1 | /* Extended regular expression matching and search library,
|
---|
2 | version 0.12.
|
---|
3 | (Implements POSIX draft P1003.2/D11.2, except for some of the
|
---|
4 | internationalization features.)
|
---|
5 | Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
|
---|
6 | This file is part of the GNU C Library.
|
---|
7 |
|
---|
8 | The GNU C Library is free software; you can redistribute it and/or
|
---|
9 | modify it under the terms of the GNU Lesser General Public
|
---|
10 | License as published by the Free Software Foundation; either
|
---|
11 | version 2.1 of the License, or (at your option) any later version.
|
---|
12 |
|
---|
13 | The GNU C Library is distributed in the hope that it will be useful,
|
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
16 | Lesser General Public License for more details.
|
---|
17 |
|
---|
18 | You should have received a copy of the GNU Lesser General Public
|
---|
19 | License along with the GNU C Library; if not, write to the Free
|
---|
20 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
21 | 02111-1307 USA. */
|
---|
22 |
|
---|
23 | /* This file has been modified for usage in libiberty. It includes "xregex.h"
|
---|
24 | instead of <regex.h>. The "xregex.h" header file renames all external
|
---|
25 | routines with an "x" prefix so they do not collide with the native regex
|
---|
26 | routines or with other components regex routines. */
|
---|
27 | /* AIX requires this to be the first thing in the file. */
|
---|
28 | #if defined _AIX && !defined REGEX_MALLOC
|
---|
29 | #pragma alloca
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #undef _GNU_SOURCE
|
---|
33 | #define _GNU_SOURCE
|
---|
34 |
|
---|
35 | #ifdef HAVE_CONFIG_H
|
---|
36 | # include <config.h>
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | #ifndef PARAMS
|
---|
40 | # if defined __GNUC__ || (defined __STDC__ && __STDC__)
|
---|
41 | # define PARAMS(args) args
|
---|
42 | # else
|
---|
43 | # define PARAMS(args) ()
|
---|
44 | # endif /* GCC. */
|
---|
45 | #endif /* Not PARAMS. */
|
---|
46 |
|
---|
47 | #ifndef INSIDE_RECURSION
|
---|
48 |
|
---|
49 | # if defined STDC_HEADERS && !defined emacs
|
---|
50 | # include <stddef.h>
|
---|
51 | # else
|
---|
52 | /* We need this for `regex.h', and perhaps for the Emacs include files. */
|
---|
53 | # include <sys/types.h>
|
---|
54 | # endif
|
---|
55 |
|
---|
56 | # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
|
---|
57 |
|
---|
58 | /* For platform which support the ISO C amendement 1 functionality we
|
---|
59 | support user defined character classes. */
|
---|
60 | # if defined _LIBC || WIDE_CHAR_SUPPORT
|
---|
61 | /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
|
---|
62 | # include <wchar.h>
|
---|
63 | # include <wctype.h>
|
---|
64 | # endif
|
---|
65 |
|
---|
66 | # ifdef _LIBC
|
---|
67 | /* We have to keep the namespace clean. */
|
---|
68 | # define regfree(preg) __regfree (preg)
|
---|
69 | # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
|
---|
70 | # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
|
---|
71 | # define regerror(errcode, preg, errbuf, errbuf_size) \
|
---|
72 | __regerror(errcode, preg, errbuf, errbuf_size)
|
---|
73 | # define re_set_registers(bu, re, nu, st, en) \
|
---|
74 | __re_set_registers (bu, re, nu, st, en)
|
---|
75 | # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
|
---|
76 | __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
|
---|
77 | # define re_match(bufp, string, size, pos, regs) \
|
---|
78 | __re_match (bufp, string, size, pos, regs)
|
---|
79 | # define re_search(bufp, string, size, startpos, range, regs) \
|
---|
80 | __re_search (bufp, string, size, startpos, range, regs)
|
---|
81 | # define re_compile_pattern(pattern, length, bufp) \
|
---|
82 | __re_compile_pattern (pattern, length, bufp)
|
---|
83 | # define re_set_syntax(syntax) __re_set_syntax (syntax)
|
---|
84 | # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
|
---|
85 | __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
|
---|
86 | # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
|
---|
87 |
|
---|
88 | # define btowc __btowc
|
---|
89 |
|
---|
90 | /* We are also using some library internals. */
|
---|
91 | # include <locale/localeinfo.h>
|
---|
92 | # include <locale/elem-hash.h>
|
---|
93 | # include <langinfo.h>
|
---|
94 | # include <locale/coll-lookup.h>
|
---|
95 | # endif
|
---|
96 |
|
---|
97 | /* This is for other GNU distributions with internationalized messages. */
|
---|
98 | # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
|
---|
99 | # include <libintl.h>
|
---|
100 | # ifdef _LIBC
|
---|
101 | # undef gettext
|
---|
102 | # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
|
---|
103 | # endif
|
---|
104 | # else
|
---|
105 | # define gettext(msgid) (msgid)
|
---|
106 | # endif
|
---|
107 |
|
---|
108 | # ifndef gettext_noop
|
---|
109 | /* This define is so xgettext can find the internationalizable
|
---|
110 | strings. */
|
---|
111 | # define gettext_noop(String) String
|
---|
112 | # endif
|
---|
113 |
|
---|
114 | /* The `emacs' switch turns on certain matching commands
|
---|
115 | that make sense only in Emacs. */
|
---|
116 | # ifdef emacs
|
---|
117 |
|
---|
118 | # include "lisp.h"
|
---|
119 | # include "buffer.h"
|
---|
120 | # include "syntax.h"
|
---|
121 |
|
---|
122 | # else /* not emacs */
|
---|
123 |
|
---|
124 | /* If we are not linking with Emacs proper,
|
---|
125 | we can't use the relocating allocator
|
---|
126 | even if config.h says that we can. */
|
---|
127 | # undef REL_ALLOC
|
---|
128 |
|
---|
129 | # if defined STDC_HEADERS || defined _LIBC
|
---|
130 | # include <stdlib.h>
|
---|
131 | # else
|
---|
132 | char *malloc ();
|
---|
133 | char *realloc ();
|
---|
134 | # endif
|
---|
135 |
|
---|
136 | /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
|
---|
137 | If nothing else has been done, use the method below. */
|
---|
138 | # ifdef INHIBIT_STRING_HEADER
|
---|
139 | # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
|
---|
140 | # if !defined bzero && !defined bcopy
|
---|
141 | # undef INHIBIT_STRING_HEADER
|
---|
142 | # endif
|
---|
143 | # endif
|
---|
144 | # endif
|
---|
145 |
|
---|
146 | /* This is the normal way of making sure we have a bcopy and a bzero.
|
---|
147 | This is used in most programs--a few other programs avoid this
|
---|
148 | by defining INHIBIT_STRING_HEADER. */
|
---|
149 | # ifndef INHIBIT_STRING_HEADER
|
---|
150 | # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
|
---|
151 | # include <string.h>
|
---|
152 | # ifndef bzero
|
---|
153 | # ifndef _LIBC
|
---|
154 | # define bzero(s, n) (memset (s, '\0', n), (s))
|
---|
155 | # else
|
---|
156 | # define bzero(s, n) __bzero (s, n)
|
---|
157 | # endif
|
---|
158 | # endif
|
---|
159 | # else
|
---|
160 | # include <strings.h>
|
---|
161 | # ifndef memcmp
|
---|
162 | # define memcmp(s1, s2, n) bcmp (s1, s2, n)
|
---|
163 | # endif
|
---|
164 | # ifndef memcpy
|
---|
165 | # define memcpy(d, s, n) (bcopy (s, d, n), (d))
|
---|
166 | # endif
|
---|
167 | # endif
|
---|
168 | # endif
|
---|
169 |
|
---|
170 | /* Define the syntax stuff for \<, \>, etc. */
|
---|
171 |
|
---|
172 | /* This must be nonzero for the wordchar and notwordchar pattern
|
---|
173 | commands in re_match_2. */
|
---|
174 | # ifndef Sword
|
---|
175 | # define Sword 1
|
---|
176 | # endif
|
---|
177 |
|
---|
178 | # ifdef SWITCH_ENUM_BUG
|
---|
179 | # define SWITCH_ENUM_CAST(x) ((int)(x))
|
---|
180 | # else
|
---|
181 | # define SWITCH_ENUM_CAST(x) (x)
|
---|
182 | # endif
|
---|
183 |
|
---|
184 | # endif /* not emacs */
|
---|
185 |
|
---|
186 | # if defined _LIBC || HAVE_LIMITS_H
|
---|
187 | # include <limits.h>
|
---|
188 | # endif
|
---|
189 |
|
---|
190 | # ifndef MB_LEN_MAX
|
---|
191 | # define MB_LEN_MAX 1
|
---|
192 | # endif
|
---|
193 | |
---|
194 |
|
---|
195 | /* Get the interface, including the syntax bits. */
|
---|
196 | # include "xregex.h" /* change for libiberty */
|
---|
197 |
|
---|
198 | /* isalpha etc. are used for the character classes. */
|
---|
199 | # include <ctype.h>
|
---|
200 |
|
---|
201 | /* Jim Meyering writes:
|
---|
202 |
|
---|
203 | "... Some ctype macros are valid only for character codes that
|
---|
204 | isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
|
---|
205 | using /bin/cc or gcc but without giving an ansi option). So, all
|
---|
206 | ctype uses should be through macros like ISPRINT... If
|
---|
207 | STDC_HEADERS is defined, then autoconf has verified that the ctype
|
---|
208 | macros don't need to be guarded with references to isascii. ...
|
---|
209 | Defining isascii to 1 should let any compiler worth its salt
|
---|
210 | eliminate the && through constant folding."
|
---|
211 | Solaris defines some of these symbols so we must undefine them first. */
|
---|
212 |
|
---|
213 | # undef ISASCII
|
---|
214 | # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
|
---|
215 | # define ISASCII(c) 1
|
---|
216 | # else
|
---|
217 | # define ISASCII(c) isascii(c)
|
---|
218 | # endif
|
---|
219 |
|
---|
220 | # ifdef isblank
|
---|
221 | # define ISBLANK(c) (ISASCII (c) && isblank (c))
|
---|
222 | # else
|
---|
223 | # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
|
---|
224 | # endif
|
---|
225 | # ifdef isgraph
|
---|
226 | # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
|
---|
227 | # else
|
---|
228 | # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
|
---|
229 | # endif
|
---|
230 |
|
---|
231 | # undef ISPRINT
|
---|
232 | # define ISPRINT(c) (ISASCII (c) && isprint (c))
|
---|
233 | # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
|
---|
234 | # define ISALNUM(c) (ISASCII (c) && isalnum (c))
|
---|
235 | # define ISALPHA(c) (ISASCII (c) && isalpha (c))
|
---|
236 | # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
|
---|
237 | # define ISLOWER(c) (ISASCII (c) && islower (c))
|
---|
238 | # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
|
---|
239 | # define ISSPACE(c) (ISASCII (c) && isspace (c))
|
---|
240 | # define ISUPPER(c) (ISASCII (c) && isupper (c))
|
---|
241 | # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
|
---|
242 |
|
---|
243 | # ifdef _tolower
|
---|
244 | # define TOLOWER(c) _tolower(c)
|
---|
245 | # else
|
---|
246 | # define TOLOWER(c) tolower(c)
|
---|
247 | # endif
|
---|
248 |
|
---|
249 | # ifndef NULL
|
---|
250 | # define NULL (void *)0
|
---|
251 | # endif
|
---|
252 |
|
---|
253 | /* We remove any previous definition of `SIGN_EXTEND_CHAR',
|
---|
254 | since ours (we hope) works properly with all combinations of
|
---|
255 | machines, compilers, `char' and `unsigned char' argument types.
|
---|
256 | (Per Bothner suggested the basic approach.) */
|
---|
257 | # undef SIGN_EXTEND_CHAR
|
---|
258 | # if __STDC__
|
---|
259 | # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
|
---|
260 | # else /* not __STDC__ */
|
---|
261 | /* As in Harbison and Steele. */
|
---|
262 | # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
|
---|
263 | # endif
|
---|
264 | |
---|
265 |
|
---|
266 | # ifndef emacs
|
---|
267 | /* How many characters in the character set. */
|
---|
268 | # define CHAR_SET_SIZE 256
|
---|
269 |
|
---|
270 | # ifdef SYNTAX_TABLE
|
---|
271 |
|
---|
272 | extern char *re_syntax_table;
|
---|
273 |
|
---|
274 | # else /* not SYNTAX_TABLE */
|
---|
275 |
|
---|
276 | static char re_syntax_table[CHAR_SET_SIZE];
|
---|
277 |
|
---|
278 | static void init_syntax_once PARAMS ((void));
|
---|
279 |
|
---|
280 | static void
|
---|
281 | init_syntax_once ()
|
---|
282 | {
|
---|
283 | register int c;
|
---|
284 | static int done = 0;
|
---|
285 |
|
---|
286 | if (done)
|
---|
287 | return;
|
---|
288 | bzero (re_syntax_table, sizeof re_syntax_table);
|
---|
289 |
|
---|
290 | for (c = 0; c < CHAR_SET_SIZE; ++c)
|
---|
291 | if (ISALNUM (c))
|
---|
292 | re_syntax_table[c] = Sword;
|
---|
293 |
|
---|
294 | re_syntax_table['_'] = Sword;
|
---|
295 |
|
---|
296 | done = 1;
|
---|
297 | }
|
---|
298 |
|
---|
299 | # endif /* not SYNTAX_TABLE */
|
---|
300 |
|
---|
301 | # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
|
---|
302 |
|
---|
303 | # endif /* emacs */
|
---|
304 | |
---|
305 |
|
---|
306 | /* Integer type for pointers. */
|
---|
307 | # if !defined _LIBC && !defined HAVE_UINTPTR_T
|
---|
308 | typedef unsigned long int uintptr_t;
|
---|
309 | # endif
|
---|
310 |
|
---|
311 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
---|
312 | use `alloca' instead of `malloc'. This is because using malloc in
|
---|
313 | re_search* or re_match* could cause memory leaks when C-g is used in
|
---|
314 | Emacs; also, malloc is slower and causes storage fragmentation. On
|
---|
315 | the other hand, malloc is more portable, and easier to debug.
|
---|
316 |
|
---|
317 | Because we sometimes use alloca, some routines have to be macros,
|
---|
318 | not functions -- `alloca'-allocated space disappears at the end of the
|
---|
319 | function it is called in. */
|
---|
320 |
|
---|
321 | # ifdef REGEX_MALLOC
|
---|
322 |
|
---|
323 | # define REGEX_ALLOCATE malloc
|
---|
324 | # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
|
---|
325 | # define REGEX_FREE free
|
---|
326 |
|
---|
327 | # else /* not REGEX_MALLOC */
|
---|
328 |
|
---|
329 | /* Emacs already defines alloca, sometimes. */
|
---|
330 | # ifndef alloca
|
---|
331 |
|
---|
332 | /* Make alloca work the best possible way. */
|
---|
333 | # ifdef __GNUC__
|
---|
334 | # define alloca __builtin_alloca
|
---|
335 | # else /* not __GNUC__ */
|
---|
336 | # if HAVE_ALLOCA_H
|
---|
337 | # include <alloca.h>
|
---|
338 | # endif /* HAVE_ALLOCA_H */
|
---|
339 | # endif /* not __GNUC__ */
|
---|
340 |
|
---|
341 | # endif /* not alloca */
|
---|
342 |
|
---|
343 | # define REGEX_ALLOCATE alloca
|
---|
344 |
|
---|
345 | /* Assumes a `char *destination' variable. */
|
---|
346 | # define REGEX_REALLOCATE(source, osize, nsize) \
|
---|
347 | (destination = (char *) alloca (nsize), \
|
---|
348 | memcpy (destination, source, osize))
|
---|
349 |
|
---|
350 | /* No need to do anything to free, after alloca. */
|
---|
351 | # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
|
---|
352 |
|
---|
353 | # endif /* not REGEX_MALLOC */
|
---|
354 |
|
---|
355 | /* Define how to allocate the failure stack. */
|
---|
356 |
|
---|
357 | # if defined REL_ALLOC && defined REGEX_MALLOC
|
---|
358 |
|
---|
359 | # define REGEX_ALLOCATE_STACK(size) \
|
---|
360 | r_alloc (&failure_stack_ptr, (size))
|
---|
361 | # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
---|
362 | r_re_alloc (&failure_stack_ptr, (nsize))
|
---|
363 | # define REGEX_FREE_STACK(ptr) \
|
---|
364 | r_alloc_free (&failure_stack_ptr)
|
---|
365 |
|
---|
366 | # else /* not using relocating allocator */
|
---|
367 |
|
---|
368 | # ifdef REGEX_MALLOC
|
---|
369 |
|
---|
370 | # define REGEX_ALLOCATE_STACK malloc
|
---|
371 | # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
|
---|
372 | # define REGEX_FREE_STACK free
|
---|
373 |
|
---|
374 | # else /* not REGEX_MALLOC */
|
---|
375 |
|
---|
376 | # define REGEX_ALLOCATE_STACK alloca
|
---|
377 |
|
---|
378 | # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
---|
379 | REGEX_REALLOCATE (source, osize, nsize)
|
---|
380 | /* No need to explicitly free anything. */
|
---|
381 | # define REGEX_FREE_STACK(arg)
|
---|
382 |
|
---|
383 | # endif /* not REGEX_MALLOC */
|
---|
384 | # endif /* not using relocating allocator */
|
---|
385 |
|
---|
386 |
|
---|
387 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside
|
---|
388 | `string1' or just past its end. This works if PTR is NULL, which is
|
---|
389 | a good thing. */
|
---|
390 | # define FIRST_STRING_P(ptr) \
|
---|
391 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
|
---|
392 |
|
---|
393 | /* (Re)Allocate N items of type T using malloc, or fail. */
|
---|
394 | # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
|
---|
395 | # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
|
---|
396 | # define RETALLOC_IF(addr, n, t) \
|
---|
397 | if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
|
---|
398 | # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
|
---|
399 |
|
---|
400 | # define BYTEWIDTH 8 /* In bits. */
|
---|
401 |
|
---|
402 | # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
|
---|
403 |
|
---|
404 | # undef MAX
|
---|
405 | # undef MIN
|
---|
406 | # define MAX(a, b) ((a) > (b) ? (a) : (b))
|
---|
407 | # define MIN(a, b) ((a) < (b) ? (a) : (b))
|
---|
408 |
|
---|
409 | typedef char boolean;
|
---|
410 | # define false 0
|
---|
411 | # define true 1
|
---|
412 |
|
---|
413 | static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
|
---|
414 | reg_syntax_t syntax,
|
---|
415 | struct re_pattern_buffer *bufp));
|
---|
416 |
|
---|
417 | static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
|
---|
418 | const char *string1, int size1,
|
---|
419 | const char *string2, int size2,
|
---|
420 | int pos,
|
---|
421 | struct re_registers *regs,
|
---|
422 | int stop));
|
---|
423 | static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
|
---|
424 | const char *string1, int size1,
|
---|
425 | const char *string2, int size2,
|
---|
426 | int startpos, int range,
|
---|
427 | struct re_registers *regs, int stop));
|
---|
428 | static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
|
---|
429 |
|
---|
430 | #ifdef MBS_SUPPORT
|
---|
431 | static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
|
---|
432 | reg_syntax_t syntax,
|
---|
433 | struct re_pattern_buffer *bufp));
|
---|
434 |
|
---|
435 |
|
---|
436 | static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
|
---|
437 | const char *cstring1, int csize1,
|
---|
438 | const char *cstring2, int csize2,
|
---|
439 | int pos,
|
---|
440 | struct re_registers *regs,
|
---|
441 | int stop,
|
---|
442 | wchar_t *string1, int size1,
|
---|
443 | wchar_t *string2, int size2,
|
---|
444 | int *mbs_offset1, int *mbs_offset2));
|
---|
445 | static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
|
---|
446 | const char *string1, int size1,
|
---|
447 | const char *string2, int size2,
|
---|
448 | int startpos, int range,
|
---|
449 | struct re_registers *regs, int stop));
|
---|
450 | static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
|
---|
451 | #endif
|
---|
452 | |
---|
453 |
|
---|
454 | /* These are the command codes that appear in compiled regular
|
---|
455 | expressions. Some opcodes are followed by argument bytes. A
|
---|
456 | command code can specify any interpretation whatsoever for its
|
---|
457 | arguments. Zero bytes may appear in the compiled regular expression. */
|
---|
458 |
|
---|
459 | typedef enum
|
---|
460 | {
|
---|
461 | no_op = 0,
|
---|
462 |
|
---|
463 | /* Succeed right away--no more backtracking. */
|
---|
464 | succeed,
|
---|
465 |
|
---|
466 | /* Followed by one byte giving n, then by n literal bytes. */
|
---|
467 | exactn,
|
---|
468 |
|
---|
469 | # ifdef MBS_SUPPORT
|
---|
470 | /* Same as exactn, but contains binary data. */
|
---|
471 | exactn_bin,
|
---|
472 | # endif
|
---|
473 |
|
---|
474 | /* Matches any (more or less) character. */
|
---|
475 | anychar,
|
---|
476 |
|
---|
477 | /* Matches any one char belonging to specified set. First
|
---|
478 | following byte is number of bitmap bytes. Then come bytes
|
---|
479 | for a bitmap saying which chars are in. Bits in each byte
|
---|
480 | are ordered low-bit-first. A character is in the set if its
|
---|
481 | bit is 1. A character too large to have a bit in the map is
|
---|
482 | automatically not in the set. */
|
---|
483 | /* ifdef MBS_SUPPORT, following element is length of character
|
---|
484 | classes, length of collating symbols, length of equivalence
|
---|
485 | classes, length of character ranges, and length of characters.
|
---|
486 | Next, character class element, collating symbols elements,
|
---|
487 | equivalence class elements, range elements, and character
|
---|
488 | elements follow.
