual
378 Java object header but may contain pointers to other GC'ed objects. */
379void *
380_Jv_AllocRawObj (jsize size)
381{
382 return (void *) GC_MALLOC (size);
383}
384
385static void
386call_finalizer (GC_PTR obj, GC_PTR client_data)
387{
388 _Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
389 jobject jobj = (jobject) obj;
390
391 (*fn) (jobj);
392}
393
394void
395_Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
396{
397 GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
398 NULL, NULL);
399}
400
401void
402_Jv_RunFinalizers (void)
403{
404 GC_invoke_finalizers ();
405}
406
407void
408_Jv_RunAllFinalizers (void)
409{
410 GC_finalize_all ();
411}
412
413void
414_Jv_RunGC (void)
415{
416 GC_gcollect ();
417}
418
419long
420_Jv_GCTotalMemory (void)
421{
422 return GC_get_heap_size ();
423}
424
425long
426_Jv_GCFreeMemory (void)
427{
428 return GC_get_free_bytes ();
429}
430
431void
432_Jv_GCSetInitialHeapSize (size_t size)
433{
434 size_t current = GC_get_heap_size ();
435 if (size > current)
436 GC_expand_hp (size - current);
437}
438
439void
440_Jv_GCSetMaximumHeapSize (size_t size)
441{
442 GC_set_max_heap_size ((GC_word) size);
443}
444
445// From boehm's misc.c
446extern "C" void GC_enable();
447extern "C" void GC_disable();
448
449void
450_Jv_DisableGC (void)
451{
452 _Jv_MutexLock (&disable_gc_mutex);
453 GC_disable();
454 _Jv_MutexUnlock (&disable_gc_mutex);
455}
456
457void
458_Jv_EnableGC (void)
459{
460 _Jv_MutexLock (&disable_gc_mutex);
461 GC_enable();
462 _Jv_MutexUnlock (&disable_gc_mutex);
463}
464
465static void * handle_out_of_memory(size_t)
466{
467 _Jv_ThrowNoMemory();
468}
469
470void
471_Jv_InitGC (void)
472{
473 int proc;
474
475 // Ignore pointers that do not point to the start of an object.
476 GC_all_interior_pointers = 0;
477
478 // Configure the collector to use the bitmap marking descriptors that we
479 // stash in the class vtable.
480 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
481
482 // Cause an out of memory error to be thrown from the allocators,
483 // instead of returning 0. This is cheaper than checking on allocation.
484 GC_oom_fn = handle_out_of_memory;
485
486 GC_java_finalization = 1;
487
488 // We use a different mark procedure for object arrays. This code
489 // configures a different object `kind' for object array allocation and
490 // marking. FIXME: see above.
491 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
492 * sizeof (ptr_t),
493 PTRFREE);
494 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
495
496 proc = GC_n_mark_procs++;
497 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkArray;
498
499 array_kind_x = GC_n_kinds++;
500 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
501 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
502 GC_obj_kinds[array_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
503 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
504 GC_obj_kinds[array_kind_x].ok_init = TRUE;
505
506 _Jv_MutexInit (&disable_gc_mutex);
507}
508
509#ifdef JV_HASH_SYNCHRONIZATION
510// Allocate an object with a fake vtable pointer, which causes only
511// the first field (beyond the fake vtable pointer) to be traced.
512// Eventually this should probably be generalized.
513
514static _Jv_VTable trace_one_vtable = {
515 0, // class pointer
516 (void *)(2 * sizeof(void *)),
517 // descriptor; scan 2 words incl. vtable ptr.
518 // Least significant bits must be zero to
519 // identify this as a length descriptor
520 {0} // First method
521};
522
523void *
524_Jv_AllocTraceOne (jsize size /* includes vtable slot */)
525{
526 return GC_GCJ_MALLOC (size, &trace_one_vtable);
527}
528
529// Ditto for two words.
530// the first field (beyond the fake vtable pointer) to be traced.
531// Eventually this should probably be generalized.
532
533static _Jv_VTable trace_two_vtable =
534{
535 0, // class pointer
536 (void *)(3 * sizeof(void *)),
537 // descriptor; scan 3 words incl. vtable ptr.
538 {0} // First method
539};
540
541void *
542_Jv_AllocTraceTwo (jsize size /* includes vtable slot */)
543{
544 return GC_GCJ_MALLOC (size, &trace_two_vtable);
545}
546
547#endif /* JV_HASH_SYNCHRONIZATION */
548
549void
550_Jv_GCInitializeFinalizers (void (*notifier) (void))
551{
552 GC_finalize_on_demand = 1;
553 GC_finalizer_notifier = notifier;
554}
555
556void
557_Jv_GCRegisterDisappearingLink (jobject *objp)
558{
559 GC_general_register_disappearing_link ((GC_PTR *) objp, (GC_PTR) *objp);
560}
561
562jboolean
563_Jv_GCCanReclaimSoftReference (jobject)
564{
565 // For now, always reclaim soft references. FIXME.
566 return true;
567}
Note: See TracBrowser for help on using the repository browser.