|
---|
489 | See regex_compile function. */
|
---|
490 | charset,
|
---|
491 |
|
---|
492 | /* Same parameters as charset, but match any character that is
|
---|
493 | not one of those specified. */
|
---|
494 | charset_not,
|
---|
495 |
|
---|
496 | /* Start remembering the text that is matched, for storing in a
|
---|
497 | register. Followed by one byte with the register number, in
|
---|
498 | the range 0 to one less than the pattern buffer's re_nsub
|
---|
499 | field. Then followed by one byte with the number of groups
|
---|
500 | inner to this one. (This last has to be part of the
|
---|
501 | start_memory only because we need it in the on_failure_jump
|
---|
502 | of re_match_2.) */
|
---|
503 | start_memory,
|
---|
504 |
|
---|
505 | /* Stop remembering the text that is matched and store it in a
|
---|
506 | memory register. Followed by one byte with the register
|
---|
507 | number, in the range 0 to one less than `re_nsub' in the
|
---|
508 | pattern buffer, and one byte with the number of inner groups,
|
---|
509 | just like `start_memory'. (We need the number of inner
|
---|
510 | groups here because we don't have any easy way of finding the
|
---|
511 | corresponding start_memory when we're at a stop_memory.) */
|
---|
512 | stop_memory,
|
---|
513 |
|
---|
514 | /* Match a duplicate of something remembered. Followed by one
|
---|
515 | byte containing the register number. */
|
---|
516 | duplicate,
|
---|
517 |
|
---|
518 | /* Fail unless at beginning of line. */
|
---|
519 | begline,
|
---|
520 |
|
---|
521 | /* Fail unless at end of line. */
|
---|
522 | endline,
|
---|
523 |
|
---|
524 | /* Succeeds if at beginning of buffer (if emacs) or at beginning
|
---|
525 | of string to be matched (if not). */
|
---|
526 | begbuf,
|
---|
527 |
|
---|
528 | /* Analogously, for end of buffer/string. */
|
---|
529 | endbuf,
|
---|
530 |
|
---|
531 | /* Followed by two byte relative address to which to jump. */
|
---|
532 | jump,
|
---|
533 |
|
---|
534 | /* Same as jump, but marks the end of an alternative. */
|
---|
535 | jump_past_alt,
|
---|
536 |
|
---|
537 | /* Followed by two-byte relative address of place to resume at
|
---|
538 | in case of failure. */
|
---|
539 | /* ifdef MBS_SUPPORT, the size of address is 1. */
|
---|
540 | on_failure_jump,
|
---|
541 |
|
---|
542 | /* Like on_failure_jump, but pushes a placeholder instead of the
|
---|
543 | current string position when executed. */
|
---|
544 | on_failure_keep_string_jump,
|
---|
545 |
|
---|
546 | /* Throw away latest failure point and then jump to following
|
---|
547 | two-byte relative address. */
|
---|
548 | /* ifdef MBS_SUPPORT, the size of address is 1. */
|
---|
549 | pop_failure_jump,
|
---|
550 |
|
---|
551 | /* Change to pop_failure_jump if know won't have to backtrack to
|
---|
552 | match; otherwise change to jump. This is used to jump
|
---|
553 | back to the beginning of a repeat. If what follows this jump
|
---|
554 | clearly won't match what the repeat does, such that we can be
|
---|
555 | sure that there is no use backtracking out of repetitions
|
---|
556 | already matched, then we change it to a pop_failure_jump.
|
---|
557 | Followed by two-byte address. */
|
---|
558 | /* ifdef MBS_SUPPORT, the size of address is 1. */
|
---|
559 | maybe_pop_jump,
|
---|
560 |
|
---|
561 | /* Jump to following two-byte address, and push a dummy failure
|
---|
562 | point. This failure point will be thrown away if an attempt
|
---|
563 | is made to use it for a failure. A `+' construct makes this
|
---|
564 | before the first repeat. Also used as an intermediary kind
|
---|
565 | of jump when compiling an alternative. */
|
---|
566 | /* ifdef MBS_SUPPORT, the size of address is 1. */
|
---|
567 | dummy_failure_jump,
|
---|
568 |
|
---|
569 | /* Push a dummy failure point and continue. Used at the end of
|
---|
570 | alternatives. */
|
---|
571 | push_dummy_failure,
|
---|
572 |
|
---|
573 | /* Followed by two-byte relative address and two-byte number n.
|
---|
574 | After matching N times, jump to the address upon failure. */
|
---|
575 | /* ifdef MBS_SUPPORT, the size of address is 1. */
|
---|
576 | succeed_n,
|
---|
577 |
|
---|
578 | /* Followed by two-byte relative address, and two-byte number n.
|
---|
579 | Jump to the address N times, then fail. */
|
---|
580 | /* ifdef MBS_SUPPORT, the size of address is 1. */
|
---|
581 | jump_n,
|
---|
582 |
|
---|
583 | /* Set the following two-byte relative address to the
|
---|
584 | subsequent two-byte number. The address *includes* the two
|
---|
585 | bytes of number. */
|
---|
586 | /* ifdef MBS_SUPPORT, the size of address is 1. */
|
---|
587 | set_number_at,
|
---|
588 |
|
---|
589 | wordchar, /* Matches any word-constituent character. */
|
---|
590 | notwordchar, /* Matches any char that is not a word-constituent. */
|
---|
591 |
|
---|
592 | wordbeg, /* Succeeds if at word beginning. */
|
---|
593 | wordend, /* Succeeds if at word end. */
|
---|
594 |
|
---|
595 | wordbound, /* Succeeds if at a word boundary. */
|
---|
596 | notwordbound /* Succeeds if not at a word boundary. */
|
---|
597 |
|
---|
598 | # ifdef emacs
|
---|
599 | ,before_dot, /* Succeeds if before point. */
|
---|
600 | at_dot, /* Succeeds if at point. */
|
---|
601 | after_dot, /* Succeeds if after point. */
|
---|
602 |
|
---|
603 | /* Matches any character whose syntax is specified. Followed by
|
---|
604 | a byte which contains a syntax code, e.g., Sword. */
|
---|
605 | syntaxspec,
|
---|
606 |
|
---|
607 | /* Matches any character whose syntax is not that specified. */
|
---|
608 | notsyntaxspec
|
---|
609 | # endif /* emacs */
|
---|
610 | } re_opcode_t;
|
---|
611 | #endif /* not INSIDE_RECURSION */
|
---|
612 | |
---|
613 |
|
---|
614 |
|
---|
615 | #ifdef BYTE
|
---|
616 | # define CHAR_T char
|
---|
617 | # define UCHAR_T unsigned char
|
---|
618 | # define COMPILED_BUFFER_VAR bufp->buffer
|
---|
619 | # define OFFSET_ADDRESS_SIZE 2
|
---|
620 | # if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
|
---|
621 | # define PREFIX(name) byte_##name
|
---|
622 | # else
|
---|
623 | # define PREFIX(name) byte_/**/name
|
---|
624 | # endif
|
---|
625 | # define ARG_PREFIX(name) name
|
---|
626 | # define PUT_CHAR(c) putchar (c)
|
---|
627 | #else
|
---|
628 | # ifdef WCHAR
|
---|
629 | # define CHAR_T wchar_t
|
---|
630 | # define UCHAR_T wchar_t
|
---|
631 | # define COMPILED_BUFFER_VAR wc_buffer
|
---|
632 | # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
|
---|
633 | # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
|
---|
634 | # if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
|
---|
635 | # define PREFIX(name) wcs_##name
|
---|
636 | # define ARG_PREFIX(name) c##name
|
---|
637 | # else
|
---|
638 | # define PREFIX(name) wcs_/**/name
|
---|
639 | # define ARG_PREFIX(name) c/**/name
|
---|
640 | # endif
|
---|
641 | /* Should we use wide stream?? */
|
---|
642 | # define PUT_CHAR(c) printf ("%C", c);
|
---|
643 | # define TRUE 1
|
---|
644 | # define FALSE 0
|
---|
645 | # else
|
---|
646 | # ifdef MBS_SUPPORT
|
---|
647 | # define WCHAR
|
---|
648 | # define INSIDE_RECURSION
|
---|
649 | # include "regex.c"
|
---|
650 | # undef INSIDE_RECURSION
|
---|
651 | # endif
|
---|
652 | # define BYTE
|
---|
653 | # define INSIDE_RECURSION
|
---|
654 | # include "regex.c"
|
---|
655 | # undef INSIDE_RECURSION
|
---|
656 | # endif
|
---|
657 | #endif
|
---|
658 |
|
---|
659 | #ifdef INSIDE_RECURSION
|
---|
660 | /* Common operations on the compiled pattern. */
|
---|
661 |
|
---|
662 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
---|
663 | /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
|
---|
664 |
|
---|
665 | # ifdef WCHAR
|
---|
666 | # define STORE_NUMBER(destination, number) \
|
---|
667 | do { \
|
---|
668 | *(destination) = (UCHAR_T)(number); \
|
---|
669 | } while (0)
|
---|
670 | # else /* BYTE */
|
---|
671 | # define STORE_NUMBER(destination, number) \
|
---|
672 | do { \
|
---|
673 | (destination)[0] = (number) & 0377; \
|
---|
674 | (destination)[1] = (number) >> 8; \
|
---|
675 | } while (0)
|
---|
676 | # endif /* WCHAR */
|
---|
677 |
|
---|
678 | /* Same as STORE_NUMBER, except increment DESTINATION to
|
---|
679 | the byte after where the number is stored. Therefore, DESTINATION
|
---|
680 | must be an lvalue. */
|
---|
681 | /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
|
---|
682 |
|
---|
683 | # define STORE_NUMBER_AND_INCR(destination, number) \
|
---|
684 | do { \
|
---|
685 | STORE_NUMBER (destination, number); \
|
---|
686 | (destination) += OFFSET_ADDRESS_SIZE; \
|
---|
687 | } while (0)
|
---|
688 |
|
---|
689 | /* Put into DESTINATION a number stored in two contiguous bytes starting
|
---|
690 | at SOURCE. */
|
---|
691 | /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
|
---|
692 |
|
---|
693 | # ifdef WCHAR
|
---|
694 | # define EXTRACT_NUMBER(destination, source) \
|
---|
695 | do { \
|
---|
696 | (destination) = *(source); \
|
---|
697 | } while (0)
|
---|
698 | # else /* BYTE */
|
---|
699 | # define EXTRACT_NUMBER(destination, source) \
|
---|
700 | do { \
|
---|
701 | (destination) = *(source) & 0377; \
|
---|
702 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
|
---|
703 | } while (0)
|
---|
704 | # endif
|
---|
705 |
|
---|
706 | # ifdef DEBUG
|
---|
707 | static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
|
---|
708 | static void
|
---|
709 | PREFIX(extract_number) (dest, source)
|
---|
710 | int *dest;
|
---|
711 | UCHAR_T *source;
|
---|
712 | {
|
---|
713 | # ifdef WCHAR
|
---|
714 | *dest = *source;
|
---|
715 | # else /* BYTE */
|
---|
716 | int temp = SIGN_EXTEND_CHAR (*(source + 1));
|
---|
717 | *dest = *source & 0377;
|
---|
718 | *dest += temp << 8;
|
---|
719 | # endif
|
---|
720 | }
|
---|
721 |
|
---|
722 | # ifndef EXTRACT_MACROS /* To debug the macros. */
|
---|
723 | # undef EXTRACT_NUMBER
|
---|
724 | # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
|
---|
725 | # endif /* not EXTRACT_MACROS */
|
---|
726 |
|
---|
727 | # endif /* DEBUG */
|
---|
728 |
|
---|
729 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
|
---|
730 | SOURCE must be an lvalue. */
|
---|
731 |
|
---|
732 | # define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
---|
733 | do { \
|
---|
734 | EXTRACT_NUMBER (destination, source); \
|
---|
735 | (source) += OFFSET_ADDRESS_SIZE; \
|
---|
736 | } while (0)
|
---|
737 |
|
---|
738 | # ifdef DEBUG
|
---|
739 | static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
|
---|
740 | UCHAR_T **source));
|
---|
741 | static void
|
---|
742 | PREFIX(extract_number_and_incr) (destination, source)
|
---|
743 | int *destination;
|
---|
744 | UCHAR_T **source;
|
---|
745 | {
|
---|
746 | PREFIX(extract_number) (destination, *source);
|
---|
747 | *source += OFFSET_ADDRESS_SIZE;
|
---|
748 | }
|
---|
749 |
|
---|
750 | # ifndef EXTRACT_MACROS
|
---|
751 | # undef EXTRACT_NUMBER_AND_INCR
|
---|
752 | # define EXTRACT_NUMBER_AND_INCR(dest, src) \
|
---|
753 | PREFIX(extract_number_and_incr) (&dest, &src)
|
---|
754 | # endif /* not EXTRACT_MACROS */
|
---|
755 |
|
---|
756 | # endif /* DEBUG */
|
---|
757 |
|
---|
758 | |
---|
759 |
|
---|
760 |
|
---|
761 | /* If DEBUG is defined, Regex prints many voluminous messages about what
|
---|
762 | it is doing (if the variable `debug' is nonzero). If linked with the
|
---|
763 | main program in `iregex.c', you can enter patterns and strings
|
---|
764 | interactively. And if linked with the main program in `main.c' and
|
---|
765 | the other test files, you can run the already-written tests. */
|
---|
766 |
|
---|
767 | # ifdef DEBUG
|
---|
768 |
|
---|
769 | # ifndef DEFINED_ONCE
|
---|
770 |
|
---|
771 | /* We use standard I/O for debugging. */
|
---|
772 | # include <stdio.h>
|
---|
773 |
|
---|
774 | /* It is useful to test things that ``must'' be true when debugging. */
|
---|
775 | # include <assert.h>
|
---|
776 |
|
---|
777 | static int debug;
|
---|
778 |
|
---|
779 | # define DEBUG_STATEMENT(e) e
|
---|
780 | # define DEBUG_PRINT1(x) if (debug) printf (x)
|
---|
781 | # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
|
---|
782 | # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
|
---|
783 | # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
|
---|
784 | # endif /* not DEFINED_ONCE */
|
---|
785 |
|
---|
786 | # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
|
---|
787 | if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
|
---|
788 | # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
|
---|
789 | if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
|
---|
790 |
|
---|
791 |
|
---|
792 | /* Print the fastmap in human-readable form. */
|
---|
793 |
|
---|
794 | # ifndef DEFINED_ONCE
|
---|
795 | void
|
---|
796 | print_fastmap (fastmap)
|
---|
797 | char *fastmap;
|
---|
798 | {
|
---|
799 | unsigned was_a_range = 0;
|
---|
800 | unsigned i = 0;
|
---|
801 |
|
---|
802 | while (i < (1 << BYTEWIDTH))
|
---|
803 | {
|
---|
804 | if (fastmap[i++])
|
---|
805 | {
|
---|
806 | was_a_range = 0;
|
---|
807 | putchar (i - 1);
|
---|
808 | while (i < (1 << BYTEWIDTH) && fastmap[i])
|
---|
809 | {
|
---|
810 | was_a_range = 1;
|
---|
811 | i++;
|
---|
812 | }
|
---|
813 | if (was_a_range)
|
---|
814 | {
|
---|
815 | printf ("-");
|
---|
816 | putchar (i - 1);
|
---|
817 | }
|
---|
818 | }
|
---|
819 | }
|
---|
820 | putchar ('\n');
|
---|
821 | }
|
---|
822 | # endif /* not DEFINED_ONCE */
|
---|
823 |
|
---|
824 |
|
---|
825 | /* Print a compiled pattern string in human-readable form, starting at
|
---|
826 | the START pointer into it and ending just before the pointer END. */
|
---|
827 |
|
---|
828 | void
|
---|
829 | PREFIX(print_partial_compiled_pattern) (start, end)
|
---|
830 | UCHAR_T *start;
|
---|
831 | UCHAR_T *end;
|
---|
832 | {
|
---|
833 | int mcnt, mcnt2;
|
---|
834 | UCHAR_T *p1;
|
---|
835 | UCHAR_T *p = start;
|
---|
836 | UCHAR_T *pend = end;
|
---|
837 |
|
---|
838 | if (start == NULL)
|
---|
839 | {
|
---|
840 | printf ("(null)\n");
|
---|
841 | return;
|
---|
842 | }
|
---|
843 |
|
---|
844 | /* Loop over pattern commands. */
|
---|
845 | while (p < pend)
|
---|
846 | {
|
---|
847 | # ifdef _LIBC
|
---|
848 | printf ("%td:\t", p - start);
|
---|
849 | # else
|
---|
850 | printf ("%ld:\t", (long int) (p - start));
|
---|
851 | # endif
|
---|
852 |
|
---|
853 | switch ((re_opcode_t) *p++)
|
---|
854 | {
|
---|
855 | case no_op:
|
---|
856 | printf ("/no_op");
|
---|
857 | break;
|
---|
858 |
|
---|
859 | case exactn:
|
---|
860 | mcnt = *p++;
|
---|
861 | printf ("/exactn/%d", mcnt);
|
---|
862 | do
|
---|
863 | {
|
---|
864 | putchar ('/');
|
---|
865 | PUT_CHAR (*p++);
|
---|
866 | }
|
---|
867 | while (--mcnt);
|
---|
868 | break;
|
---|
869 |
|
---|
870 | # ifdef MBS_SUPPORT
|
---|
871 | case exactn_bin:
|
---|
872 | mcnt = *p++;
|
---|
873 | printf ("/exactn_bin/%d", mcnt);
|
---|
874 | do
|
---|
875 | {
|
---|
876 | printf("/%lx", (long int) *p++);
|
---|
877 | }
|
---|
878 | while (--mcnt);
|
---|
879 | break;
|
---|
880 | # endif /* MBS_SUPPORT */
|
---|
881 |
|
---|
882 | case start_memory:
|
---|
883 | mcnt = *p++;
|
---|
884 | printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
|
---|
885 | break;
|
---|
886 |
|
---|
887 | case stop_memory:
|
---|
888 | mcnt = *p++;
|
---|
889 | printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
|
---|
890 | break;
|
---|
891 |
|
---|
892 | case duplicate:
|
---|
893 | printf ("/duplicate/%ld", (long int) *p++);
|
---|
894 | break;
|
---|
895 |
|
---|
896 | case anychar:
|
---|
897 | printf ("/anychar");
|
---|
898 | break;
|
---|
899 |
|
---|
900 | case charset:
|
---|
901 | case charset_not:
|
---|
902 | {
|
---|
903 | # ifdef WCHAR
|
---|
904 | int i, length;
|
---|
905 | wchar_t *workp = p;
|
---|
906 | printf ("/charset [%s",
|
---|
907 | (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
|
---|
908 | p += 5;
|
---|
909 | length = *workp++; /* the length of char_classes */
|
---|
910 | for (i=0 ; i<length ; i++)
|
---|
911 | printf("[:%lx:]", (long int) *p++);
|
---|
912 | length = *workp++; /* the length of collating_symbol */
|
---|
913 | for (i=0 ; i<length ;)
|
---|
914 | {
|
---|
915 | printf("[.");
|
---|
916 | while(*p != 0)
|
---|
917 | PUT_CHAR((i++,*p++));
|
---|
918 | i++,p++;
|
---|
919 | printf(".]");
|
---|
920 | }
|
---|
921 | length = *workp++; /* the length of equivalence_class */
|
---|
922 | for (i=0 ; i<length ;)
|
---|
923 | {
|
---|
924 | printf("[=");
|
---|
925 | while(*p != 0)
|
---|
926 | PUT_CHAR((i++,*p++));
|
---|
927 | i++,p++;
|
---|
928 | printf("=]");
|
---|
929 | }
|
---|
930 | length = *workp++; /* the length of char_range */
|
---|
931 | for (i=0 ; i<length ; i++)
|
---|
932 | {
|
---|
933 | wchar_t range_start = *p++;
|
---|
934 | wchar_t range_end = *p++;
|
---|
935 | printf("%C-%C", range_start, range_end);
|
---|
936 | }
|
---|
937 | length = *workp++; /* the length of char */
|
---|
938 | for (i=0 ; i<length ; i++)
|
---|
939 | printf("%C", *p++);
|
---|
940 | putchar (']');
|
---|
941 | # else
|
---|
942 | register int c, last = -100;
|
---|
943 | register int in_range = 0;
|
---|
944 |
|
---|
945 | printf ("/charset [%s",
|
---|
946 | (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
|
---|
947 |
|
---|
948 | assert (p + *p < pend);
|
---|
949 |
|
---|
950 | for (c = 0; c < 256; c++)
|
---|
951 | if (c / 8 < *p
|
---|
952 | && (p[1 + (c/8)] & (1 << (c % 8))))
|
---|
953 | {
|
---|
954 | /* Are we starting a range? */
|
---|
955 | if (last + 1 == c && ! in_range)
|
---|
956 | {
|
---|
957 | putchar ('-');
|
---|
958 | in_range = 1;
|
---|
959 | }
|
---|
960 | /* Have we broken a range? */
|
---|
961 | else if (last + 1 != c && in_range)
|
---|
962 | {
|
---|
963 | putchar (last);
|
---|
964 | in_range = 0;
|
---|
965 | }
|
---|
966 |
|
---|
967 | if (! in_range)
|
---|
968 | putchar (c);
|
---|
969 |
|
---|
970 | last = c;
|
---|
971 | }
|
---|
972 |
|
---|
973 | if (in_range)
|
---|
974 | putchar (last);
|
---|
975 |
|
---|
976 | putchar (']');
|
---|
977 |
|
---|
978 | p += 1 + *p;
|
---|
979 | # endif /* WCHAR */
|
---|
980 | }
|
---|
981 | break;
|
---|
982 |
|
---|
983 | case begline:
|
---|
984 | printf ("/begline");
|
---|
985 | break;
|
---|
986 |
|
---|
987 | case endline:
|
---|
988 | printf ("/endline");
|
---|
989 | break;
|
---|
990 |
|
---|
991 | case on_failure_jump:
|
---|
992 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
993 | # ifdef _LIBC
|
---|
994 | printf ("/on_failure_jump to %td", p + mcnt - start);
|
---|
995 | # else
|
---|
996 | printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
|
---|
997 | # endif
|
---|
998 | break;
|
---|
999 |
|
---|
1000 | case on_failure_keep_string_jump:
|
---|
1001 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1002 | # ifdef _LIBC
|
---|
1003 | printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
|
---|
1004 | # else
|
---|
1005 | printf ("/on_failure_keep_string_jump to %ld",
|
---|
1006 | (long int) (p + mcnt - start));
|
---|
1007 | # endif
|
---|
1008 | break;
|
---|
1009 |
|
---|
1010 | case dummy_failure_jump:
|
---|
1011 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1012 | # ifdef _LIBC
|
---|
1013 | printf ("/dummy_failure_jump to %td", p + mcnt - start);
|
---|
1014 | # else
|
---|
1015 | printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
|
---|
1016 | # endif
|
---|
1017 | break;
|
---|
1018 |
|
---|
1019 | case push_dummy_failure:
|
---|
1020 | printf ("/push_dummy_failure");
|
---|
1021 | break;
|
---|
1022 |
|
---|
1023 | case maybe_pop_jump:
|
---|
1024 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1025 | # ifdef _LIBC
|
---|
1026 | printf ("/maybe_pop_jump to %td", p + mcnt - start);
|
---|
1027 | # else
|
---|
1028 | printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
|
---|
1029 | # endif
|
---|
1030 | break;
|
---|
1031 |
|
---|
1032 | case pop_failure_jump:
|
---|
1033 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1034 | # ifdef _LIBC
|
---|
1035 | printf ("/pop_failure_jump to %td", p + mcnt - start);
|
---|
1036 | # else
|
---|
1037 | printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
|
---|
1038 | # endif
|
---|
1039 | break;
|
---|
1040 |
|
---|
1041 | case jump_past_alt:
|
---|
1042 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1043 | # ifdef _LIBC
|
---|
1044 | printf ("/jump_past_alt to %td", p + mcnt - start);
|
---|
1045 | # else
|
---|
1046 | printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
|
---|
1047 | # endif
|
---|
1048 | break;
|
---|
1049 |
|
---|
1050 | case jump:
|
---|
1051 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1052 | # ifdef _LIBC
|
---|
1053 | printf ("/jump to %td", p + mcnt - start);
|
---|
1054 | # else
|
---|
1055 | printf ("/jump to %ld", (long int) (p + mcnt - start));
|
---|
1056 | # endif
|
---|
1057 | break;
|
---|
1058 |
|
---|
1059 | case succeed_n:
|
---|
1060 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1061 | p1 = p + mcnt;
|
---|
1062 | PREFIX(extract_number_and_incr) (&mcnt2, &p);
|
---|
1063 | # ifdef _LIBC
|
---|
1064 | printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
|
---|
1065 | # else
|
---|
1066 | printf ("/succeed_n to %ld, %d times",
|
---|
1067 | (long int) (p1 - start), mcnt2);
|
---|
1068 | # endif
|
---|
1069 | break;
|
---|
1070 |
|
---|
1071 | case jump_n:
|
---|
1072 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1073 | p1 = p + mcnt;
|
---|
1074 | PREFIX(extract_number_and_incr) (&mcnt2, &p);
|
---|
1075 | printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
|
---|
1076 | break;
|
---|
1077 |
|
---|
1078 | case set_number_at:
|
---|
1079 | PREFIX(extract_number_and_incr) (&mcnt, &p);
|
---|
1080 | p1 = p + mcnt;
|
---|
1081 | PREFIX(extract_number_and_incr) (&mcnt2, &p);
|
---|
1082 | # ifdef _LIBC
|
---|
1083 | printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
|
---|
1084 | # else
|
---|
1085 | printf ("/set_number_at location %ld to %d",
|
---|
1086 | (long int) (p1 - start), mcnt2);
|
---|
1087 | # endif
|
---|
1088 | break;
|
---|
1089 |
|
---|
1090 | case wordbound:
|
---|
1091 | printf ("/wordbound");
|
---|
1092 | break;
|
---|
1093 |
|
---|
1094 | case notwordbound:
|
---|
1095 | printf ("/notwordbound");
|
---|
1096 | break;
|
---|
1097 |
|
---|
1098 | case wordbeg:
|
---|
1099 | printf ("/wordbeg");
|
---|
1100 | break;
|
---|
1101 |
|
---|
1102 | case wordend:
|
---|
1103 | printf ("/wordend");
|
---|
1104 | break;
|
---|
1105 |
|
---|
1106 | # ifdef emacs
|
---|
1107 | case before_dot:
|
---|
1108 | printf ("/before_dot");
|
---|
1109 | break;
|
---|
1110 |
|
---|
1111 | case at_dot:
|
---|
1112 | printf ("/at_dot");
|
---|
1113 | break;
|
---|
1114 |
|
---|
1115 | case after_dot:
|
---|
1116 | printf ("/after_dot");
|
---|
1117 | break;
|
---|
1118 |
|
---|
1119 | case syntaxspec:
|
---|
1120 | printf ("/syntaxspec");
|
---|
1121 | mcnt = *p++;
|
---|
1122 | printf ("/%d", mcnt);
|
---|
1123 | break;
|
---|
1124 |
|
---|
1125 | case notsyntaxspec:
|
---|
1126 | printf ("/notsyntaxspec");
|
---|
1127 | mcnt = *p++;
|
---|
1128 | printf ("/%d", mcnt);
|
---|
1129 | break;
|
---|
1130 | # endif /* emacs */
|
---|
1131 |
|
---|
1132 | case wordchar:
|
---|
1133 | printf ("/wordchar");
|
---|
1134 | break;
|
---|
1135 |
|
---|
1136 | case notwordchar:
|
---|
1137 | printf ("/notwordchar");
|
---|
1138 | break;
|
---|
1139 |
|
---|
1140 | case begbuf:
|
---|
1141 | printf ("/begbuf");
|
---|
1142 | break;
|
---|
1143 |
|
---|
1144 | case endbuf:
|
---|
1145 | printf ("/endbuf");
|
---|
1146 | break;
|
---|
1147 |
|
---|
1148 | default:
|
---|
1149 | printf ("?%ld", (long int) *(p-1));
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 | putchar ('\n');
|
---|
1153 | }
|
---|
1154 |
|
---|
1155 | # ifdef _LIBC
|
---|
1156 | printf ("%td:\tend of pattern.\n", p - start);
|
---|
1157 | # else
|
---|
1158 | printf ("%ld:\tend of pattern.\n", (long int) (p - start));
|
---|
1159 | # endif
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 |
|
---|
1163 | void
|
---|
1164 | PREFIX(print_compiled_pattern) (bufp)
|
---|
1165 | struct re_pattern_buffer *bufp;
|
---|
1166 | {
|
---|
1167 | UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
|
---|
1168 |
|
---|
1169 | PREFIX(print_partial_compiled_pattern) (buffer, buffer
|
---|
1170 | + bufp->used / sizeof(UCHAR_T));
|
---|
1171 | printf ("%ld bytes used/%ld bytes allocated.\n",
|
---|
1172 | bufp->used, bufp->allocated);
|
---|
1173 |
|
---|
1174 | if (bufp->fastmap_accurate && bufp->fastmap)
|
---|
1175 | {
|
---|
1176 | printf ("fastmap: ");
|
---|
1177 | print_fastmap (bufp->fastmap);
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | # ifdef _LIBC
|
---|
1181 | printf ("re_nsub: %Zd\t", bufp->re_nsub);
|
---|
1182 | # else
|
---|
1183 | printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
|
---|
1184 | # endif
|
---|
1185 | printf ("regs_alloc: %d\t", bufp->regs_allocated);
|
---|
1186 | printf ("can_be_null: %d\t", bufp->can_be_null);
|
---|
1187 | printf ("newline_anchor: %d\n", bufp->newline_anchor);
|
---|
1188 | printf ("no_sub: %d\t", bufp->no_sub);
|
---|
1189 | printf ("not_bol: %d\t", bufp->not_bol);
|
---|
1190 | printf ("not_eol: %d\t", bufp->not_eol);
|
---|
1191 | printf ("syntax: %lx\n", bufp->syntax);
|
---|
1192 | /* Perhaps we should print the translate table? */
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 |
|
---|
1196 | void
|
---|
1197 | PREFIX(print_double_string) (where, string1, size1, string2, size2)
|
---|
1198 | const CHAR_T *where;
|
---|
1199 | const CHAR_T *string1;
|
---|
1200 | const CHAR_T *string2;
|
---|
1201 | int size1;
|
---|
1202 | int size2;
|
---|
1203 | {
|
---|
1204 | int this_char;
|
---|
1205 |
|
---|
1206 | if (where == NULL)
|
---|
1207 | printf ("(null)");
|
---|
1208 | else
|
---|
1209 | {
|
---|
1210 | int cnt;
|
---|
1211 |
|
---|
1212 | if (FIRST_STRING_P (where))
|
---|
1213 | {
|
---|
1214 | for (this_char = where - string1; this_char < size1; this_char++)
|
---|
1215 | PUT_CHAR (string1[this_char]);
|
---|
1216 |
|
---|
1217 | where = string2;
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | cnt = 0;
|
---|
1221 | for (this_char = where - string2; this_char < size2; this_char++)
|
---|
1222 | {
|
---|
1223 | PUT_CHAR (string2[this_char]);
|
---|
1224 | if (++cnt > 100)
|
---|
1225 | {
|
---|
1226 | fputs ("...", stdout);
|
---|
1227 | break;
|
---|
1228 | }
|
---|
1229 | }
|
---|
1230 | }
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | # ifndef DEFINED_ONCE
|
---|
1234 | void
|
---|
1235 | printchar (c)
|
---|
1236 | int c;
|
---|
1237 | {
|
---|
1238 | putc (c, stderr);
|
---|
1239 | }
|
---|
1240 | # endif
|
---|
1241 |
|
---|
1242 | # else /* not DEBUG */
|
---|
1243 |
|
---|
1244 | # ifndef DEFINED_ONCE
|
---|
1245 | # undef assert
|
---|
1246 | # define assert(e)
|
---|
1247 |
|
---|
1248 | # define DEBUG_STATEMENT(e)
|
---|
1249 | # define DEBUG_PRINT1(x)
|
---|
1250 | # define DEBUG_PRINT2(x1, x2)
|
---|
1251 | # define DEBUG_PRINT3(x1, x2, x3)
|
---|
1252 | # define DEBUG_PRINT4(x1, x2, x3, x4)
|
---|
1253 | # endif /* not DEFINED_ONCE */
|
---|
1254 | # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
|
---|
1255 | # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
|
---|
1256 |
|
---|
1257 | # endif /* not DEBUG */
|
---|
1258 |
|
---|
1259 | |
---|
1260 |
|
---|
1261 |
|
---|
1262 | # ifdef WCHAR
|
---|
1263 | /* This convert a multibyte string to a wide character string.
|
---|
1264 | And write their correspondances to offset_buffer(see below)
|
---|
1265 | and write whether each wchar_t is binary data to is_binary.
|
---|
1266 | This assume invalid multibyte sequences as binary data.
|
---|
1267 | We assume offset_buffer and is_binary is already allocated
|
---|
1268 | enough space. */
|
---|
1269 |
|
---|
1270 | static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
|
---|
1271 | size_t len, int *offset_buffer,
|
---|
1272 | char *is_binary);
|
---|
1273 | static size_t
|
---|
1274 | convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
|
---|
1275 | CHAR_T *dest;
|
---|
1276 | const unsigned char* src;
|
---|
1277 | size_t len; /* the length of multibyte string. */
|
---|
1278 |
|
---|
1279 | /* It hold correspondances between src(char string) and
|
---|
1280 | dest(wchar_t string) for optimization.
|
---|
1281 | e.g. src = "xxxyzz"
|
---|
1282 | dest = {'X', 'Y', 'Z'}
|
---|
1283 | (each "xxx", "y" and "zz" represent one multibyte character
|
---|
1284 | corresponding to 'X', 'Y' and 'Z'.)
|
---|
1285 | offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
|
---|
1286 | = {0, 3, 4, 6}
|
---|
1287 | */
|
---|
1288 | int *offset_buffer;
|
---|
1289 | char *is_binary;
|
---|
1290 | {
|
---|
1291 | wchar_t *pdest = dest;
|
---|
1292 | const unsigned char *psrc = src;
|
---|
1293 | size_t wc_count = 0;
|
---|
1294 |
|
---|
1295 | mbstate_t mbs;
|
---|
1296 | int i, consumed;
|
---|
1297 | size_t mb_remain = len;
|
---|
1298 | size_t mb_count = 0;
|
---|
1299 |
|
---|
1300 | /* Initialize the conversion state. */
|
---|
1301 | memset (&mbs, 0, sizeof (mbstate_t));
|
---|
1302 |
|
---|
1303 | offset_buffer[0] = 0;
|
---|
1304 | for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
|
---|
1305 | psrc += consumed)
|
---|
1306 | {
|
---|
1307 | #ifdef _LIBC
|
---|
1308 | consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
|
---|
1309 | #else
|
---|
1310 | consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
|
---|
1311 | #endif
|
---|
1312 |
|
---|
1313 | if (consumed <= 0)
|
---|
1314 | /* failed to convert. maybe src contains binary data.
|
---|
1315 | So we consume 1 byte manualy. */
|
---|
1316 | {
|
---|
1317 | *pdest = *psrc;
|
---|
1318 | consumed = 1;
|
---|
1319 | is_binary[wc_count] = TRUE;
|
---|
1320 | }
|
---|
1321 | else
|
---|
1322 | is_binary[wc_count] = FALSE;
|
---|
1323 | /* In sjis encoding, we use yen sign as escape character in
|
---|
1324 | place of reverse solidus. So we convert 0x5c(yen sign in
|
---|
1325 | sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
|
---|
1326 | solidus in UCS2). */
|
---|
1327 | if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
|
---|
1328 | *pdest = (wchar_t) *psrc;
|
---|
1329 |
|
---|
1330 | offset_buffer[wc_count + 1] = mb_count += consumed;
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | /* Fill remain of the buffer with sentinel. */
|
---|
1334 | for (i = wc_count + 1 ; i <= len ; i++)
|
---|
1335 | offset_buffer[i] = mb_count + 1;
|
---|
1336 |
|
---|
1337 | return wc_count;
|
---|
1338 | }
|
---|
1339 |
|
---|
1340 | # endif /* WCHAR */
|
---|
1341 |
|
---|
1342 | #else /* not INSIDE_RECURSION */
|
---|
1343 |
|
---|
1344 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
|
---|
1345 | also be assigned to arbitrarily: each pattern buffer stores its own
|
---|
1346 | syntax, so it can be changed between regex compilations. */
|
---|
1347 | /* This has no initializer because initialized variables in Emacs
|
---|
1348 | become read-only after dumping. */
|
---|
1349 | reg_syntax_t re_syntax_options;
|
---|
1350 |
|
---|
1351 |
|
---|
1352 | /* Specify the precise syntax of regexps for compilation. This provides
|
---|
1353 | for compatibility for various utilities which historically have
|
---|
1354 | different, incompatible syntaxes.
|
---|
1355 |
|
---|
1356 | The argument SYNTAX is a bit mask comprised of the various bits
|
---|
1357 | defined in regex.h. We return the old syntax. */
|
---|
1358 |
|
---|
1359 | reg_syntax_t
|
---|
1360 | re_set_syntax (syntax)
|
---|
1361 | reg_syntax_t syntax;
|
---|
1362 | {
|
---|
1363 | reg_syntax_t ret = re_syntax_options;
|
---|
1364 |
|
---|
1365 | re_syntax_options = syntax;
|
---|
1366 | # ifdef DEBUG
|
---|
1367 | if (syntax & RE_DEBUG)
|
---|
1368 | debug = 1;
|
---|
1369 | else if (debug) /* was on but now is not */
|
---|
1370 | debug = 0;
|
---|
1371 | # endif /* DEBUG */
|
---|
1372 | return ret;
|
---|
1373 | }
|
---|
1374 | # ifdef _LIBC
|
---|
1375 | weak_alias (__re_set_syntax, re_set_syntax)
|
---|
1376 | # endif
|
---|
1377 | |
---|
1378 |
|
---|
1379 | /* This table gives an error message for each of the error codes listed
|
---|
1380 | in regex.h. Obviously the order here has to be same as there.
|
---|
1381 | POSIX doesn't require that we do anything for REG_NOERROR,
|
---|
1382 | but why not be nice? */
|
---|
1383 |
|
---|
1384 | static const char re_error_msgid[] =
|
---|
1385 | {
|
---|
1386 | # define REG_NOERROR_IDX 0
|
---|
1387 | gettext_noop ("Success") /* REG_NOERROR */
|
---|
1388 | "\0"
|
---|
1389 | # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
|
---|
1390 | gettext_noop ("No match") /* REG_NOMATCH */
|
---|
1391 | "\0"
|
---|
1392 | # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
|
---|
1393 | gettext_noop ("Invalid regular expression") /* REG_BADPAT */
|
---|
1394 | "\0"
|
---|
1395 | # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
|
---|
1396 | gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
|
---|
1397 | "\0"
|
---|
1398 | # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
|
---|
1399 | gettext_noop ("Invalid character class name") /* REG_ECTYPE */
|
---|
1400 | "\0"
|
---|
1401 | # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
|
---|
1402 | gettext_noop ("Trailing backslash") /* REG_EESCAPE */
|
---|
1403 | "\0"
|
---|
1404 | # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
|
---|
1405 | gettext_noop ("Invalid back reference") /* REG_ESUBREG */
|
---|
1406 | "\0"
|
---|
1407 | # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
|
---|
1408 | gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
|
---|
1409 | "\0"
|
---|
1410 | # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
|
---|
1411 | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
|
---|
1412 | "\0"
|
---|
1413 | # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
|
---|
1414 | gettext_noop ("Unmatched \\{") /* REG_EBRACE */
|
---|
1415 | "\0"
|
---|
1416 | # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
|
---|
1417 | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
|
---|
1418 | "\0"
|
---|
1419 | # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
|
---|
1420 | gettext_noop ("Invalid range end") /* REG_ERANGE */
|
---|
1421 | "\0"
|
---|
1422 | # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
|
---|
1423 | gettext_noop ("Memory exhausted") /* REG_ESPACE */
|
---|
1424 | "\0"
|
---|
1425 | # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
|
---|
1426 | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
|
---|
1427 | "\0"
|
---|
1428 | # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
|
---|
1429 | gettext_noop ("Premature end of regular expression") /* REG_EEND */
|
---|
1430 | "\0"
|
---|
1431 | # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
|
---|
1432 | gettext_noop ("Regular expression too big") /* REG_ESIZE */
|
---|
1433 | "\0"
|
---|
1434 | # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
|
---|
1435 | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
|
---|
1436 | };
|
---|
1437 |
|
---|
1438 | static const size_t re_error_msgid_idx[] =
|
---|
1439 | {
|
---|
1440 | REG_NOERROR_IDX,
|
---|
1441 | REG_NOMATCH_IDX,
|
---|
1442 | REG_BADPAT_IDX,
|
---|
1443 | REG_ECOLLATE_IDX,
|
---|
1444 | REG_ECTYPE_IDX,
|
---|
1445 | REG_EESCAPE_IDX,
|
---|
1446 | REG_ESUBREG_IDX,
|
---|
1447 | REG_EBRACK_IDX,
|
---|
1448 | REG_EPAREN_IDX,
|
---|
1449 | REG_EBRACE_IDX,
|
---|
1450 | REG_BADBR_IDX,
|
---|
1451 | REG_ERANGE_IDX,
|
---|
1452 | REG_ESPACE_IDX,
|
---|
1453 | REG_BADRPT_IDX,
|
---|
1454 | REG_EEND_IDX,
|
---|
1455 | REG_ESIZE_IDX,
|
---|
1456 | REG_ERPAREN_IDX
|
---|
1457 | };
|
---|
1458 | |
---|
1459 |
|
---|
1460 | #endif /* INSIDE_RECURSION */
|
---|
1461 |
|
---|
1462 | #ifndef DEFINED_ONCE
|
---|
1463 | /* Avoiding alloca during matching, to placate r_alloc. */
|
---|
1464 |
|
---|
1465 | /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
|
---|
1466 | searching and matching functions should not call alloca. On some
|
---|
1467 | systems, alloca is implemented in terms of malloc, and if we're
|
---|
1468 | using the relocating allocator routines, then malloc could cause a
|
---|
1469 | relocation, which might (if the strings being searched are in the
|
---|
1470 | ralloc heap) shift the data out from underneath the regexp
|
---|
1471 | routines.
|
---|
1472 |
|
---|
1473 | Here's another reason to avoid allocation: Emacs
|
---|
1474 | processes input from X in a signal handler; processing X input may
|
---|
1475 | call malloc; if input arrives while a matching routine is calling
|
---|
1476 | malloc, then we're scrod. But Emacs can't just block input while
|
---|
1477 | calling matching routines; then we don't notice interrupts when
|
---|
1478 | they come in. So, Emacs blocks input around all regexp calls
|
---|
1479 | except the matching calls, which it leaves unprotected, in the
|
---|
1480 | faith that they will not malloc. */
|
---|
1481 |
|
---|
1482 | /* Normally, this is fine. */
|
---|
1483 | # define MATCH_MAY_ALLOCATE
|
---|
1484 |
|
---|
1485 | /* When using GNU C, we are not REALLY using the C alloca, no matter
|
---|
1486 | what config.h may say. So don't take precautions for it. */
|
---|
1487 | # ifdef __GNUC__
|
---|
1488 | # undef C_ALLOCA
|
---|
1489 | # endif
|
---|
1490 |
|
---|
1491 | /* The match routines may not allocate if (1) they would do it with malloc
|
---|
1492 | and (2) it's not safe for them to use malloc.
|
---|
1493 | Note that if REL_ALLOC is defined, matching would not use malloc for the
|
---|
1494 | failure stack, but we would still use it for the register vectors;
|
---|
1495 | so REL_ALLOC should not affect this. */
|
---|
1496 | # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
|
---|
1497 | # undef MATCH_MAY_ALLOCATE
|
---|
1498 | # endif
|
---|
1499 | #endif /* not DEFINED_ONCE */
|
---|
1500 | |
---|
1501 |
|
---|
1502 | #ifdef INSIDE_RECURSION
|
---|
1503 | /* Failure stack declarations and macros; both re_compile_fastmap and
|
---|
1504 | re_match_2 use a failure stack. These have to be macros because of
|
---|
1505 | REGEX_ALLOCATE_STACK. */
|
---|
1506 |
|
---|
1507 |
|
---|
1508 | /* Number of failure points for which to initially allocate space
|
---|
1509 | when matching. If this number is exceeded, we allocate more
|
---|
1510 | space, so it is not a hard limit. */
|
---|
1511 | # ifndef INIT_FAILURE_ALLOC
|
---|
1512 | # define INIT_FAILURE_ALLOC 5
|
---|
1513 | # endif
|
---|
1514 |
|
---|
1515 | /* Roughly the maximum number of failure points on the stack. Would be
|
---|
1516 | exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
|
---|
1517 | This is a variable only so users of regex can assign to it; we never
|
---|
1518 | change it ourselves. */
|
---|
1519 |
|
---|
1520 | # ifdef INT_IS_16BIT
|
---|
1521 |
|
---|
1522 | # ifndef DEFINED_ONCE
|
---|
1523 | # if defined MATCH_MAY_ALLOCATE
|
---|
1524 | /* 4400 was enough to cause a crash on Alpha OSF/1,
|
---|
1525 | whose default stack limit is 2mb. */
|
---|
1526 | long int re_max_failures = 4000;
|
---|
1527 | # else
|
---|
1528 | long int re_max_failures = 2000;
|
---|
1529 | # endif
|
---|
1530 | # endif
|
---|
1531 |
|
---|
1532 | union PREFIX(fail_stack_elt)
|
---|
1533 | {
|
---|
1534 | UCHAR_T *pointer;
|
---|
1535 | long int integer;
|
---|
1536 | };
|
---|
1537 |
|
---|
1538 | typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
|
---|
1539 |
|
---|
1540 | typedef struct
|
---|
1541 | {
|
---|
1542 | PREFIX(fail_stack_elt_t) *stack;
|
---|
1543 | unsigned long int size;
|
---|
1544 | unsigned long int avail; /* Offset of next open position. */
|
---|
1545 | } PREFIX(fail_stack_type);
|
---|
1546 |
|
---|
1547 | # else /* not INT_IS_16BIT */
|
---|
1548 |
|
---|
1549 | # ifndef DEFINED_ONCE
|
---|
1550 | # if defined MATCH_MAY_ALLOCATE
|
---|
1551 | /* 4400 was enough to cause a crash on Alpha OSF/1,
|
---|
1552 | whose default stack limit is 2mb. */
|
---|
1553 | int re_max_failures = 4000;
|
---|
1554 | # else
|
---|
1555 | int re_max_failures = 2000;
|
---|
1556 | # endif
|
---|
1557 | # endif
|
---|
1558 |
|
---|
1559 | union PREFIX(fail_stack_elt)
|
---|
1560 | {
|
---|
1561 | UCHAR_T *pointer;
|
---|
1562 | int integer;
|
---|
1563 | };
|
---|
1564 |
|
---|
1565 | typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
|
---|
1566 |
|
---|
1567 | typedef struct
|
---|
1568 | {
|
---|
1569 | PREFIX(fail_stack_elt_t) *stack;
|
---|
1570 | unsigned size;
|
---|
1571 | unsigned avail; /* Offset of next open position. */
|
---|
1572 | } PREFIX(fail_stack_type);
|
---|
1573 |
|
---|
1574 | # endif /* INT_IS_16BIT */
|
---|
1575 |
|
---|
1576 | # ifndef DEFINED_ONCE
|
---|
1577 | # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
|
---|
1578 | # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
|
---|
1579 | # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
|
---|
1580 | # endif
|
---|
1581 |
|
---|
1582 |
|
---|
1583 | /* Define macros to initialize and free the failure stack.
|
---|
1584 | Do `return -2' if the alloc fails. */
|
---|
1585 |
|
---|
1586 | # ifdef MATCH_MAY_ALLOCATE
|
---|
1587 | # define INIT_FAIL_STACK() \
|
---|
1588 | do { \
|
---|
1589 | fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
|
---|
1590 | REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
|
---|
1591 | \
|
---|
1592 | if (fail_stack.stack == NULL) \
|
---|
1593 | return -2; \
|
---|
1594 | \
|
---|
1595 | fail_stack.size = INIT_FAILURE_ALLOC; \
|
---|
1596 | fail_stack.avail = 0; \
|
---|
1597 | } while (0)
|
---|
1598 |
|
---|
1599 | # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
|
---|
1600 | # else
|
---|
1601 | # define INIT_FAIL_STACK() \
|
---|
1602 | do { \
|
---|
1603 | fail_stack.avail = 0; \
|
---|
1604 | } while (0)
|
---|
1605 |
|
---|
1606 | # define RESET_FAIL_STACK()
|
---|
1607 | # endif
|
---|
1608 |
|
---|
1609 |
|
---|
1610 | /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
|
---|
1611 |
|
---|
1612 | Return 1 if succeeds, and 0 if either ran out of memory
|
---|
1613 | allocating space for it or it was already too large.
|
---|
1614 |
|
---|
1615 | REGEX_REALLOCATE_STACK requires `destination' be declared. */
|
---|
1616 |
|
---|
1617 | # define DOUBLE_FAIL_STACK(fail_stack) \
|
---|
1618 | ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
|
---|
1619 | ? 0 \
|
---|
1620 | : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
|
---|
1621 | REGEX_REALLOCATE_STACK ((fail_stack).stack, \
|
---|
1622 | (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
|
---|
1623 | ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
|
---|
1624 | \
|
---|
1625 | (fail_stack).stack == NULL \
|
---|
1626 | ? 0 \
|
---|
1627 | : ((fail_stack).size <<= 1, \
|
---|
1628 | 1)))
|
---|
1629 |
|
---|
1630 |
|
---|
1631 | /* Push pointer POINTER on FAIL_STACK.
|
---|
1632 | Return 1 if was able to do so and 0 if ran out of memory allocating
|
---|
1633 | space to do so. */
|
---|
1634 | # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
|
---|
1635 | ((FAIL_STACK_FULL () \
|
---|
1636 | && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
|
---|
1637 | ? 0 \
|
---|
1638 | : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
|
---|
1639 | 1))
|
---|
1640 |
|
---|
1641 | /* Push a pointer value onto the failure stack.
|
---|
1642 | Assumes the variable `fail_stack'. Probably should only
|
---|
1643 | be called from within `PUSH_FAILURE_POINT'. */
|
---|
1644 | # define PUSH_FAILURE_POINTER(item) \
|
---|
1645 | fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
|
---|
1646 |
|
---|
1647 | /* This pushes an integer-valued item onto the failure stack.
|
---|
1648 | Assumes the variable `fail_stack'. Probably should only
|
---|
1649 | be called from within `PUSH_FAILURE_POINT'. */
|
---|
1650 | # define PUSH_FAILURE_INT(item) \
|
---|
1651 | fail_stack.stack[fail_stack.avail++].integer = (item)
|
---|
1652 |
|
---|
1653 | /* Push a fail_stack_elt_t value onto the failure stack.
|
---|
1654 | Assumes the variable `fail_stack'. Probably should only
|
---|
1655 | be called from within `PUSH_FAILURE_POINT'. */
|
---|
1656 | # define PUSH_FAILURE_ELT(item) \
|
---|
1657 | fail_stack.stack[fail_stack.avail++] = (item)
|
---|
1658 |
|
---|
1659 | /* These three POP... operations complement the three PUSH... operations.
|
---|
1660 | All assume that `fail_stack' is nonempty. */
|
---|
1661 | # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
|
---|
1662 | # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
|
---|
1663 | # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
|
---|
1664 |
|
---|
1665 | /* Used to omit pushing failure point id's when we're not debugging. */
|
---|
1666 | # ifdef DEBUG
|
---|
1667 | # define DEBUG_PUSH PUSH_FAILURE_INT
|
---|
1668 | # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
|
---|
1669 | # else
|
---|
1670 | # define DEBUG_PUSH(item)
|
---|
1671 | # define DEBUG_POP(item_addr)
|
---|
1672 | # endif
|
---|
1673 |
|
---|
1674 |
|
---|
1675 | /* Push the information about the state we will need
|
---|
1676 | if we ever fail back to it.
|
---|
1677 |
|
---|
1678 | Requires variables fail_stack, regstart, regend, reg_info, and
|
---|
1679 | num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
|
---|
1680 | be declared.
|
---|
1681 |
|
---|
1682 | Does `return FAILURE_CODE' if runs out of memory. */
|
---|
1683 |
|
---|
1684 | # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
|
---|
1685 | do { \
|
---|
1686 | char *destination; \
|
---|
1687 | /* Must be int, so when we don't save any registers, the arithmetic \
|
---|
1688 | of 0 + -1 isn't done as unsigned. */ \
|
---|
1689 | /* Can't be int, since there is not a shred of a guarantee that int \
|
---|
1690 | is wide enough to hold a value of something to which pointer can \
|
---|
1691 | be assigned */ \
|
---|
1692 | active_reg_t this_reg; \
|
---|
1693 | \
|
---|
1694 | DEBUG_STATEMENT (failure_id++); \
|
---|
1695 | DEBUG_STATEMENT (nfailure_points_pushed++); \
|
---|
1696 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
|
---|
1697 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
|
---|
1698 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
|
---|
1699 | \
|
---|
1700 | DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
|
---|
1701 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
|
---|
1702 | \
|
---|
1703 | /* Ensure we have enough space allocated for what we will push. */ \
|
---|
1704 | while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
|
---|
1705 | { \
|
---|
1706 | if (!DOUBLE_FAIL_STACK (fail_stack)) \
|
---|
1707 | return failure_code; \
|
---|
1708 | \
|
---|
1709 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
|
---|
1710 | (fail_stack).size); \
|
---|
1711 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
|
---|
1712 | } \
|
---|
1713 | \
|
---|
1714 | /* Push the info, starting with the registers. */ \
|
---|
1715 | DEBUG_PRINT1 ("\n"); \
|
---|
1716 | \
|
---|
1717 | if (1) \
|
---|
1718 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
|
---|
1719 | this_reg++) \
|
---|
1720 | { \
|
---|
1721 | DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
|
---|
1722 | DEBUG_STATEMENT (num_regs_pushed++); \
|
---|
1723 | \
|
---|
1724 | DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
|
---|
1725 | PUSH_FAILURE_POINTER (regstart[this_reg]); \
|
---|
1726 | \
|
---|
1727 | DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
|
---|
1728 | PUSH_FAILURE_POINTER (regend[this_reg]); \
|
---|
1729 | \
|
---|
1730 | DEBUG_PRINT2 (" info: %p\n ", \
|
---|
1731 | reg_info[this_reg].word.pointer); \
|
---|
1732 | DEBUG_PRINT2 (" match_null=%d", \
|
---|
1733 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
|
---|
1734 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
|
---|
1735 | DEBUG_PRINT2 (" matched_something=%d", \
|
---|
1736 | MATCHED_SOMETHING (reg_info[this_reg])); \
|
---|
1737 | DEBUG_PRINT2 (" ever_matched=%d", \
|
---|
1738 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
|
---|
1739 | DEBUG_PRINT1 ("\n"); \
|
---|
1740 | PUSH_FAILURE_ELT (reg_info[this_reg].word); \
|
---|
1741 | } \
|
---|
1742 | \
|
---|
1743 | DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
|
---|
1744 | PUSH_FAILURE_INT (lowest_active_reg); \
|
---|
1745 | \
|
---|
1746 | DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
|
---|
1747 | PUSH_FAILURE_INT (highest_active_reg); \
|
---|
1748 | \
|
---|
1749 | DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
|
---|
1750 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
|
---|
1751 | PUSH_FAILURE_POINTER (pattern_place); \
|
---|
1752 | \
|
---|
1753 | DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
|
---|
1754 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
|
---|
1755 | size2); \
|
---|
1756 | DEBUG_PRINT1 ("'\n"); \
|
---|
1757 | PUSH_FAILURE_POINTER (string_place); \
|
---|
1758 | \
|
---|
1759 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
|
---|
1760 | DEBUG_PUSH (failure_id); \
|
---|
1761 | } while (0)
|
---|
1762 |
|
---|
1763 | # ifndef DEFINED_ONCE
|
---|
1764 | /* This is the number of items that are pushed and popped on the stack
|
---|
1765 | for each register. */
|
---|
1766 | # define NUM_REG_ITEMS 3
|
---|
1767 |
|
---|
1768 | /* Individual items aside from the registers. */
|
---|
1769 | # ifdef DEBUG
|
---|
1770 | # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
|
---|
1771 | # else
|
---|
1772 | # define NUM_NONREG_ITEMS 4
|
---|
1773 | # endif
|
---|
1774 |
|
---|
1775 | /* We push at most this many items on the stack. */
|
---|
1776 | /* We used to use (num_regs - 1), which is the number of registers
|
---|
1777 | this regexp will save; but that was changed to 5
|
---|
1778 | to avoid stack overflow for a regexp with lots of parens. */
|
---|
1779 | # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
|
---|
1780 |
|
---|
1781 | /* We actually push this many items. */
|
---|
1782 | # define NUM_FAILURE_ITEMS \
|
---|
1783 | (((0 \
|
---|
1784 | ? 0 : highest_active_reg - lowest_active_reg + 1) \
|
---|
1785 | * NUM_REG_ITEMS) \
|
---|
1786 | + NUM_NONREG_ITEMS)
|
---|
1787 |
|
---|
1788 | /* How many items can still be added to the stack without overflowing it. */
|
---|
1789 | # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
|
---|
1790 | # endif /* not DEFINED_ONCE */
|
---|
1791 |
|
---|
1792 |
|
---|
1793 | /* Pops what PUSH_FAIL_STACK pushes.
|
---|
1794 |
|
---|
1795 | We restore into the parameters, all of which should be lvalues:
|
---|
1796 | STR -- the saved data position.
|
---|
1797 | PAT -- the saved pattern position.
|
---|
1798 | LOW_REG, HIGH_REG -- the highest and lowest active registers.
|
---|
1799 | REGSTART, REGEND -- arrays of string positions.
|
---|
1800 | REG_INFO -- array of information about each subexpression.
|
---|
1801 |
|
---|
1802 | Also assumes the variables `fail_stack' and (if debugging), `bufp',
|
---|
1803 | `pend', `string1', `size1', `string2', and `size2'. */
|
---|
1804 | # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
|
---|
1805 | { \
|
---|
1806 | DEBUG_STATEMENT (unsigned failure_id;) \
|
---|
1807 | active_reg_t this_reg; \
|
---|
1808 | const UCHAR_T *string_temp; \
|
---|
1809 | \
|
---|
1810 | assert (!FAIL_STACK_EMPTY ()); \
|
---|
1811 | \
|
---|
1812 | /* Remove failure points and point to how many regs pushed. */ \
|
---|
1813 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
|
---|
1814 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
|
---|
1815 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
|
---|
1816 | \
|
---|
1817 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
|
---|
1818 | \
|
---|
1819 | DEBUG_POP (&failure_id); \
|
---|
1820 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
|
---|
1821 | \
|
---|
1822 | /* If the saved string location is NULL, it came from an \
|
---|
1823 | on_failure_keep_string_jump opcode, and we want to throw away the \
|
---|
1824 | saved NULL, thus retaining our current position in the string. */ \
|
---|
1825 | string_temp = POP_FAILURE_POINTER (); \
|
---|
1826 | if (string_temp != NULL) \
|
---|
1827 | str = (const CHAR_T *) string_temp; \
|
---|
1828 | \
|
---|
1829 | DEBUG_PRINT2 (" Popping string %p: `", str); \
|
---|
1830 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
|
---|
1831 | DEBUG_PRINT1 ("'\n"); \
|
---|
1832 | \
|
---|
1833 | pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
|
---|
1834 | DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
|
---|
1835 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
|
---|
1836 | \
|
---|
1837 | /* Restore register info. */ \
|
---|
1838 | high_reg = (active_reg_t) POP_FAILURE_INT (); \
|
---|
1839 | DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
|
---|
1840 | \
|
---|
1841 | low_reg = (active_reg_t) POP_FAILURE_INT (); \
|
---|
1842 | DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
|
---|
1843 | \
|
---|
1844 | if (1) \
|
---|
1845 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
|
---|
1846 | { \
|
---|
1847 | DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
|
---|
1848 | \
|
---|
1849 | reg_info[this_reg].word = POP_FAILURE_ELT (); \
|
---|
1850 | DEBUG_PRINT2 (" info: %p\n", \
|
---|
1851 | reg_info[this_reg].word.pointer); \
|
---|
1852 | \
|
---|
1853 | regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
|
---|
1854 | DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
|
---|
1855 | \
|
---|
1856 | regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
|
---|
1857 | DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
|
---|
1858 | } \
|
---|
1859 | else \
|
---|
1860 | { \
|
---|
1861 | for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
|
---|
1862 | { \
|
---|
1863 | reg_info[this_reg].word.integer = 0; \
|
---|
1864 | regend[this_reg] = 0; \
|
---|
1865 | regstart[this_reg] = 0; \
|
---|
1866 | } \
|
---|
1867 | highest_active_reg = high_reg; \
|
---|
1868 | } \
|
---|
1869 | \
|
---|
1870 | set_regs_matched_done = 0; \
|
---|
1871 | DEBUG_STATEMENT (nfailure_points_popped++); \
|
---|
1872 | } /* POP_FAILURE_POINT */
|
---|
1873 | |
---|
1874 |
|
---|
1875 | /* Structure for per-register (a.k.a. per-group) information.
|
---|
1876 | Other register information, such as the
|
---|
1877 | starting and ending positions (which are addresses), and the list of
|
---|
1878 | inner groups (which is a bits list) are maintained in separate
|
---|
1879 | variables.
|
---|
1880 |
|
---|
1881 | We are making a (strictly speaking) nonportable assumption here: that
|
---|
1882 | the compiler will pack our bit fields into something that fits into
|
---|
1883 | the type of `word', i.e., is something that fits into one item on the
|
---|
1884 | failure stack. */
|
---|
1885 |
|
---|
1886 |
|
---|
1887 | /* Declarations and macros for re_match_2. */
|
---|
1888 |
|
---|
1889 | typedef union
|
---|
1890 | {
|
---|
1891 | PREFIX(fail_stack_elt_t) word;
|
---|
1892 | struct
|
---|
1893 | {
|
---|
1894 | /* This field is one if this group can match the empty string,
|
---|
1895 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
|
---|
1896 | # define MATCH_NULL_UNSET_VALUE 3
|
---|
1897 | unsigned match_null_string_p : 2;
|
---|
1898 | unsigned is_active : 1;
|
---|
1899 | unsigned matched_something : 1;
|
---|
1900 | unsigned ever_matched_something : 1;
|
---|
1901 | } bits;
|
---|
1902 | } PREFIX(register_info_type);
|
---|
1903 |
|
---|
1904 | # ifndef DEFINED_ONCE
|
---|
1905 | # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
|
---|
1906 | # define IS_ACTIVE(R) ((R).bits.is_active)
|
---|
1907 | # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
|
---|
1908 | # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
|
---|
1909 |
|
---|
1910 |
|
---|
1911 | /* Call this when have matched a real character; it sets `matched' flags
|
---|
1912 | for the subexpressions which we are currently inside. Also records
|
---|
1913 | that those subexprs have matched. */
|
---|
1914 | # define SET_REGS_MATCHED() \
|
---|
1915 | do \
|
---|
1916 | { \
|
---|
1917 | if (!set_regs_matched_done) \
|
---|
1918 | { \
|
---|
1919 | active_reg_t r; \
|
---|
1920 | set_regs_matched_done = 1; \
|
---|
1921 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \
|
---|
1922 | { \
|
---|
1923 | MATCHED_SOMETHING (reg_info[r]) \
|
---|
1924 | = EVER_MATCHED_SOMETHING (reg_info[r]) \
|
---|
1925 | = 1; \
|
---|
1926 | } \
|
---|
1927 | } \
|
---|
1928 | } \
|
---|
1929 | while (0)
|
---|
1930 | # endif /* not DEFINED_ONCE */
|
---|
1931 |
|
---|
1932 | /* Registers are set to a sentinel when they haven't yet matched. */
|
---|
1933 | static CHAR_T PREFIX(reg_unset_dummy);
|
---|
1934 | # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
|
---|
1935 | # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
|
---|
1936 |
|
---|
1937 | /* Subroutine declarations and macros for regex_compile. */
|
---|
1938 | static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
|
---|
1939 | static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
|
---|
1940 | int arg1, int arg2));
|
---|
1941 | static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
|
---|
1942 | int arg, UCHAR_T *end));
|
---|
1943 | static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
|
---|
1944 | int arg1, int arg2, UCHAR_T *end));
|
---|
1945 | static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
|
---|
1946 | const CHAR_T *p,
|
---|
1947 | reg_syntax_t syntax));
|
---|
1948 | static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
|
---|
1949 | const CHAR_T *pend,
|
---|
1950 | reg_syntax_t syntax));
|
---|
1951 | # ifdef WCHAR
|
---|
1952 | static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
|
---|
1953 | const CHAR_T **p_ptr,
|
---|
1954 | const CHAR_T *pend,
|
---|
1955 | char *translate,
|
---|
1956 | reg_syntax_t syntax,
|
---|
1957 | UCHAR_T *b,
|
---|
1958 | CHAR_T *char_set));
|
---|
1959 | static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
|
---|
1960 | # else /* BYTE */
|
---|
1961 | static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
|
---|
1962 | const char **p_ptr,
|
---|
1963 | const char *pend,
|
---|
1964 | char *translate,
|
---|
1965 | reg_syntax_t syntax,
|
---|
1966 | unsigned char *b));
|
---|
1967 | # endif /* WCHAR */
|
---|
1968 |
|
---|
1969 | /* Fetch the next character in the uncompiled pattern---translating it
|
---|
1970 | if necessary. Also cast from a signed character in the constant
|
---|
1971 | string passed to us by the user to an unsigned char that we can use
|
---|
1972 | as an array index (in, e.g., `translate'). */
|
---|
1973 | /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
|
---|
1974 | because it is impossible to allocate 4GB array for some encodings
|
---|
1975 | which have 4 byte character_set like UCS4. */
|
---|
1976 | # ifndef PATFETCH
|
---|
1977 | # ifdef WCHAR
|
---|
1978 | # define PATFETCH(c) \
|
---|
1979 | do {if (p == pend) return REG_EEND; \
|
---|
1980 | c = (UCHAR_T) *p++; \
|
---|
1981 | if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
|
---|
1982 | } while (0)
|
---|
1983 | # else /* BYTE */
|
---|
1984 | # define PATFETCH(c) \
|
---|
1985 | do {if (p == pend) return REG_EEND; \
|
---|
1986 | c = (unsigned char) *p++; \
|
---|
1987 | if (translate) c = (unsigned char) translate[c]; \
|
---|
1988 | } while (0)
|
---|
1989 | # endif /* WCHAR */
|
---|
1990 | # endif
|
---|
1991 |
|
---|
1992 | /* Fetch the next character in the uncompiled pattern, with no
|
---|
1993 | translation. */
|
---|
1994 | # define PATFETCH_RAW(c) \
|
---|
1995 | do {if (p == pend) return REG_EEND; \
|
---|
1996 | c = (UCHAR_T) *p++; \
|
---|
1997 | } while (0)
|
---|
1998 |
|
---|
1999 | /* Go backwards one character in the pattern. */
|
---|
2000 | # define PATUNFETCH p--
|
---|
2001 |
|
---|
2002 |
|
---|
2003 | /* If `translate' is non-null, return translate[D], else just D. We
|
---|
2004 | cast the subscript to translate because some data is declared as
|
---|
2005 | `char *', to avoid warnings when a string constant is passed. But
|
---|
2006 | when we use a character as a subscript we must make it unsigned. */
|
---|
2007 | /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
|
---|
2008 | because it is impossible to allocate 4GB array for some encodings
|
---|
2009 | which have 4 byte character_set like UCS4. */
|
---|
2010 |
|
---|
2011 | # ifndef TRANSLATE
|
---|
2012 | # ifdef WCHAR
|
---|
2013 | # define TRANSLATE(d) \
|
---|
2014 | ((translate && ((UCHAR_T) (d)) <= 0xff) \
|
---|
2015 | ? (char) translate[(unsigned char) (d)] : (d))
|
---|
2016 | # else /* BYTE */
|
---|
2017 | # define TRANSLATE(d) \
|
---|
2018 | (translate ? (char) translate[(unsigned char) (d)] : (d))
|
---|
2019 | # endif /* WCHAR */
|
---|
2020 | # endif
|
---|
2021 |
|
---|
2022 |
|
---|
2023 | /* Macros for outputting the compiled pattern into `buffer'. */
|
---|
2024 |
|
---|
2025 | /* If the buffer isn't allocated when it comes in, use this. */
|
---|
2026 | # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
|
---|
2027 |
|
---|
2028 | /* Make sure we have at least N more bytes of space in buffer. */
|
---|
2029 | # ifdef WCHAR
|
---|
2030 | # define GET_BUFFER_SPACE(n) \
|
---|
2031 | while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
|
---|
2032 | + (n)*sizeof(CHAR_T)) > bufp->allocated) \
|
---|
2033 | EXTEND_BUFFER ()
|
---|
2034 | # else /* BYTE */
|
---|
2035 | # define GET_BUFFER_SPACE(n) \
|
---|
2036 | while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
|
---|
2037 | EXTEND_BUFFER ()
|
---|
2038 | # endif /* WCHAR */
|
---|
2039 |
|
---|
2040 | /* Make sure we have one more byte of buffer space and then add C to it. */
|
---|
2041 | # define BUF_PUSH(c) \
|
---|
2042 | do { \
|
---|
2043 | GET_BUFFER_SPACE (1); \
|
---|
2044 | *b++ = (UCHAR_T) (c); \
|
---|
2045 | } while (0)
|
---|
2046 |
|
---|
2047 |
|
---|
2048 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
|
---|
2049 | # define BUF_PUSH_2(c1, c2) \
|
---|
2050 | do { \
|
---|
2051 | GET_BUFFER_SPACE (2); \
|
---|
2052 | *b++ = (UCHAR_T) (c1); \
|
---|
2053 | *b++ = (UCHAR_T) (c2); \
|
---|
2054 | } while (0)
|
---|
2055 |
|
---|
2056 |
|
---|
2057 | /* As with BUF_PUSH_2, except for three bytes. */
|
---|
2058 | # define BUF_PUSH_3(c1, c2, c3) \
|
---|
2059 | do { \
|
---|
2060 | GET_BUFFER_SPACE (3); \
|
---|
2061 | *b++ = (UCHAR_T) (c1); \
|
---|
2062 | *b++ = (UCHAR_T) (c2); \
|
---|
2063 | *b++ = (UCHAR_T) (c3); \
|
---|
2064 | } while (0)
|
---|
2065 |
|
---|
2066 | /* Store a jump with opcode OP at LOC to location TO. We store a
|
---|
2067 | relative address offset by the three bytes the jump itself occupies. */
|
---|
2068 | # define STORE_JUMP(op, loc, to) \
|
---|
2069 | PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
|
---|
2070 |
|
---|
2071 | /* Likewise, for a two-argument jump. */
|
---|
2072 | # define STORE_JUMP2(op, loc, to, arg) \
|
---|
2073 | PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
|
---|
2074 |
|
---|
2075 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
|
---|
2076 | # define INSERT_JUMP(op, loc, to) \
|
---|
2077 | PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
|
---|
2078 |
|
---|
2079 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
|
---|
2080 | # define INSERT_JUMP2(op, loc, to, arg) \
|
---|
2081 | PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
|
---|
2082 | arg, b)
|
---|
2083 |
|
---|
2084 | /* This is not an arbitrary limit: the arguments which represent offsets
|
---|
2085 | into the pattern are two bytes long. So if 2^16 bytes turns out to
|
---|
2086 | be too small, many things would have to change. */
|
---|
2087 | /* Any other compiler which, like MSC, has allocation limit below 2^16
|
---|
2088 | bytes will have to use approach similar to what was done below for
|
---|
2089 | MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
|
---|
2090 | reallocating to 0 bytes. Such thing is not going to work too well.
|
---|
2091 | You have been warned!! */
|
---|
2092 | # ifndef DEFINED_ONCE
|
---|
2093 | # if defined _MSC_VER && !defined WIN32
|
---|
2094 | /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
|
---|
2095 | The REALLOC define eliminates a flurry of conversion warnings,
|
---|
2096 | but is not required. */
|
---|
2097 | # define MAX_BUF_SIZE 65500L
|
---|
2098 | # define REALLOC(p,s) realloc ((p), (size_t) (s))
|
---|
2099 | # else
|
---|
2100 | # define MAX_BUF_SIZE (1L << 16)
|
---|
2101 | # define REALLOC(p,s) realloc ((p), (s))
|
---|
2102 | # endif
|
---|
2103 |
|
---|
2104 | /* Extend the buffer by twice its current size via realloc and
|
---|
2105 | reset the pointers that pointed into the old block to point to the
|
---|
2106 | correct places in the new one. If extending the buffer results in it
|
---|
2107 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */
|
---|
2108 | # if __BOUNDED_POINTERS__
|
---|
2109 | # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
|
---|
2110 | # define MOVE_BUFFER_POINTER(P) \
|
---|
2111 | (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
|
---|
2112 | # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
|
---|
2113 | else \
|
---|
2114 | { \
|
---|
2115 | SET_HIGH_BOUND (b); \
|
---|
2116 | SET_HIGH_BOUND (begalt); \
|
---|
2117 | if (fixup_alt_jump) \
|
---|
2118 | SET_HIGH_BOUND (fixup_alt_jump); \
|
---|
2119 | if (laststart) \
|
---|
2120 | SET_HIGH_BOUND (laststart); \
|
---|
2121 | if (pending_exact) \
|
---|
2122 | SET_HIGH_BOUND (pending_exact); \
|
---|
2123 | }
|
---|
2124 | # else
|
---|
2125 | # define MOVE_BUFFER_POINTER(P) (P) += incr
|
---|
2126 | # define ELSE_EXTEND_BUFFER_HIGH_BOUND
|
---|
2127 | # endif
|
---|
2128 | # endif /* not DEFINED_ONCE */
|
---|
2129 |
|
---|
2130 | # ifdef WCHAR
|
---|
2131 | # define EXTEND_BUFFER() \
|
---|
2132 | do { \
|
---|
2133 | UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
|
---|
2134 | int wchar_count; \
|
---|
2135 | if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
|
---|
2136 | return REG_ESIZE; \
|
---|
2137 | bufp->allocated <<= 1; \
|
---|
2138 | if (bufp->allocated > MAX_BUF_SIZE) \
|
---|
2139 | bufp->allocated = MAX_BUF_SIZE; \
|
---|
2140 | /* How many characters the new buffer can have? */ \
|
---|
2141 | wchar_count = bufp->allocated / sizeof(UCHAR_T); \
|
---|
2142 | if (wchar_count == 0) wchar_count = 1; \
|
---|
2143 | /* Truncate the buffer to CHAR_T align. */ \
|
---|
2144 | bufp->allocated = wchar_count * sizeof(UCHAR_T); \
|
---|
2145 | RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
|
---|
2146 | bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
|
---|
2147 | if (COMPILED_BUFFER_VAR == NULL) \
|
---|
2148 | return REG_ESPACE; \
|
---|
2149 | /* If the buffer moved, move all the pointers into it. */ \
|
---|
2150 | if (old_buffer != COMPILED_BUFFER_VAR) \
|
---|
2151 | { \
|
---|
2152 | int incr = COMPILED_BUFFER_VAR - old_buffer; \
|
---|
2153 | MOVE_BUFFER_POINTER (b); \
|
---|
2154 | MOVE_BUFFER_POINTER (begalt); \
|
---|
2155 | if (fixup_alt_jump) \
|
---|
2156 | MOVE_BUFFER_POINTER (fixup_alt_jump); \
|
---|
2157 | if (laststart) \
|
---|
2158 | MOVE_BUFFER_POINTER (laststart); \
|
---|
2159 | if (pending_exact) \
|
---|
2160 | MOVE_BUFFER_POINTER (pending_exact); \
|
---|
2161 | } \
|
---|
2162 | ELSE_EXTEND_BUFFER_HIGH_BOUND \
|
---|
2163 | } while (0)
|
---|
2164 | # else /* BYTE */
|
---|
2165 | # define EXTEND_BUFFER() \
|
---|
2166 | do { \
|
---|
2167 | UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
|
---|
2168 | if (bufp->allocated == MAX_BUF_SIZE) \
|
---|
2169 | return REG_ESIZE; \
|
---|
2170 | bufp->allocated <<= 1; \
|
---|
2171 | if (bufp->allocated > MAX_BUF_SIZE) \
|
---|
2172 | bufp->allocated = MAX_BUF_SIZE; \
|
---|
2173 | bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
|
---|
2174 | bufp->allocated); \
|
---|
2175 | if (COMPILED_BUFFER_VAR == NULL) \
|
---|
2176 | return REG_ESPACE; \
|
---|
2177 | /* If the buffer moved, move all the pointers into it. */ \
|
---|
2178 | if (old_buffer != COMPILED_BUFFER_VAR) \
|
---|
2179 | { \
|
---|
2180 | int incr = COMPILED_BUFFER_VAR - old_buffer; \
|
---|
2181 | MOVE_BUFFER_POINTER (b); \
|
---|
2182 | MOVE_BUFFER_POINTER (begalt); \
|
---|
2183 | if (fixup_alt_jump) \
|
---|
2184 | MOVE_BUFFER_POINTER (fixup_alt_jump); \
|
---|
2185 | if (laststart) \
|
---|
2186 | MOVE_BUFFER_POINTER (laststart); \
|
---|
2187 | if (pending_exact) \
|
---|
2188 | MOVE_BUFFER_POINTER (pending_exact); \
|
---|
2189 | } \
|
---|
2190 | ELSE_EXTEND_BUFFER_HIGH_BOUND \
|
---|
2191 | } while (0)
|
---|
2192 | # endif /* WCHAR */
|
---|
2193 |
|
---|
2194 | # ifndef DEFINED_ONCE
|
---|
2195 | /* Since we have one byte reserved for the register number argument to
|
---|
2196 | {start,stop}_memory, the maximum number of groups we can report
|
---|
2197 | things about is what fits in that byte. */
|
---|
2198 | # define MAX_REGNUM 255
|
---|
2199 |
|
---|
2200 | /* But patterns can have more than `MAX_REGNUM' registers. We just
|
---|
2201 | ignore the excess. */
|
---|
2202 | typedef unsigned regnum_t;
|
---|
2203 |
|
---|
2204 |
|
---|
2205 | /* Macros for the compile stack. */
|
---|
2206 |
|
---|
2207 | /* Since offsets can go either forwards or backwards, this type needs to
|
---|
2208 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
|
---|
2209 | /* int may be not enough when sizeof(int) == 2. */
|
---|
2210 | typedef long pattern_offset_t;
|
---|
2211 |
|
---|
2212 | typedef struct
|
---|
2213 | {
|
---|
2214 | pattern_offset_t begalt_offset;
|
---|
2215 | pattern_offset_t fixup_alt_jump;
|
---|
2216 | pattern_offset_t inner_group_offset;
|
---|
2217 | pattern_offset_t laststart_offset;
|
---|
2218 | regnum_t regnum;
|
---|
2219 | } compile_stack_elt_t;
|
---|
2220 |
|
---|
2221 |
|
---|
2222 | typedef struct
|
---|
2223 | {
|
---|
2224 | compile_stack_elt_t *stack;
|
---|
2225 | unsigned size;
|
---|
2226 | unsigned avail; /* Offset of next open position. */
|
---|
2227 | } compile_stack_type;
|
---|
2228 |
|
---|
2229 |
|
---|
2230 | # define INIT_COMPILE_STACK_SIZE 32
|
---|
2231 |
|
---|
2232 | # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
---|
2233 | # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
---|
2234 |
|
---|
2235 | /* The next available element. */
|
---|
2236 | # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
---|
2237 |
|
---|
2238 | # endif /* not DEFINED_ONCE */
|
---|
2239 |
|
---|
2240 | /* Set the bit for character C in a list. */
|
---|
2241 | # ifndef DEFINED_ONCE
|
---|
2242 | # define SET_LIST_BIT(c) \
|
---|
2243 | (b[((unsigned char) (c)) / BYTEWIDTH] \
|
---|
2244 | |= 1 << (((unsigned char) c) % BYTEWIDTH))
|
---|
2245 | # endif /* DEFINED_ONCE */
|
---|
2246 |
|
---|
2247 | /* Get the next unsigned number in the uncompiled pattern. */
|
---|
2248 | # define GET_UNSIGNED_NUMBER(num) \
|
---|
2249 | { \
|
---|
2250 | while (p != pend) \
|
---|
2251 | { \
|
---|
2252 | PATFETCH (c); \
|
---|
2253 | if (c < '0' || c > '9') \
|
---|
2254 | break; \
|
---|
2255 | if (num <= RE_DUP_MAX) \
|
---|
2256 | { \
|
---|
2257 | if (num < 0) \
|
---|
2258 | num = 0; \
|
---|
2259 | num = num * 10 + c - '0'; \
|
---|
2260 | } \
|
---|
2261 | } \
|
---|
2262 | }
|
---|
2263 |
|
---|
2264 | # ifndef DEFINED_ONCE
|
---|
2265 | # if defined _LIBC || WIDE_CHAR_SUPPORT
|
---|
2266 | /* The GNU C library provides support for user-defined character classes
|
---|
2267 | and the functions from ISO C amendement 1. */
|
---|
2268 | # ifdef CHARCLASS_NAME_MAX
|
---|
2269 | # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
|
---|
2270 | # else
|
---|
2271 | /* This shouldn't happen but some implementation might still have this
|
---|
2272 | problem. Use a reasonable default value. */
|
---|
2273 | # define CHAR_CLASS_MAX_LENGTH 256
|
---|
2274 | # endif
|
---|
2275 |
|
---|
2276 | # ifdef _LIBC
|
---|
2277 | # define IS_CHAR_CLASS(string) __wctype (string)
|
---|
2278 | # else
|
---|
2279 | # define IS_CHAR_CLASS(string) wctype (string)
|
---|
2280 | # endif
|
---|
2281 | # else
|
---|
2282 | # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
|
---|
2283 |
|
---|
2284 | # define IS_CHAR_CLASS(string) \
|
---|
2285 | (STREQ (string, "alpha") || STREQ (string, "upper") \
|
---|
2286 | || STREQ (string, "lower") || STREQ (string, "digit") \
|
---|
2287 | || STREQ (string, "alnum") || STREQ (string, "xdigit") \
|
---|
2288 | || STREQ (string, "space") || STREQ (string, "print") \
|
---|
2289 | || STREQ (string, "punct") || STREQ (string, "graph") \
|
---|
2290 | || STREQ (string, "cntrl") || STREQ (string, "blank"))
|
---|
2291 | # endif
|
---|
2292 | # endif /* DEFINED_ONCE */
|
---|
2293 | |
---|
2294 |
|
---|
2295 | # ifndef MATCH_MAY_ALLOCATE
|
---|
2296 |
|
---|
2297 | /* If we cannot allocate large objects within re_match_2_internal,
|
---|
2298 | we make the fail stack and register vectors global.
|
---|
2299 | The fail stack, we grow to the maximum size when a regexp
|
---|
2300 | is compiled.
|
---|
2301 | The register vectors, we adjust in size each time we
|
---|
2302 | compile a regexp, according to the number of registers it needs. */
|
---|
2303 |
|
---|
2304 | static PREFIX(fail_stack_type) fail_stack;
|
---|
2305 |
|
---|
2306 | /* Size with which the following vectors are currently allocated.
|
---|
2307 | That is so we can make them bigger as needed,
|
---|
2308 | but never make them smaller. */
|
---|
2309 | # ifdef DEFINED_ONCE
|
---|
2310 | static int regs_allocated_size;
|
---|
2311 |
|
---|
2312 | static const char ** regstart, ** regend;
|
---|
2313 | static const char ** old_regstart, ** old_regend;
|
---|
2314 | static const char **best_regstart, **best_regend;
|
---|
2315 | static const char **reg_dummy;
|
---|
2316 | # endif /* DEFINED_ONCE */
|
---|
2317 |
|
---|
2318 | static PREFIX(register_info_type) *PREFIX(reg_info);
|
---|
2319 | static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
|
---|
2320 |
|
---|
2321 | /* Make the register vectors big enough for NUM_REGS registers,
|
---|
2322 | but don't make them smaller. */
|
---|
2323 |
|
---|
2324 | static void
|
---|
2325 | PREFIX(regex_grow_registers) (num_regs)
|
---|
2326 | int num_regs;
|
---|
2327 | {
|
---|
2328 | if (num_regs > regs_allocated_size)
|
---|
2329 | {
|
---|
2330 | RETALLOC_IF (regstart, num_regs, const char *);
|
---|
2331 | RETALLOC_IF (regend, num_regs, const char *);
|
---|
2332 | RETALLOC_IF (old_regstart, num_regs, const char *);
|
---|
2333 | RETALLOC_IF (old_regend, num_regs, const char *);
|
---|
2334 | RETALLOC_IF (best_regstart, num_regs, const char *);
|
---|
2335 | RETALLOC_IF (best_regend, num_regs, const char *);
|
---|
2336 | RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
|
---|
2337 | RETALLOC_IF (reg_dummy, num_regs, const char *);
|
---|
2338 | RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
|
---|
2339 |
|
---|
2340 | regs_allocated_size = num_regs;
|
---|
2341 | }
|
---|
2342 | }
|
---|
2343 |
|
---|
2344 | # endif /* not MATCH_MAY_ALLOCATE */
|
---|
2345 | |
---|
2346 |
|
---|
2347 | # ifndef DEFINED_ONCE
|
---|
2348 | static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
|
---|
2349 | compile_stack,
|
---|
2350 | regnum_t regnum));
|
---|
2351 | # endif /* not DEFINED_ONCE */
|
---|
2352 |
|
---|
2353 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
|
---|
2354 | Returns one of error codes defined in `regex.h', or zero for success.
|
---|
2355 |
|
---|
2356 | Assumes the `allocated' (and perhaps `buffer') and `translate'
|
---|
2357 | fields are set in BUFP on entry.
|
---|
2358 |
|
---|
2359 | If it succeeds, results are put in BUFP (if it returns an error, the
|
---|
2360 | contents of BUFP are undefined):
|
---|
2361 | `buffer' is the compiled pattern;
|
---|
2362 | `syntax' is set to SYNTAX;
|
---|
2363 | `used' is set to the length of the compiled pattern;
|
---|
2364 | `fastmap_accurate' is zero;
|
---|
2365 | `re_nsub' is the number of subexpressions in PATTERN;
|
---|
2366 | `not_bol' and `not_eol' are zero;
|
---|
2367 |
|
---|
2368 | The `fastmap' and `newline_anchor' fields are neither
|
---|
2369 | examined nor set. */
|
---|
2370 |
|
---|
2371 | /* Return, freeing storage we allocated. */
|
---|
2372 | # ifdef WCHAR
|
---|
2373 | # define FREE_STACK_RETURN(value) \
|
---|
2374 | return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
|
---|
2375 | # else
|
---|
2376 | # define FREE_STACK_RETURN(value) \
|
---|
2377 | return (free (compile_stack.stack), value)
|
---|
2378 | # endif /* WCHAR */
|
---|
2379 |
|
---|
2380 | static reg_errcode_t
|
---|
2381 | PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
|
---|
2382 | const char *ARG_PREFIX(pattern);
|
---|
2383 | size_t ARG_PREFIX(size);
|
---|
2384 | reg_syntax_t syntax;
|
---|
2385 | struct re_pattern_buffer *bufp;
|
---|
2386 | {
|
---|
2387 | /* We fetch characters from PATTERN here. Even though PATTERN is
|
---|
2388 | `char *' (i.e., signed), we declare these variables as unsigned, so
|
---|
2389 | they can be reliably used as array indices. */
|
---|
2390 | register UCHAR_T c, c1;
|
---|
2391 |
|
---|
2392 | #ifdef WCHAR
|
---|
2393 | /* A temporary space to keep wchar_t pattern and compiled pattern. */
|
---|
2394 | CHAR_T *pattern, *COMPILED_BUFFER_VAR;
|
---|
2395 | size_t size;
|
---|
2396 | /* offset buffer for optimization. See convert_mbs_to_wc. */
|
---|
2397 | int *mbs_offset = NULL;
|
---|
2398 | /* It hold whether each wchar_t is binary data or not. */
|
---|
2399 | char *is_binary = NULL;
|
---|
2400 | /* A flag whether exactn is handling binary data or not. */
|
---|
2401 | char is_exactn_bin = FALSE;
|
---|
2402 | #endif /* WCHAR */
|
---|
2403 |
|
---|
2404 | /* A random temporary spot in PATTERN. */
|
---|
2405 | const CHAR_T *p1;
|
---|
2406 |
|
---|
2407 | /* Points to the end of the buffer, where we should append. */
|
---|
2408 | register UCHAR_T *b;
|
---|
2409 |
|
---|
2410 | /* Keeps track of unclosed groups. */
|
---|
2411 | compile_stack_type compile_stack;
|
---|
2412 |
|
---|
2413 | /* Points to the current (ending) position in the pattern. */
|
---|
2414 | #ifdef WCHAR
|
---|
2415 | const CHAR_T *p;
|
---|
2416 | const CHAR_T *pend;
|
---|
2417 | #else /* BYTE */
|
---|
2418 | const CHAR_T *p = pattern;
|
---|
2419 | const CHAR_T *pend = pattern + size;
|
---|
2420 | #endif /* WCHAR */
|
---|
2421 |
|
---|
2422 | /* How to translate the characters in the pattern. */
|
---|
2423 | RE_TRANSLATE_TYPE translate = bufp->translate;
|
---|
2424 |
|
---|
2425 | /* Address of the count-byte of the most recently inserted `exactn'
|
---|
2426 | command. This makes it possible to tell if a new exact-match
|
---|
2427 | character can be added to that command or if the character requires
|
---|
2428 | a new `exactn' command. */
|
---|
2429 | UCHAR_T *pending_exact = 0;
|
---|
2430 |
|
---|
2431 | /* Address of start of the most recently finished expression.
|
---|
2432 | This tells, e.g., postfix * where to find the start of its
|
---|
2433 | operand. Reset at the beginning of groups and alternatives. */
|
---|
2434 | UCHAR_T *laststart = 0;
|
---|
2435 |
|
---|
2436 | /* Address of beginning of regexp, or inside of last group. */
|
---|
2437 | UCHAR_T *begalt;
|
---|
2438 |
|
---|
2439 | /* Address of the place where a forward jump should go to the end of
|
---|
2440 | the containing expression. Each alternative of an `or' -- except the
|
---|
2441 | last -- ends with a forward jump of this sort. */
|
---|
2442 | UCHAR_T *fixup_alt_jump = 0;
|
---|
2443 |
|
---|
2444 | /* Counts open-groups as they are encountered. Remembered for the
|
---|
2445 | matching close-group on the compile stack, so the same register
|
---|
2446 | number is put in the stop_memory as the start_memory. */
|
---|
2447 | regnum_t regnum = 0;
|
---|
2448 |
|
---|
2449 | #ifdef WCHAR
|
---|
2450 | /* Initialize the wchar_t PATTERN and offset_buffer. */
|
---|
2451 | p = pend = pattern = TALLOC(csize + 1, CHAR_T);
|
---|
2452 | mbs_offset = TALLOC(csize + 1, int);
|
---|
2453 | is_binary = TALLOC(csize + 1, char);
|
---|
2454 | if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
|
---|
2455 | {
|
---|
2456 | free(pattern);
|
---|
2457 | free(mbs_offset);
|
---|
2458 | free(is_binary);
|
---|
2459 | return REG_ESPACE;
|
---|
2460 | }
|
---|
2461 | pattern[csize] = L'\0'; /* sentinel */
|
---|
2462 | size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
|
---|
2463 | pend = p + size;
|
---|
2464 | if (size < 0)
|
---|
2465 | {
|
---|
2466 | free(pattern);
|
---|
2467 | free(mbs_offset);
|
---|
2468 | free(is_binary);
|
---|
2469 | return REG_BADPAT;
|
---|
2470 | }
|
---|
2471 | #endif
|
---|
2472 |
|
---|
2473 | #ifdef DEBUG
|
---|
2474 | DEBUG_PRINT1 ("\nCompiling pattern: ");
|
---|
2475 | if (debug)
|
---|
2476 | {
|
---|
2477 | unsigned debug_count;
|
---|
2478 |
|
---|
2479 | for (debug_count = 0; debug_count < size; debug_count++)
|
---|
2480 | PUT_CHAR (pattern[debug_count]);
|
---|
2481 | putchar ('\n');
|
---|
2482 | }
|
---|
2483 | #endif /* DEBUG */
|
---|
2484 |
|
---|
2485 | /* Initialize the compile stack. */
|
---|
2486 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
|
---|
2487 | if (compile_stack.stack == NULL)
|
---|
2488 | {
|
---|
2489 | #ifdef WCHAR
|
---|
2490 | free(pattern);
|
---|
2491 | free(mbs_offset);
|
---|
2492 | free(is_binary);
|
---|
2493 | #endif
|
---|
2494 | return REG_ESPACE;
|
---|
2495 | }
|
---|
2496 |
|
---|
2497 | compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
---|
2498 | compile_stack.avail = 0;
|
---|
2499 |
|
---|
2500 | /* Initialize the pattern buffer. */
|
---|
2501 | bufp->syntax = syntax;
|
---|
2502 | bufp->fastmap_accurate = 0;
|
---|
2503 | bufp->not_bol = bufp->not_eol = 0;
|
---|
2504 |
|
---|
2505 | /* Set `used' to zero, so that if we return an error, the pattern
|
---|
2506 | printer (for debugging) will think there's no pattern. We reset it
|
---|
2507 | at the end. */
|
---|
2508 | bufp->used = 0;
|
---|
2509 |
|
---|
2510 | /* Always count groups, whether or not bufp->no_sub is set. */
|
---|
2511 | bufp->re_nsub = 0;
|
---|
2512 |
|
---|
2513 | #if !defined emacs && !defined SYNTAX_TABLE
|
---|
2514 | /* Initialize the syntax table. */
|
---|
2515 | init_syntax_once ();
|
---|
2516 | #endif
|
---|
2517 |
|
---|
2518 | if (bufp->allocated == 0)
|
---|
2519 | {
|
---|
2520 | if (bufp->buffer)
|
---|
2521 | { /* If zero allocated, but buffer is non-null, try to realloc
|
---|
2522 | enough space. This loses if buffer's address is bogus, but
|
---|
2523 | that is the user's responsibility. */
|
---|
2524 | #ifdef WCHAR
|
---|
2525 | /* Free bufp->buffer and allocate an array for wchar_t pattern
|
---|
2526 | buffer. */
|
---|
2527 | free(bufp->buffer);
|
---|
2528 | COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
|
---|
2529 | UCHAR_T);
|
---|
2530 | #else
|
---|
2531 | RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
|
---|
2532 | #endif /* WCHAR */
|
---|
2533 | }
|
---|
2534 | else
|
---|
2535 | { /* Caller did not allocate a buffer. Do it for them. */
|
---|
2536 | COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
|
---|
2537 | UCHAR_T);
|
---|
2538 | }
|
---|
2539 |
|
---|
2540 | if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
|
---|
2541 | #ifdef WCHAR
|
---|
2542 | bufp->buffer = (char*)COMPILED_BUFFER_VAR;
|
---|
2543 | #endif /* WCHAR */
|
---|
2544 | bufp->allocated = INIT_BUF_SIZE;
|
---|
2545 | }
|
---|
2546 | #ifdef WCHAR
|
---|
2547 | else
|
---|
2548 | COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
|
---|
2549 | #endif
|
---|
2550 |
|
---|
2551 | begalt = b = COMPILED_BUFFER_VAR;
|
---|
2552 |
|
---|
2553 | /* Loop through the uncompiled pattern until we're at the end. */
|
---|
2554 | while (p != pend)
|
---|
2555 | {
|
---|
2556 | PATFETCH (c);
|
---|
2557 |
|
---|
2558 | switch (c)
|
---|
2559 | {
|
---|
2560 | case '^':
|
---|
2561 | {
|
---|
2562 | if ( /* If at start of pattern, it's an operator. */
|
---|
2563 | p == pattern + 1
|
---|
2564 | /* If context independent, it's an operator. */
|
---|
2565 | || syntax & RE_CONTEXT_INDEP_ANCHORS
|
---|
2566 | /* Otherwise, depends on what's come before. */
|
---|
2567 | || PREFIX(at_begline_loc_p) (pattern, p, syntax))
|
---|
2568 | BUF_PUSH (begline);
|
---|
2569 | else
|
---|
2570 | goto normal_char;
|
---|
2571 | }
|
---|
2572 | break;
|
---|
2573 |
|
---|
2574 |
|
---|
2575 | case '$':
|
---|
2576 | {
|
---|
2577 | if ( /* If at end of pattern, it's an operator. */
|
---|
2578 | p == pend
|
---|
2579 | /* If context independent, it's an operator. */
|
---|
2580 | || syntax & RE_CONTEXT_INDEP_ANCHORS
|
---|
2581 | /* Otherwise, depends on what's next. */
|
---|
2582 | || PREFIX(at_endline_loc_p) (p, pend, syntax))
|
---|
2583 | BUF_PUSH (endline);
|
---|
2584 | else
|
---|
2585 | goto normal_char;
|
---|
2586 | }
|
---|
2587 | break;
|
---|
2588 |
|
---|
2589 |
|
---|
2590 | case '+':
|
---|
2591 | case '?':
|
---|
2592 | if ((syntax & RE_BK_PLUS_QM)
|
---|
2593 | || (syntax & RE_LIMITED_OPS))
|
---|
2594 | goto normal_char;
|
---|
2595 | handle_plus:
|
---|
2596 | case '*':
|
---|
2597 | /* If there is no previous pattern... */
|
---|
2598 | if (!laststart)
|
---|
2599 | {
|
---|
2600 | if (syntax & RE_CONTEXT_INVALID_OPS)
|
---|
2601 | FREE_STACK_RETURN (REG_BADRPT);
|
---|
2602 | else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
---|
2603 | goto normal_char;
|
---|
2604 | }
|
---|
2605 |
|
---|
2606 | {
|
---|
2607 | /* Are we optimizing this jump? */
|
---|
2608 | boolean keep_string_p = false;
|
---|
2609 |
|
---|
2610 | /* 1 means zero (many) matches is allowed. */
|
---|
2611 | char zero_times_ok = 0, many_times_ok = 0;
|
---|
2612 |
|
---|
2613 | /* If there is a sequence of repetition chars, collapse it
|
---|
2614 | down to just one (the right one). We can't combine
|
---|
2615 | interval operators with these because of, e.g., `a{2}*',
|
---|
2616 | which should only match an even number of `a's. */
|
---|
2617 |
|
---|
2618 | for (;;)
|
---|
2619 | {
|
---|
2620 | zero_times_ok |= c != '+';
|
---|
2621 | many_times_ok |= c != '?';
|
---|
2622 |
|
---|
2623 | if (p == pend)
|
---|
2624 | break;
|
---|
2625 |
|
---|
2626 | PATFETCH (c);
|
---|
2627 |
|
---|
2628 | if (c == '*'
|
---|
2629 | || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
|
---|
2630 | ;
|
---|
2631 |
|
---|
2632 | else if (syntax & RE_BK_PLUS_QM && c == '\\')
|
---|
2633 | {
|
---|
2634 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
---|
2635 |
|
---|
2636 | PATFETCH (c1);
|
---|
2637 | if (!(c1 == '+' || c1 == '?'))
|
---|
2638 | {
|
---|
2639 | PATUNFETCH;
|
---|
2640 | PATUNFETCH;
|
---|
2641 | break;
|
---|
2642 | }
|
---|
2643 |
|
---|
2644 | c = c1;
|
---|
2645 | }
|
---|
2646 | else
|
---|
2647 | {
|
---|
2648 | PATUNFETCH;
|
---|
2649 | break;
|
---|
2650 | }
|
---|
2651 |
|
---|
2652 | /* If we get here, we found another repeat character. */
|
---|
2653 | }
|
---|
2654 |
|
---|
2655 | /* Star, etc. applied to an empty pattern is equivalent
|
---|
2656 | to an empty pattern. */
|
---|
2657 | if (!laststart)
|
---|
2658 | break;
|
---|
2659 |
|
---|
2660 | /* Now we know whether or not zero matches is allowed
|
---|
2661 | and also whether or not two or more matches is allowed. */
|
---|
2662 | if (many_times_ok)
|
---|
2663 | { /* More than one repetition is allowed, so put in at the
|
---|
2664 | end a backward relative jump from `b' to before the next
|
---|
2665 | jump we're going to put in below (which jumps from
|
---|
2666 | laststart to after this jump).
|
---|
2667 |
|
---|
2668 | But if we are at the `*' in the exact sequence `.*\n',
|
---|
2669 | insert an unconditional jump backwards to the .,
|
---|
2670 | instead of the beginning of the loop. This way we only
|
---|
2671 | push a failure point once, instead of every time
|
---|
2672 | through the loop. */
|
---|
2673 | assert (p - 1 > pattern);
|
---|
2674 |
|
---|
2675 | /* Allocate the space for the jump. */
|
---|
2676 | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
|
---|
2677 |
|
---|
2678 | /* We know we are not at the first character of the pattern,
|
---|
2679 | because laststart was nonzero. And we've already
|
---|
2680 | incremented `p', by the way, to be the character after
|
---|
2681 | the `*'. Do we have to do something analogous here
|
---|
2682 | for null bytes, because of RE_DOT_NOT_NULL? */
|
---|
2683 | if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
|
---|
2684 | && zero_times_ok
|
---|
2685 | && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
|
---|
2686 | && !(syntax & RE_DOT_NEWLINE))
|
---|
2687 | { /* We have .*\n. */
|
---|
2688 | STORE_JUMP (jump, b, laststart);
|
---|
2689 | keep_string_p = true;
|
---|
2690 | }
|
---|
2691 | else
|
---|
2692 | /* Anything else. */
|
---|
2693 | STORE_JUMP (maybe_pop_jump, b, laststart -
|
---|
2694 | (1 + OFFSET_ADDRESS_SIZE));
|
---|
2695 |
|
---|
2696 | /* We've added more stuff to the buffer. */
|
---|
2697 | b += 1 + OFFSET_ADDRESS_SIZE;
|
---|
2698 | }
|
---|
2699 |
|
---|
2700 | /* On failure, jump from laststart to b + 3, which will be the
|
---|
2701 | end of the buffer after this jump is inserted. */
|
---|
2702 | /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
|
---|
2703 | 'b + 3'. */
|
---|
2704 | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
|
---|
2705 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
|
---|
2706 | : on_failure_jump,
|
---|
2707 | laststart, b + 1 + OFFSET_ADDRESS_SIZE);
|
---|
2708 | pending_exact = 0;
|
---|
2709 | b += 1 + OFFSET_ADDRESS_SIZE;
|
---|
2710 |
|
---|
2711 | if (!zero_times_ok)
|
---|
2712 | {
|
---|
2713 | /* At least one repetition is required, so insert a
|
---|
2714 | `dummy_failure_jump' before the initial
|
---|
2715 | `on_failure_jump' instruction of the loop. This
|
---|
2716 | effects a skip over that instruction the first time
|
---|
2717 | we hit that loop. */
|
---|
2718 | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
|
---|
2719 | INSERT_JUMP (dummy_failure_jump, laststart, laststart +
|
---|
2720 | 2 + 2 * OFFSET_ADDRESS_SIZE);
|
---|
2721 | b += 1 + OFFSET_ADDRESS_SIZE;
|
---|
2722 | }
|
---|
2723 | }
|
---|
2724 | break;
|
---|
2725 |
|
---|
2726 |
|
---|
2727 | case '.':
|
---|
2728 | laststart = b;
|
---|
2729 | BUF_PUSH (anychar);
|
---|
2730 | break;
|
---|
2731 |
|
---|
2732 |
|
---|
2733 | case '[':
|
---|
2734 | {
|
---|
2735 | boolean had_char_class = false;
|
---|
2736 | #ifdef WCHAR
|
---|
2737 | CHAR_T range_start = 0xffffffff;
|
---|
2738 | #else
|
---|
2739 | unsigned int range_start = 0xffffffff;
|
---|
2740 | #endif
|
---|
2741 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
2742 |
|
---|
2743 | #ifdef WCHAR
|
---|
2744 | /* We assume a charset(_not) structure as a wchar_t array.
|
---|
2745 | charset[0] = (re_opcode_t) charset(_not)
|
---|
2746 | charset[1] = l (= length of char_classes)
|
---|
2747 | charset[2] = m (= length of collating_symbols)
|
---|
2748 | charset[3] = n (= length of equivalence_classes)
|
---|
2749 | charset[4] = o (= length of char_ranges)
|
---|
2750 | charset[5] = p (= length of chars)
|
---|
2751 |
|
---|
2752 | charset[6] = char_class (wctype_t)
|
---|
2753 | charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
|
---|
2754 | ...
|
---|
2755 | charset[l+5] = char_class (wctype_t)
|
---|
2756 |
|
---|
2757 | charset[l+6] = collating_symbol (wchar_t)
|
---|
2758 | ...
|
---|
2759 | charset[l+m+5] = collating_symbol (wchar_t)
|
---|
2760 | ifdef _LIBC we use the index if
|
---|
2761 | _NL_COLLATE_SYMB_EXTRAMB instead of
|
---|
2762 | wchar_t string.
|
---|
2763 |
|
---|
2764 | charset[l+m+6] = equivalence_classes (wchar_t)
|
---|
2765 | ...
|
---|
2766 | charset[l+m+n+5] = equivalence_classes (wchar_t)
|
---|
2767 | ifdef _LIBC we use the index in
|
---|
2768 | _NL_COLLATE_WEIGHT instead of
|
---|
2769 | wchar_t string.
|
---|
2770 |
|
---|
2771 | charset[l+m+n+6] = range_start
|
---|
2772 | charset[l+m+n+7] = range_end
|
---|
2773 | ...
|
---|
2774 | charset[l+m+n+2o+4] = range_start
|
---|
2775 | charset[l+m+n+2o+5] = range_end
|
---|
2776 | ifdef _LIBC we use the value looked up
|
---|
2777 | in _NL_COLLATE_COLLSEQ instead of
|
---|
2778 | wchar_t character.
|
---|
2779 |
|
---|
2780 | charset[l+m+n+2o+6] = char
|
---|
2781 | ...
|
---|
2782 | charset[l+m+n+2o+p+5] = char
|
---|
2783 |
|
---|
2784 | */
|
---|
2785 |
|
---|
2786 | /* We need at least 6 spaces: the opcode, the length of
|
---|
2787 | char_classes, the length of collating_symbols, the length of
|
---|
2788 | equivalence_classes, the length of char_ranges, the length of
|
---|
2789 | chars. */
|
---|
2790 | GET_BUFFER_SPACE (6);
|
---|
2791 |
|
---|
2792 | /* Save b as laststart. And We use laststart as the pointer
|
---|
2793 | to the first element of the charset here.
|
---|
2794 | In other words, laststart[i] indicates charset[i]. */
|
---|
2795 | laststart = b;
|
---|
2796 |
|
---|
2797 | /* We test `*p == '^' twice, instead of using an if
|
---|
2798 | statement, so we only need one BUF_PUSH. */
|
---|
2799 | BUF_PUSH (*p == '^' ? charset_not : charset);
|
---|
2800 | if (*p == '^')
|
---|
2801 | p++;
|
---|
2802 |
|
---|
2803 | /* Push the length of char_classes, the length of
|
---|
2804 | collating_symbols, the length of equivalence_classes, the
|
---|
2805 | length of char_ranges and the length of chars. */
|
---|
2806 | BUF_PUSH_3 (0, 0, 0);
|
---|
2807 | BUF_PUSH_2 (0, 0);
|
---|
2808 |
|
---|
2809 | /* Remember the first position in the bracket expression. */
|
---|
2810 | p1 = p;
|
---|
2811 |
|
---|
2812 | /* charset_not matches newline according to a syntax bit. */
|
---|
2813 | if ((re_opcode_t) b[-6] == charset_not
|
---|
2814 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
---|
2815 | {
|
---|
2816 | BUF_PUSH('\n');
|
---|
2817 | laststart[5]++; /* Update the length of characters */
|
---|
2818 | }
|
---|
2819 |
|
---|
2820 | /* Read in characters and ranges, setting map bits. */
|
---|
2821 | for (;;)
|
---|
2822 | {
|
---|
2823 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
2824 |
|
---|
2825 | PATFETCH (c);
|
---|
2826 |
|
---|
2827 | /* \ might escape characters inside [...] and [^...]. */
|
---|
2828 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
---|
2829 | {
|
---|
2830 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
---|
2831 |
|
---|
2832 | PATFETCH (c1);
|
---|
2833 | BUF_PUSH(c1);
|
---|
2834 | laststart[5]++; /* Update the length of chars */
|
---|
2835 | range_start = c1;
|
---|
2836 | continue;
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 | /* Could be the end of the bracket expression. If it's
|
---|
2840 | not (i.e., when the bracket expression is `[]' so
|
---|
2841 | far), the ']' character bit gets set way below. */
|
---|
2842 | if (c == ']' && p != p1 + 1)
|
---|
2843 | break;
|
---|
2844 |
|
---|
2845 | /* Look ahead to see if it's a range when the last thing
|
---|
2846 | was a character class. */
|
---|
2847 | if (had_char_class && c == '-' && *p != ']')
|
---|
2848 | FREE_STACK_RETURN (REG_ERANGE);
|
---|
2849 |
|
---|
2850 | /* Look ahead to see if it's a range when the last thing
|
---|
2851 | was a character: if this is a hyphen not at the
|
---|
2852 | beginning or the end of a list, then it's the range
|
---|
2853 | operator. */
|
---|
2854 | if (c == '-'
|
---|
2855 | && !(p - 2 >= pattern && p[-2] == '[')
|
---|
2856 | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
|
---|
2857 | && *p != ']')
|
---|
2858 | {
|
---|
2859 | reg_errcode_t ret;
|
---|
2860 | /* Allocate the space for range_start and range_end. */
|
---|
2861 | GET_BUFFER_SPACE (2);
|
---|
2862 | /* Update the pointer to indicate end of buffer. */
|
---|
2863 | b += 2;
|
---|
2864 | ret = wcs_compile_range (range_start, &p, pend, translate,
|
---|
2865 | syntax, b, laststart);
|
---|
2866 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
---|
2867 | range_start = 0xffffffff;
|
---|
2868 | }
|
---|
2869 | else if (p[0] == '-' && p[1] != ']')
|
---|
2870 | { /* This handles ranges made up of characters only. */
|
---|
2871 | reg_errcode_t ret;
|
---|
2872 |
|
---|
2873 | /* Move past the `-'. */
|
---|
2874 | PATFETCH (c1);
|
---|
2875 | /* Allocate the space for range_start and range_end. */
|
---|
2876 | GET_BUFFER_SPACE (2);
|
---|
2877 | /* Update the pointer to indicate end of buffer. */
|
---|
2878 | b += 2;
|
---|
2879 | ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
|
---|
2880 | laststart);
|
---|
2881 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
---|
2882 | range_start = 0xffffffff;
|
---|
2883 | }
|
---|
2884 |
|
---|
2885 | /* See if we're at the beginning of a possible character
|
---|
2886 | class. */
|
---|
2887 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
|
---|
2888 | { /* Leave room for the null. */
|
---|
2889 | char str[CHAR_CLASS_MAX_LENGTH + 1];
|
---|
2890 |
|
---|
2891 | PATFETCH (c);
|
---|
2892 | c1 = 0;
|
---|
2893 |
|
---|
2894 | /* If pattern is `[[:'. */
|
---|
2895 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
2896 |
|
---|
2897 | for (;;)
|
---|
2898 | {
|
---|
2899 | PATFETCH (c);
|
---|
2900 | if ((c == ':' && *p == ']') || p == pend)
|
---|
2901 | break;
|
---|
2902 | if (c1 < CHAR_CLASS_MAX_LENGTH)
|
---|
2903 | str[c1++] = c;
|
---|
2904 | else
|
---|
2905 | /* This is in any case an invalid class name. */
|
---|
2906 | str[0] = '\0';
|
---|
2907 | }
|
---|
2908 | str[c1] = '\0';
|
---|
2909 |
|
---|
2910 | /* If isn't a word bracketed by `[:' and `:]':
|
---|
2911 | undo the ending character, the letters, and leave
|
---|
2912 | the leading `:' and `[' (but store them as character). */
|
---|
2913 | if (c == ':' && *p == ']')
|
---|
2914 | {
|
---|
2915 | wctype_t wt;
|
---|
2916 | uintptr_t alignedp;
|
---|
2917 |
|
---|
2918 | /* Query the character class as wctype_t. */
|
---|
2919 | wt = IS_CHAR_CLASS (str);
|
---|
2920 | if (wt == 0)
|
---|
2921 | FREE_STACK_RETURN (REG_ECTYPE);
|
---|
2922 |
|
---|
2923 | /* Throw away the ] at the end of the character
|
---|
2924 | class. */
|
---|
2925 | PATFETCH (c);
|
---|
2926 |
|
---|
2927 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
2928 |
|
---|
2929 | /* Allocate the space for character class. */
|
---|
2930 | GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
|
---|
2931 | /* Update the pointer to indicate end of buffer. */
|
---|
2932 | b += CHAR_CLASS_SIZE;
|
---|
2933 | /* Move data which follow character classes
|
---|
2934 | not to violate the data. */
|
---|
2935 | insert_space(CHAR_CLASS_SIZE,
|
---|
2936 | laststart + 6 + laststart[1],
|
---|
2937 | b - 1);
|
---|
2938 | alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
|
---|
2939 | + __alignof__(wctype_t) - 1)
|
---|
2940 | & ~(uintptr_t)(__alignof__(wctype_t) - 1);
|
---|
2941 | /* Store the character class. */
|
---|
2942 | *((wctype_t*)alignedp) = wt;
|
---|
2943 | /* Update length of char_classes */
|
---|
2944 | laststart[1] += CHAR_CLASS_SIZE;
|
---|
2945 |
|
---|
2946 | had_char_class = true;
|
---|
2947 | }
|
---|
2948 | else
|
---|
2949 | {
|
---|
2950 | c1++;
|
---|
2951 | while (c1--)
|
---|
2952 | PATUNFETCH;
|
---|
2953 | BUF_PUSH ('[');
|
---|
2954 | BUF_PUSH (':');
|
---|
2955 | laststart[5] += 2; /* Update the length of characters */
|
---|
2956 | range_start = ':';
|
---|
2957 | had_char_class = false;
|
---|
2958 | }
|
---|
2959 | }
|
---|
2960 | else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
|
---|
2961 | || *p == '.'))
|
---|
2962 | {
|
---|
2963 | CHAR_T str[128]; /* Should be large enough. */
|
---|
2964 | CHAR_T delim = *p; /* '=' or '.' */
|
---|
2965 | # ifdef _LIBC
|
---|
2966 | uint32_t nrules =
|
---|
2967 | _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
2968 | # endif
|
---|
2969 | PATFETCH (c);
|
---|
2970 | c1 = 0;
|
---|
2971 |
|
---|
2972 | /* If pattern is `[[=' or '[[.'. */
|
---|
2973 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
2974 |
|
---|
2975 | for (;;)
|
---|
2976 | {
|
---|
2977 | PATFETCH (c);
|
---|
2978 | if ((c == delim && *p == ']') || p == pend)
|
---|
2979 | break;
|
---|
2980 | if (c1 < sizeof (str) - 1)
|
---|
2981 | str[c1++] = c;
|
---|
2982 | else
|
---|
2983 | /* This is in any case an invalid class name. */
|
---|
2984 | str[0] = '\0';
|
---|
2985 | }
|
---|
2986 | str[c1] = '\0';
|
---|
2987 |
|
---|
2988 | if (c == delim && *p == ']' && str[0] != '\0')
|
---|
2989 | {
|
---|
2990 | unsigned int i, offset;
|
---|
2991 | /* If we have no collation data we use the default
|
---|
2992 | collation in which each character is in a class
|
---|
2993 | by itself. It also means that ASCII is the
|
---|
2994 | character set and therefore we cannot have character
|
---|
2995 | with more than one byte in the multibyte
|
---|
2996 | representation. */
|
---|
2997 |
|
---|
2998 | /* If not defined _LIBC, we push the name and
|
---|
2999 | `\0' for the sake of matching performance. */
|
---|
3000 | int datasize = c1 + 1;
|
---|
3001 |
|
---|
3002 | # ifdef _LIBC
|
---|
3003 | int32_t idx = 0;
|
---|
3004 | if (nrules == 0)
|
---|
3005 | # endif
|
---|
3006 | {
|
---|
3007 | if (c1 != 1)
|
---|
3008 | FREE_STACK_RETURN (REG_ECOLLATE);
|
---|
3009 | }
|
---|
3010 | # ifdef _LIBC
|
---|
3011 | else
|
---|
3012 | {
|
---|
3013 | const int32_t *table;
|
---|
3014 | const int32_t *weights;
|
---|
3015 | const int32_t *extra;
|
---|
3016 | const int32_t *indirect;
|
---|
3017 | wint_t *cp;
|
---|
3018 |
|
---|
3019 | /* This #include defines a local function! */
|
---|
3020 | # include <locale/weightwc.h>
|
---|
3021 |
|
---|
3022 | if(delim == '=')
|
---|
3023 | {
|
---|
3024 | /* We push the index for equivalence class. */
|
---|
3025 | cp = (wint_t*)str;
|
---|
3026 |
|
---|
3027 | table = (const int32_t *)
|
---|
3028 | _NL_CURRENT (LC_COLLATE,
|
---|
3029 | _NL_COLLATE_TABLEWC);
|
---|
3030 | weights = (const int32_t *)
|
---|
3031 | _NL_CURRENT (LC_COLLATE,
|
---|
3032 | _NL_COLLATE_WEIGHTWC);
|
---|
3033 | extra = (const int32_t *)
|
---|
3034 | _NL_CURRENT (LC_COLLATE,
|
---|
3035 | _NL_COLLATE_EXTRAWC);
|
---|
3036 | indirect = (const int32_t *)
|
---|
3037 | _NL_CURRENT (LC_COLLATE,
|
---|
3038 | _NL_COLLATE_INDIRECTWC);
|
---|
3039 |
|
---|
3040 | idx = findidx ((const wint_t**)&cp);
|
---|
3041 | if (idx == 0 || cp < (wint_t*) str + c1)
|
---|
3042 | /* This is no valid character. */
|
---|
3043 | FREE_STACK_RETURN (REG_ECOLLATE);
|
---|
3044 |
|
---|
3045 | str[0] = (wchar_t)idx;
|
---|
3046 | }
|
---|
3047 | else /* delim == '.' */
|
---|
3048 | {
|
---|
3049 | /* We push collation sequence value
|
---|
3050 | for collating symbol. */
|
---|
3051 | int32_t table_size;
|
---|
3052 | const int32_t *symb_table;
|
---|
3053 | const unsigned char *extra;
|
---|
3054 | int32_t idx;
|
---|
3055 | int32_t elem;
|
---|
3056 | int32_t second;
|
---|
3057 | int32_t hash;
|
---|
3058 | char char_str[c1];
|
---|
3059 |
|
---|
3060 | /* We have to convert the name to a single-byte
|
---|
3061 | string. This is possible since the names
|
---|
3062 | consist of ASCII characters and the internal
|
---|
3063 | representation is UCS4. */
|
---|
3064 | for (i = 0; i < c1; ++i)
|
---|
3065 | char_str[i] = str[i];
|
---|
3066 |
|
---|
3067 | table_size =
|
---|
3068 | _NL_CURRENT_WORD (LC_COLLATE,
|
---|
3069 | _NL_COLLATE_SYMB_HASH_SIZEMB);
|
---|
3070 | symb_table = (const int32_t *)
|
---|
3071 | _NL_CURRENT (LC_COLLATE,
|
---|
3072 | _NL_COLLATE_SYMB_TABLEMB);
|
---|
3073 | extra = (const unsigned char *)
|
---|
3074 | _NL_CURRENT (LC_COLLATE,
|
---|
3075 | _NL_COLLATE_SYMB_EXTRAMB);
|
---|
3076 |
|
---|
3077 | /* Locate the character in the hashing table. */
|
---|
3078 | hash = elem_hash (char_str, c1);
|
---|
3079 |
|
---|
3080 | idx = 0;
|
---|
3081 | elem = hash % table_size;
|
---|
3082 | second = hash % (table_size - 2);
|
---|
3083 | while (symb_table[2 * elem] != 0)
|
---|
3084 | {
|
---|
3085 | /* First compare the hashing value. */
|
---|
3086 | if (symb_table[2 * elem] == hash
|
---|
3087 | && c1 == extra[symb_table[2 * elem + 1]]
|
---|
3088 | && memcmp (char_str,
|
---|
3089 | &extra[symb_table[2 * elem + 1]
|
---|
3090 | + 1], c1) == 0)
|
---|
3091 | {
|
---|
3092 | /* Yep, this is the entry. */
|
---|
3093 | idx = symb_table[2 * elem + 1];
|
---|
3094 | idx += 1 + extra[idx];
|
---|
3095 | break;
|
---|
3096 | }
|
---|
3097 |
|
---|
3098 | /* Next entry. */
|
---|
3099 | elem += second;
|
---|
3100 | }
|
---|
3101 |
|
---|
3102 | if (symb_table[2 * elem] != 0)
|
---|
3103 | {
|
---|
3104 | /* Compute the index of the byte sequence
|
---|
3105 | in the table. */
|
---|
3106 | idx += 1 + extra[idx];
|
---|
3107 | /* Adjust for the alignment. */
|
---|
3108 | idx = (idx + 3) & ~3;
|
---|
3109 |
|
---|
3110 | str[0] = (wchar_t) idx + 4;
|
---|
3111 | }
|
---|
3112 | else if (symb_table[2 * elem] == 0 && c1 == 1)
|
---|
3113 | {
|
---|
3114 | /* No valid character. Match it as a
|
---|
3115 | single byte character. */
|
---|
3116 | had_char_class = false;
|
---|
3117 | BUF_PUSH(str[0]);
|
---|
3118 | /* Update the length of characters */
|
---|
3119 | laststart[5]++;
|
---|
3120 | range_start = str[0];
|
---|
3121 |
|
---|
3122 | /* Throw away the ] at the end of the
|
---|
3123 | collating symbol. */
|
---|
3124 | PATFETCH (c);
|
---|
3125 | /* exit from the switch block. */
|
---|
3126 | continue;
|
---|
3127 | }
|
---|
3128 | else
|
---|
3129 | FREE_STACK_RETURN (REG_ECOLLATE);
|
---|
3130 | }
|
---|
3131 | datasize = 1;
|
---|
3132 | }
|
---|
3133 | # endif
|
---|
3134 | /* Throw away the ] at the end of the equivalence
|
---|
3135 | class (or collating symbol). */
|
---|
3136 | PATFETCH (c);
|
---|
3137 |
|
---|
3138 | /* Allocate the space for the equivalence class
|
---|
3139 | (or collating symbol) (and '\0' if needed). */
|
---|
3140 | GET_BUFFER_SPACE(datasize);
|
---|
3141 | /* Update the pointer to indicate end of buffer. */
|
---|
3142 | b += datasize;
|
---|
3143 |
|
---|
3144 | if (delim == '=')
|
---|
3145 | { /* equivalence class */
|
---|
3146 | /* Calculate the offset of char_ranges,
|
---|
3147 | which is next to equivalence_classes. */
|
---|
3148 | offset = laststart[1] + laststart[2]
|
---|
3149 | + laststart[3] +6;
|
---|
3150 | /* Insert space. */
|
---|
3151 | insert_space(datasize, laststart + offset, b - 1);
|
---|
3152 |
|
---|
3153 | /* Write the equivalence_class and \0. */
|
---|
3154 | for (i = 0 ; i < datasize ; i++)
|
---|
3155 | laststart[offset + i] = str[i];
|
---|
3156 |
|
---|
3157 | /* Update the length of equivalence_classes. */
|
---|
3158 | laststart[3] += datasize;
|
---|
3159 | had_char_class = true;
|
---|
3160 | }
|
---|
3161 | else /* delim == '.' */
|
---|
3162 | { /* collating symbol */
|
---|
3163 | /* Calculate the offset of the equivalence_classes,
|
---|
3164 | which is next to collating_symbols. */
|
---|
3165 | offset = laststart[1] + laststart[2] + 6;
|
---|
3166 | /* Insert space and write the collationg_symbol
|
---|
3167 | and \0. */
|
---|
3168 | insert_space(datasize, laststart + offset, b-1);
|
---|
3169 | for (i = 0 ; i < datasize ; i++)
|
---|
3170 | laststart[offset + i] = str[i];
|
---|
3171 |
|
---|
3172 | /* In re_match_2_internal if range_start < -1, we
|
---|
3173 | assume -range_start is the offset of the
|
---|
3174 | collating symbol which is specified as
|
---|
3175 | the character of the range start. So we assign
|
---|
3176 | -(laststart[1] + laststart[2] + 6) to
|
---|
3177 | range_start. */
|
---|
3178 | range_start = -(laststart[1] + laststart[2] + 6);
|
---|
3179 | /* Update the length of collating_symbol. */
|
---|
3180 | laststart[2] += datasize;
|
---|
3181 | had_char_class = false;
|
---|
3182 | }
|
---|
3183 | }
|
---|
3184 | else
|
---|
3185 | {
|
---|
3186 | c1++;
|
---|
3187 | while (c1--)
|
---|
3188 | PATUNFETCH;
|
---|
3189 | BUF_PUSH ('[');
|
---|
3190 | BUF_PUSH (delim);
|
---|
3191 | laststart[5] += 2; /* Update the length of characters */
|
---|
3192 | range_start = delim;
|
---|
3193 | had_char_class = false;
|
---|
3194 | }
|
---|
3195 | }
|
---|
3196 | else
|
---|
3197 | {
|
---|
3198 | had_char_class = false;
|
---|
3199 | BUF_PUSH(c);
|
---|
3200 | laststart[5]++; /* Update the length of characters */
|
---|
3201 | range_start = c;
|
---|
3202 | }
|
---|
3203 | }
|
---|
3204 |
|
---|
3205 | #else /* BYTE */
|
---|
3206 | /* Ensure that we have enough space to push a charset: the
|
---|
3207 | opcode, the length count, and the bitset; 34 bytes in all. */
|
---|
3208 | GET_BUFFER_SPACE (34);
|
---|
3209 |
|
---|
3210 | laststart = b;
|
---|
3211 |
|
---|
3212 | /* We test `*p == '^' twice, instead of using an if
|
---|
3213 | statement, so we only need one BUF_PUSH. */
|
---|
3214 | BUF_PUSH (*p == '^' ? charset_not : charset);
|
---|
3215 | if (*p == '^')
|
---|
3216 | p++;
|
---|
3217 |
|
---|
3218 | /* Remember the first position in the bracket expression. */
|
---|
3219 | p1 = p;
|
---|
3220 |
|
---|
3221 | /* Push the number of bytes in the bitmap. */
|
---|
3222 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
|
---|
3223 |
|
---|
3224 | /* Clear the whole map. */
|
---|
3225 | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
|
---|
3226 |
|
---|
3227 | /* charset_not matches newline according to a syntax bit. */
|
---|
3228 | if ((re_opcode_t) b[-2] == charset_not
|
---|
3229 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
---|
3230 | SET_LIST_BIT ('\n');
|
---|
3231 |
|
---|
3232 | /* Read in characters and ranges, setting map bits. */
|
---|
3233 | for (;;)
|
---|
3234 | {
|
---|
3235 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
3236 |
|
---|
3237 | PATFETCH (c);
|
---|
3238 |
|
---|
3239 | /* \ might escape characters inside [...] and [^...]. */
|
---|
3240 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
---|
3241 | {
|
---|
3242 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
---|
3243 |
|
---|
3244 | PATFETCH (c1);
|
---|
3245 | SET_LIST_BIT (c1);
|
---|
3246 | range_start = c1;
|
---|
3247 | continue;
|
---|
3248 | }
|
---|
3249 |
|
---|
3250 | /* Could be the end of the bracket expression. If it's
|
---|
3251 | not (i.e., when the bracket expression is `[]' so
|
---|
3252 | far), the ']' character bit gets set way below. */
|
---|
3253 | if (c == ']' && p != p1 + 1)
|
---|
3254 | break;
|
---|
3255 |
|
---|
3256 | /* Look ahead to see if it's a range when the last thing
|
---|
3257 | was a character class. */
|
---|
3258 | if (had_char_class && c == '-' && *p != ']')
|
---|
3259 | FREE_STACK_RETURN (REG_ERANGE);
|
---|
3260 |
|
---|
3261 | /* Look ahead to see if it's a range when the last thing
|
---|
3262 | was a character: if this is a hyphen not at the
|
---|
3263 | beginning or the end of a list, then it's the range
|
---|
3264 | operator. */
|
---|
3265 | if (c == '-'
|
---|
3266 | && !(p - 2 >= pattern && p[-2] == '[')
|
---|
3267 | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
|
---|
3268 | && *p != ']')
|
---|
3269 | {
|
---|
3270 | reg_errcode_t ret
|
---|
3271 | = byte_compile_range (range_start, &p, pend, translate,
|
---|
3272 | syntax, b);
|
---|
3273 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
---|
3274 | range_start = 0xffffffff;
|
---|
3275 | }
|
---|
3276 |
|
---|
3277 | else if (p[0] == '-' && p[1] != ']')
|
---|
3278 | { /* This handles ranges made up of characters only. */
|
---|
3279 | reg_errcode_t ret;
|
---|
3280 |
|
---|
3281 | /* Move past the `-'. */
|
---|
3282 | PATFETCH (c1);
|
---|
3283 |
|
---|
3284 | ret = byte_compile_range (c, &p, pend, translate, syntax, b);
|
---|
3285 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
|
---|
3286 | range_start = 0xffffffff;
|
---|
3287 | }
|
---|
3288 |
|
---|
3289 | /* See if we're at the beginning of a possible character
|
---|
3290 | class. */
|
---|
3291 |
|
---|
3292 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
|
---|
3293 | { /* Leave room for the null. */
|
---|
3294 | char str[CHAR_CLASS_MAX_LENGTH + 1];
|
---|
3295 |
|
---|
3296 | PATFETCH (c);
|
---|
3297 | c1 = 0;
|
---|
3298 |
|
---|
3299 | /* If pattern is `[[:'. */
|
---|
3300 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
3301 |
|
---|
3302 | for (;;)
|
---|
3303 | {
|
---|
3304 | PATFETCH (c);
|
---|
3305 | if ((c == ':' && *p == ']') || p == pend)
|
---|
3306 | break;
|
---|
3307 | if (c1 < CHAR_CLASS_MAX_LENGTH)
|
---|
3308 | str[c1++] = c;
|
---|
3309 | else
|
---|
3310 | /* This is in any case an invalid class name. */
|
---|
3311 | str[0] = '\0';
|
---|
3312 | }
|
---|
3313 | str[c1] = '\0';
|
---|
3314 |
|
---|
3315 | /* If isn't a word bracketed by `[:' and `:]':
|
---|
3316 | undo the ending character, the letters, and leave
|
---|
3317 | the leading `:' and `[' (but set bits for them). */
|
---|
3318 | if (c == ':' && *p == ']')
|
---|
3319 | {
|
---|
3320 | # if defined _LIBC || WIDE_CHAR_SUPPORT
|
---|
3321 | boolean is_lower = STREQ (str, "lower");
|
---|
3322 | boolean is_upper = STREQ (str, "upper");
|
---|
3323 | wctype_t wt;
|
---|
3324 | int ch;
|
---|
3325 |
|
---|
3326 | wt = IS_CHAR_CLASS (str);
|
---|
3327 | if (wt == 0)
|
---|
3328 | FREE_STACK_RETURN (REG_ECTYPE);
|
---|
3329 |
|
---|
3330 | /* Throw away the ] at the end of the character
|
---|
3331 | class. */
|
---|
3332 | PATFETCH (c);
|
---|
3333 |
|
---|
3334 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
3335 |
|
---|
3336 | for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
|
---|
3337 | {
|
---|
3338 | # ifdef _LIBC
|
---|
3339 | if (__iswctype (__btowc (ch), wt))
|
---|
3340 | SET_LIST_BIT (ch);
|
---|
3341 | # else
|
---|
3342 | if (iswctype (btowc (ch), wt))
|
---|
3343 | SET_LIST_BIT (ch);
|
---|
3344 | # endif
|
---|
3345 |
|
---|
3346 | if (translate && (is_upper || is_lower)
|
---|
3347 | && (ISUPPER (ch) || ISLOWER (ch)))
|
---|
3348 | SET_LIST_BIT (ch);
|
---|
3349 | }
|
---|
3350 |
|
---|
3351 | had_char_class = true;
|
---|
3352 | # else
|
---|
3353 | int ch;
|
---|
3354 | boolean is_alnum = STREQ (str, "alnum");
|
---|
3355 | boolean is_alpha = STREQ (str, "alpha");
|
---|
3356 | boolean is_blank = STREQ (str, "blank");
|
---|
3357 | boolean is_cntrl = STREQ (str, "cntrl");
|
---|
3358 | boolean is_digit = STREQ (str, "digit");
|
---|
3359 | boolean is_graph = STREQ (str, "graph");
|
---|
3360 | boolean is_lower = STREQ (str, "lower");
|
---|
3361 | boolean is_print = STREQ (str, "print");
|
---|
3362 | boolean is_punct = STREQ (str, "punct");
|
---|
3363 | boolean is_space = STREQ (str, "space");
|
---|
3364 | boolean is_upper = STREQ (str, "upper");
|
---|
3365 | boolean is_xdigit = STREQ (str, "xdigit");
|
---|
3366 |
|
---|
3367 | if (!IS_CHAR_CLASS (str))
|
---|
3368 | FREE_STACK_RETURN (REG_ECTYPE);
|
---|
3369 |
|
---|
3370 | /* Throw away the ] at the end of the character
|
---|
3371 | class. */
|
---|
3372 | PATFETCH (c);
|
---|
3373 |
|
---|
3374 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
3375 |
|
---|
3376 | for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
|
---|
3377 | {
|
---|
3378 | /* This was split into 3 if's to
|
---|
3379 | avoid an arbitrary limit in some compiler. */
|
---|
3380 | if ( (is_alnum && ISALNUM (ch))
|
---|
3381 | || (is_alpha && ISALPHA (ch))
|
---|
3382 | || (is_blank && ISBLANK (ch))
|
---|
3383 | || (is_cntrl && ISCNTRL (ch)))
|
---|
3384 | SET_LIST_BIT (ch);
|
---|
3385 | if ( (is_digit && ISDIGIT (ch))
|
---|
3386 | || (is_graph && ISGRAPH (ch))
|
---|
3387 | || (is_lower && ISLOWER (ch))
|
---|
3388 | || (is_print && ISPRINT (ch)))
|
---|
3389 | SET_LIST_BIT (ch);
|
---|
3390 | if ( (is_punct && ISPUNCT (ch))
|
---|
3391 | || (is_space && ISSPACE (ch))
|
---|
3392 | || (is_upper && ISUPPER (ch))
|
---|
3393 | || (is_xdigit && ISXDIGIT (ch)))
|
---|
3394 | SET_LIST_BIT (ch);
|
---|
3395 | if ( translate && (is_upper || is_lower)
|
---|
3396 | && (ISUPPER (ch) || ISLOWER (ch)))
|
---|
3397 | SET_LIST_BIT (ch);
|
---|
3398 | }
|
---|
3399 | had_char_class = true;
|
---|
3400 | # endif /* libc || wctype.h */
|
---|
3401 | }
|
---|
3402 | else
|
---|
3403 | {
|
---|
3404 | c1++;
|
---|
3405 | while (c1--)
|
---|
3406 | PATUNFETCH;
|
---|
3407 | SET_LIST_BIT ('[');
|
---|
3408 | SET_LIST_BIT (':');
|
---|
3409 | range_start = ':';
|
---|
3410 | had_char_class = false;
|
---|
3411 | }
|
---|
3412 | }
|
---|
3413 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
|
---|
3414 | {
|
---|
3415 | unsigned char str[MB_LEN_MAX + 1];
|
---|
3416 | # ifdef _LIBC
|
---|
3417 | uint32_t nrules =
|
---|
3418 | _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
3419 | # endif
|
---|
3420 |
|
---|
3421 | PATFETCH (c);
|
---|
3422 | c1 = 0;
|
---|
3423 |
|
---|
3424 | /* If pattern is `[[='. */
|
---|
3425 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
3426 |
|
---|
3427 | for (;;)
|
---|
3428 | {
|
---|
3429 | PATFETCH (c);
|
---|
3430 | if ((c == '=' && *p == ']') || p == pend)
|
---|
3431 | break;
|
---|
3432 | if (c1 < MB_LEN_MAX)
|
---|
3433 | str[c1++] = c;
|
---|
3434 | else
|
---|
3435 | /* This is in any case an invalid class name. */
|
---|
3436 | str[0] = '\0';
|
---|
3437 | }
|
---|
3438 | str[c1] = '\0';
|
---|
3439 |
|
---|
3440 | if (c == '=' && *p == ']' && str[0] != '\0')
|
---|
3441 | {
|
---|
3442 | /* If we have no collation data we use the default
|
---|
3443 | collation in which each character is in a class
|
---|
3444 | by itself. It also means that ASCII is the
|
---|
3445 | character set and therefore we cannot have character
|
---|
3446 | with more than one byte in the multibyte
|
---|
3447 | representation. */
|
---|
3448 | # ifdef _LIBC
|
---|
3449 | if (nrules == 0)
|
---|
3450 | # endif
|
---|
3451 | {
|
---|
3452 | if (c1 != 1)
|
---|
3453 | FREE_STACK_RETURN (REG_ECOLLATE);
|
---|
3454 |
|
---|
3455 | /* Throw away the ] at the end of the equivalence
|
---|
3456 | class. */
|
---|
3457 | PATFETCH (c);
|
---|
3458 |
|
---|
3459 | /* Set the bit for the character. */
|
---|
3460 | SET_LIST_BIT (str[0]);
|
---|
3461 | }
|
---|
3462 | # ifdef _LIBC
|
---|
3463 | else
|
---|
3464 | {
|
---|
3465 | /* Try to match the byte sequence in `str' against
|
---|
3466 | those known to the collate implementation.
|
---|
3467 | First find out whether the bytes in `str' are
|
---|
3468 | actually from exactly one character. */
|
---|
3469 | const int32_t *table;
|
---|
3470 | const unsigned char *weights;
|
---|
3471 | const unsigned char *extra;
|
---|
3472 | const int32_t *indirect;
|
---|
3473 | int32_t idx;
|
---|
3474 | const unsigned char *cp = str;
|
---|
3475 | int ch;
|
---|
3476 |
|
---|
3477 | /* This #include defines a local function! */
|
---|
3478 | # include <locale/weight.h>
|
---|
3479 |
|
---|
3480 | table = (const int32_t *)
|
---|
3481 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
---|
3482 | weights = (const unsigned char *)
|
---|
3483 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
|
---|
3484 | extra = (const unsigned char *)
|
---|
3485 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
|
---|
3486 | indirect = (const int32_t *)
|
---|
3487 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
|
---|
3488 |
|
---|
3489 | idx = findidx (&cp);
|
---|
3490 | if (idx == 0 || cp < str + c1)
|
---|
3491 | /* This is no valid character. */
|
---|
3492 | FREE_STACK_RETURN (REG_ECOLLATE);
|
---|
3493 |
|
---|
3494 | /* Throw away the ] at the end of the equivalence
|
---|
3495 | class. */
|
---|
3496 | PATFETCH (c);
|
---|
3497 |
|
---|
3498 | /* Now we have to go throught the whole table
|
---|
3499 | and find all characters which have the same
|
---|
3500 | first level weight.
|
---|
3501 |
|
---|
3502 | XXX Note that this is not entirely correct.
|
---|
3503 | we would have to match multibyte sequences
|
---|
3504 | but this is not possible with the current
|
---|
3505 | implementation. */
|
---|
3506 | for (ch = 1; ch < 256; ++ch)
|
---|
3507 | /* XXX This test would have to be changed if we
|
---|
3508 | would allow matching multibyte sequences. */
|
---|
3509 | if (table[ch] > 0)
|
---|
3510 | {
|
---|
3511 | int32_t idx2 = table[ch];
|
---|
3512 | size_t len = weights[idx2];
|
---|
3513 |
|
---|
3514 | /* Test whether the lenghts match. */
|
---|
3515 | if (weights[idx] == len)
|
---|
3516 | {
|
---|
3517 | /* They do. New compare the bytes of
|
---|
3518 | the weight. */
|
---|
3519 | size_t cnt = 0;
|
---|
3520 |
|
---|
3521 | while (cnt < len
|
---|
3522 | && (weights[idx + 1 + cnt]
|
---|
3523 | == weights[idx2 + 1 + cnt]))
|
---|
3524 | ++cnt;
|
---|
3525 |
|
---|
3526 | if (cnt == len)
|
---|
3527 | /* They match. Mark the character as
|
---|
3528 | acceptable. */
|
---|
3529 | SET_LIST_BIT (ch);
|
---|
3530 | }
|
---|
3531 | }
|
---|
3532 | }
|
---|
3533 | # endif
|
---|
3534 | had_char_class = true;
|
---|
3535 | }
|
---|
3536 | else
|
---|
3537 | {
|
---|
3538 | c1++;
|
---|
3539 | while (c1--)
|
---|
3540 | PATUNFETCH;
|
---|
3541 | SET_LIST_BIT ('[');
|
---|
3542 | SET_LIST_BIT ('=');
|
---|
3543 | range_start = '=';
|
---|
3544 | had_char_class = false;
|
---|
3545 | }
|
---|
3546 | }
|
---|
3547 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
|
---|
3548 | {
|
---|
3549 | unsigned char str[128]; /* Should be large enough. */
|
---|
3550 | # ifdef _LIBC
|
---|
3551 | uint32_t nrules =
|
---|
3552 | _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
3553 | # endif
|
---|
3554 |
|
---|
3555 | PATFETCH (c);
|
---|
3556 | c1 = 0;
|
---|
3557 |
|
---|
3558 | /* If pattern is `[[.'. */
|
---|
3559 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
---|
3560 |
|
---|
3561 | for (;;)
|
---|
3562 | {
|
---|
3563 | PATFETCH (c);
|
---|
3564 | if ((c == '.' && *p == ']') || p == pend)
|
---|
3565 | break;
|
---|
3566 | if (c1 < sizeof (str))
|
---|
3567 | str[c1++] = c;
|
---|
3568 | else
|
---|
3569 | /* This is in any case an invalid class name. */
|
---|
3570 | str[0] = '\0';
|
---|
3571 | }
|
---|
3572 | str[c1] = '\0';
|
---|
3573 |
|
---|
3574 | if (c == '.' && *p == ']' && str[0] != '\0')
|
---|
3575 | {
|
---|
3576 | /* If we have no collation data we use the default
|
---|
3577 | collation in which each character is the name
|
---|
3578 | for its own class which contains only the one
|
---|
3579 | character. It also means that ASCII is the
|
---|
3580 | character set and therefore we cannot have character
|
---|
3581 | with more than one byte in the multibyte
|
---|
3582 | representation. */
|
---|
3583 | # ifdef _LIBC
|
---|
3584 | if (nrules == 0)
|
---|
3585 | # endif
|
---|
3586 | {
|
---|
3587 | if (c1 != 1)
|
---|
3588 | FREE_STACK_RETURN (REG_ECOLLATE);
|
---|
3589 |
|
---|
3590 | /* Throw away the ] at the end of the equivalence
|
---|
3591 | class. */
|
---|
3592 | PATFETCH (c);
|
---|
3593 |
|
---|
3594 | /* Set the bit for the character. */
|
---|
3595 | SET_LIST_BIT (str[0]);
|
---|
3596 | range_start = ((const unsigned char *) str)[0];
|
---|
3597 | }
|
---|
3598 | # ifdef _LIBC
|
---|
3599 | else
|
---|
3600 | {
|
---|
3601 | /* Try to match the byte sequence in `str' against
|
---|
3602 | those known to the collate implementation.
|
---|
3603 | First find out whether the bytes in `str' are
|
---|
3604 | actually from exactly one character. */
|
---|
3605 | int32_t table_size;
|
---|
3606 | const int32_t *symb_table;
|
---|
3607 | const unsigned char *extra;
|
---|
3608 | int32_t idx;
|
---|
3609 | int32_t elem;
|
---|
3610 | int32_t second;
|
---|
3611 | int32_t hash;
|
---|
3612 |
|
---|
3613 | table_size =
|
---|
3614 | _NL_CURRENT_WORD (LC_COLLATE,
|
---|
3615 | _NL_COLLATE_SYMB_HASH_SIZEMB);
|
---|
3616 | symb_table = (const int32_t *)
|
---|
3617 | _NL_CURRENT (LC_COLLATE,
|
---|
3618 | _NL_COLLATE_SYMB_TABLEMB);
|
---|
3619 | extra = (const unsigned char *)
|
---|
3620 | _NL_CURRENT (LC_COLLATE,
|
---|
3621 | _NL_COLLATE_SYMB_EXTRAMB);
|
---|
3622 |
|
---|
3623 | /* Locate the character in the hashing table. */
|
---|
3624 | hash = elem_hash (str, c1);
|
---|
3625 |
|
---|
3626 | idx = 0;
|
---|
3627 | elem = hash % table_size;
|
---|
3628 | second = hash % (table_size - 2);
|
---|
3629 | while (symb_table[2 * elem] != 0)
|
---|
3630 | {
|
---|
3631 | /* First compare the hashing value. */
|
---|
3632 | if (symb_table[2 * elem] == hash
|
---|
3633 | && c1 == extra[symb_table[2 * elem + 1]]
|
---|
3634 | && memcmp (str,
|
---|
3635 | &extra[symb_table[2 * elem + 1]
|
---|
3636 | + 1],
|
---|
3637 | c1) == 0)
|
---|
3638 | {
|
---|
3639 | /* Yep, this is the entry. */
|
---|
3640 | idx = symb_table[2 * elem + 1];
|
---|
3641 | idx += 1 + extra[idx];
|
---|
3642 | break;
|
---|
3643 | }
|
---|
3644 |
|
---|
3645 | /* Next entry. */
|
---|
3646 | elem += second;
|
---|
3647 | }
|
---|
3648 |
|
---|
3649 | if (symb_table[2 * elem] == 0)
|
---|
3650 | /* This is no valid character. */
|
---|
3651 | FREE_STACK_RETURN (REG_ECOLLATE);
|
---|
3652 |
|
---|
3653 | /* Throw away the ] at the end of the equivalence
|
---|
3654 | class. */
|
---|
3655 | PATFETCH (c);
|
---|
3656 |
|
---|
3657 | /* Now add the multibyte character(s) we found
|
---|
3658 | to the accept list.
|
---|
3659 |
|
---|
3660 | XXX Note that this is not entirely correct.
|
---|
3661 | we would have to match multibyte sequences
|
---|
3662 | but this is not possible with the current
|
---|
3663 | implementation. Also, we have to match
|
---|
3664 | collating symbols, which expand to more than
|
---|
3665 | one file, as a whole and not allow the
|
---|
3666 | individual bytes. */
|
---|
3667 | c1 = extra[idx++];
|
---|
3668 | if (c1 == 1)
|
---|
3669 | range_start = extra[idx];
|
---|
3670 | while (c1-- > 0)
|
---|
3671 | {
|
---|
3672 | SET_LIST_BIT (extra[idx]);
|
---|
3673 | ++idx;
|
---|
3674 | }
|
---|
3675 | }
|
---|
3676 | # endif
|
---|
3677 | had_char_class = false;
|
---|
3678 | }
|
---|
3679 | else
|
---|
3680 | {
|
---|
3681 | c1++;
|
---|
3682 | while (c1--)
|
---|
3683 | PATUNFETCH;
|
---|
3684 | SET_LIST_BIT ('[');
|
---|
3685 | SET_LIST_BIT ('.');
|
---|
3686 | range_start = '.';
|
---|
3687 | had_char_class = false;
|
---|
3688 | }
|
---|
3689 | }
|
---|
3690 | else
|
---|
3691 | {
|
---|
3692 | had_char_class = false;
|
---|
3693 | SET_LIST_BIT (c);
|
---|
3694 | range_start = c;
|
---|
3695 | }
|
---|
3696 | }
|
---|
3697 |
|
---|
3698 | /* Discard any (non)matching list bytes that are all 0 at the
|
---|
3699 | end of the map. Decrease the map-length byte too. */
|
---|
3700 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
|
---|
3701 | b[-1]--;
|
---|
3702 | b += b[-1];
|
---|
3703 | #endif /* WCHAR */
|
---|
3704 | }
|
---|
3705 | break;
|
---|
3706 |
|
---|
3707 |
|
---|
3708 | case '(':
|
---|
3709 | if (syntax & RE_NO_BK_PARENS)
|
---|
3710 | goto handle_open;
|
---|
3711 | else
|
---|
3712 | goto normal_char;
|
---|
3713 |
|
---|
3714 |
|
---|
3715 | case ')':
|
---|
3716 | if (syntax & RE_NO_BK_PARENS)
|
---|
3717 | goto handle_close;
|
---|
3718 | else
|
---|
3719 | goto normal_char;
|
---|
3720 |
|
---|
3721 |
|
---|
3722 | case '\n':
|
---|
3723 | if (syntax & RE_NEWLINE_ALT)
|
---|
3724 | goto handle_alt;
|
---|
3725 | else
|
---|
3726 | goto normal_char;
|
---|
3727 |
|
---|
3728 |
|
---|
3729 | case '|':
|
---|
3730 | if (syntax & RE_NO_BK_VBAR)
|
---|
3731 | goto handle_alt;
|
---|
3732 | else
|
---|
3733 | goto normal_char;
|
---|
3734 |
|
---|
3735 |
|
---|
3736 | case '{':
|
---|
3737 | if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
|
---|
3738 | goto handle_interval;
|
---|
3739 | else
|
---|
3740 | goto normal_char;
|
---|
3741 |
|
---|
3742 |
|
---|
3743 | case '\\':
|
---|
3744 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
---|
3745 |
|
---|
3746 | /* Do not translate the character after the \, so that we can
|
---|
3747 | distinguish, e.g., \B from \b, even if we normally would
|
---|
3748 | translate, e.g., B to b. */
|
---|
3749 | PATFETCH_RAW (c);
|
---|
3750 |
|
---|
3751 | switch (c)
|
---|
3752 | {
|
---|
3753 | case '(':
|
---|
3754 | if (syntax & RE_NO_BK_PARENS)
|
---|
3755 | goto normal_backslash;
|
---|
3756 |
|
---|
3757 | handle_open:
|
---|
3758 | bufp->re_nsub++;
|
---|
3759 | regnum++;
|
---|
3760 |
|
---|
3761 | if (COMPILE_STACK_FULL)
|
---|
3762 | {
|
---|
3763 | RETALLOC (compile_stack.stack, compile_stack.size << 1,
|
---|
3764 | compile_stack_elt_t);
|
---|
3765 | if (compile_stack.stack == NULL) return REG_ESPACE;
|
---|
3766 |
|
---|
3767 | compile_stack.size <<= 1;
|
---|
3768 | }
|
---|
3769 |
|
---|
3770 | /* These are the values to restore when we hit end of this
|
---|
3771 | group. They are all relative offsets, so that if the
|
---|
3772 | whole pattern moves because of realloc, they will still
|
---|
3773 | be valid. */
|
---|
3774 | COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
|
---|
3775 | COMPILE_STACK_TOP.fixup_alt_jump
|
---|
3776 | = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
|
---|
3777 | COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
|
---|
3778 | COMPILE_STACK_TOP.regnum = regnum;
|
---|
3779 |
|
---|
3780 | /* We will eventually replace the 0 with the number of
|
---|
3781 | groups inner to this one. But do not push a
|
---|
3782 | start_memory for groups beyond the last one we can
|
---|
3783 | represent in the compiled pattern. */
|
---|
3784 | if (regnum <= MAX_REGNUM)
|
---|
3785 | {
|
---|
3786 | COMPILE_STACK_TOP.inner_group_offset = b
|
---|
3787 | - COMPILED_BUFFER_VAR + 2;
|
---|
3788 | BUF_PUSH_3 (start_memory, regnum, 0);
|
---|
3789 | }
|
---|
3790 |
|
---|
3791 | compile_stack.avail++;
|
---|
3792 |
|
---|
3793 | fixup_alt_jump = 0;
|
---|
3794 | laststart = 0;
|
---|
3795 | begalt = b;
|
---|
3796 | /* If we've reached MAX_REGNUM groups, then this open
|
---|
3797 | won't actually generate any code, so we'll have to
|
---|
3798 | clear pending_exact explicitly. */
|
---|
3799 | pending_exact = 0;
|
---|
3800 | break;
|
---|
3801 |
|
---|
3802 |
|
---|
3803 | case ')':
|
---|
3804 | if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
|
---|
3805 |
|
---|
3806 | if (COMPILE_STACK_EMPTY)
|
---|
3807 | {
|
---|
3808 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
---|
3809 | goto normal_backslash;
|
---|
3810 | else
|
---|
3811 | FREE_STACK_RETURN (REG_ERPAREN);
|
---|
3812 | }
|
---|
3813 |
|
---|
3814 | handle_close:
|
---|
3815 | if (fixup_alt_jump)
|
---|
3816 | { /* Push a dummy failure point at the end of the
|
---|
3817 | alternative for a possible future
|
---|
3818 | `pop_failure_jump' to pop. See comments at
|
---|
3819 | `push_dummy_failure' in `re_match_2'. */
|
---|
3820 | BUF_PUSH (push_dummy_failure);
|
---|
3821 |
|
---|
3822 | /* We allocated space for this jump when we assigned
|
---|
3823 | to `fixup_alt_jump', in the `handle_alt' case below. */
|
---|
3824 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
|
---|
3825 | }
|
---|
3826 |
|
---|
3827 | /* See similar code for backslashed left paren above. */
|
---|
3828 | if (COMPILE_STACK_EMPTY)
|
---|
3829 | {
|
---|
3830 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
---|
3831 | goto normal_char;
|
---|
3832 | else
|
---|
3833 | FREE_STACK_RETURN (REG_ERPAREN);
|
---|
3834 | }
|
---|
3835 |
|
---|
3836 | /* Since we just checked for an empty stack above, this
|
---|
3837 | ``can't happen''. */
|
---|
3838 | assert (compile_stack.avail != 0);
|
---|
3839 | {
|
---|
3840 | /* We don't just want to restore into `regnum', because
|
---|
3841 | later groups should continue to be numbered higher,
|
---|
3842 | as in `(ab)c(de)' -- the second group is #2. */
|
---|
3843 | regnum_t this_group_regnum;
|
---|
3844 |
|
---|
3845 | compile_stack.avail--;
|
---|
3846 | begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
|
---|
3847 | fixup_alt_jump
|
---|
3848 | = COMPILE_STACK_TOP.fixup_alt_jump
|
---|
3849 | ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
|
---|
3850 | : 0;
|
---|
3851 | laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
|
---|
3852 | this_group_regnum = COMPILE_STACK_TOP.regnum;
|
---|
3853 | /* If we've reached MAX_REGNUM groups, then this open
|
---|
3854 | won't actually generate any code, so we'll have to
|
---|
3855 | clear pending_exact explicitly. */
|
---|
3856 | pending_exact = 0;
|
---|
3857 |
|
---|
3858 | /* We're at the end of the group, so now we know how many
|
---|
3859 | groups were inside this one. */
|
---|
3860 | if (this_group_regnum <= MAX_REGNUM)
|
---|
3861 | {
|
---|
3862 | UCHAR_T *inner_group_loc
|
---|
3863 | = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
|
---|
3864 |
|
---|
3865 | *inner_group_loc = regnum - this_group_regnum;
|
---|
3866 | BUF_PUSH_3 (stop_memory, this_group_regnum,
|
---|
3867 | regnum - this_group_regnum);
|
---|
3868 | }
|
---|
3869 | }
|
---|
3870 | break;
|
---|
3871 |
|
---|
3872 |
|
---|
3873 | case '|': /* `\|'. */
|
---|
3874 | if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
|
---|
3875 | goto normal_backslash;
|
---|
3876 | handle_alt:
|
---|
3877 | if (syntax & RE_LIMITED_OPS)
|
---|
3878 | goto normal_char;
|
---|
3879 |
|
---|
3880 | /* Insert before the previous alternative a jump which
|
---|
3881 | jumps to this alternative if the former fails. */
|
---|
3882 | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
|
---|
3883 | INSERT_JUMP (on_failure_jump, begalt,
|
---|
3884 | b + 2 + 2 * OFFSET_ADDRESS_SIZE);
|
---|
3885 | pending_exact = 0;
|
---|
3886 | b += 1 + OFFSET_ADDRESS_SIZE;
|
---|
3887 |
|
---|
3888 | /* The alternative before this one has a jump after it
|
---|
3889 | which gets executed if it gets matched. Adjust that
|
---|
3890 | jump so it will jump to this alternative's analogous
|
---|
3891 | jump (put in below, which in turn will jump to the next
|
---|
3892 | (if any) alternative's such jump, etc.). The last such
|
---|
3893 | jump jumps to the correct final destination. A picture:
|
---|
3894 | _____ _____
|
---|
3895 | | | | |
|
---|
3896 | | v | v
|
---|
3897 | a | b | c
|
---|
3898 |
|
---|
3899 | If we are at `b', then fixup_alt_jump right now points to a
|
---|
3900 | three-byte space after `a'. We'll put in the jump, set
|
---|
3901 | fixup_alt_jump to right after `b', and leave behind three
|
---|
3902 | bytes which we'll fill in when we get to after `c'. */
|
---|
3903 |
|
---|
3904 | if (fixup_alt_jump)
|
---|
3905 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
|
---|
3906 |
|
---|
3907 | /* Mark and leave space for a jump after this alternative,
|
---|
3908 | to be filled in later either by next alternative or
|
---|
3909 | when know we're at the end of a series of alternatives. */
|
---|
3910 | fixup_alt_jump = b;
|
---|
3911 | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
|
---|
3912 | b += 1 + OFFSET_ADDRESS_SIZE;
|
---|
3913 |
|
---|
3914 | laststart = 0;
|
---|
3915 | begalt = b;
|
---|
3916 | break;
|
---|
3917 |
|
---|
3918 |
|
---|
3919 | case '{':
|
---|
3920 | /* If \{ is a literal. */
|
---|
3921 | if (!(syntax & RE_INTERVALS)
|
---|
3922 | /* If we're at `\{' and it's not the open-interval
|
---|
3923 | operator. */
|
---|
3924 | || (syntax & RE_NO_BK_BRACES))
|
---|
3925 | goto normal_backslash;
|
---|
3926 |
|
---|
3927 | handle_interval:
|
---|
3928 | {
|
---|
3929 | /* If got here, then the syntax allows intervals. */
|
---|
3930 |
|
---|
3931 | /* At least (most) this many matches must be made. */
|
---|
3932 | int lower_bound = -1, upper_bound = -1;
|
---|
3933 |
|
---|
3934 | /* Place in the uncompiled pattern (i.e., just after
|
---|
3935 | the '{') to go back to if the interval is invalid. */
|
---|
3936 | const CHAR_T *beg_interval = p;
|
---|
3937 |
|
---|
3938 | if (p == pend)
|
---|
3939 | goto invalid_interval;
|
---|
3940 |
|
---|
3941 | GET_UNSIGNED_NUMBER (lower_bound);
|
---|
3942 |
|
---|
3943 | if (c == ',')
|
---|
3944 | {
|
---|
3945 | GET_UNSIGNED_NUMBER (upper_bound);
|
---|
3946 | if (upper_bound < 0)
|
---|
3947 | upper_bound = RE_DUP_MAX;
|
---|
3948 | }
|
---|
3949 | else
|
---|
3950 | /* Interval such as `{1}' => match exactly once. */
|
---|
3951 | upper_bound = lower_bound;
|
---|
3952 |
|
---|
3953 | if (! (0 <= lower_bound && lower_bound <= upper_bound))
|
---|
3954 | goto invalid_interval;
|
---|
3955 |
|
---|
3956 | if (!(syntax & RE_NO_BK_BRACES))
|
---|
3957 | {
|
---|
3958 | if (c != '\\' || p == pend)
|
---|
3959 | goto invalid_interval;
|
---|
3960 | PATFETCH (c);
|
---|
3961 | }
|
---|
3962 |
|
---|
3963 | if (c != '}')
|
---|
3964 | goto invalid_interval;
|
---|
3965 |
|
---|
3966 | /* If it's invalid to have no preceding re. */
|
---|
3967 | if (!laststart)
|
---|
3968 | {
|
---|
3969 | if (syntax & RE_CONTEXT_INVALID_OPS
|
---|
3970 | && !(syntax & RE_INVALID_INTERVAL_ORD))
|
---|
3971 | FREE_STACK_RETURN (REG_BADRPT);
|
---|
3972 | else if (syntax & RE_CONTEXT_INDEP_OPS)
|
---|
3973 | laststart = b;
|
---|
3974 | else
|
---|
3975 | goto unfetch_interval;
|
---|
3976 | }
|
---|
3977 |
|
---|
3978 | /* We just parsed a valid interval. */
|
---|
3979 |
|
---|
3980 | if (RE_DUP_MAX < upper_bound)
|
---|
3981 | FREE_STACK_RETURN (REG_BADBR);
|
---|
3982 |
|
---|
3983 | /* If the upper bound is zero, don't want to succeed at
|
---|
3984 | all; jump from `laststart' to `b + 3', which will be
|
---|
3985 | the end of the buffer after we insert the jump. */
|
---|
3986 | /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
|
---|
3987 | instead of 'b + 3'. */
|
---|
3988 | if (upper_bound == 0)
|
---|
3989 | {
|
---|
3990 | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
|
---|
3991 | INSERT_JUMP (jump, laststart, b + 1
|
---|
3992 | + OFFSET_ADDRESS_SIZE);
|
---|
3993 | b += 1 + OFFSET_ADDRESS_SIZE;
|
---|
3994 | }
|
---|
3995 |
|
---|
3996 | /* Otherwise, we have a nontrivial interval. When
|
---|
3997 | we're all done, the pattern will look like:
|
---|
3998 | set_number_at <jump count> <upper bound>
|
---|
3999 | set_number_at <succeed_n count> <lower bound>
|
---|
4000 | succeed_n <after jump addr> <succeed_n count>
|
---|
4001 | <body of loop>
|
---|
4002 | jump_n <succeed_n addr> <jump count>
|
---|
4003 | (The upper bound and `jump_n' are omitted if
|
---|
4004 | `upper_bound' is 1, though.) */
|
---|
4005 | else
|
---|
4006 | { /* If the upper bound is > 1, we need to insert
|
---|
4007 | more at the end of the loop. */
|
---|
4008 | unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
|
---|
4009 | (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
|
---|
4010 |
|
---|
4011 | GET_BUFFER_SPACE (nbytes);
|
---|
4012 |
|
---|
4013 | /* Initialize lower bound of the `succeed_n', even
|
---|
4014 | though it will be set during matching by its
|
---|
4015 | attendant `set_number_at' (inserted next),
|
---|
4016 | because `re_compile_fastmap' needs to know.
|
---|
4017 | Jump to the `jump_n' we might insert below. */
|
---|
4018 | INSERT_JUMP2 (succeed_n, laststart,
|
---|
4019 | b + 1 + 2 * OFFSET_ADDRESS_SIZE
|
---|
4020 | + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
|
---|
4021 | , lower_bound);
|
---|
4022 | b += 1 + 2 * OFFSET_ADDRESS_SIZE;
|
---|
4023 |
|
---|
4024 | /* Code to initialize the lower bound. Insert
|
---|
4025 | before the `succeed_n'. The `5' is the last two
|
---|
4026 | bytes of this `set_number_at', plus 3 bytes of
|
---|
4027 | the following `succeed_n'. */
|
---|
4028 | /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
|
---|
4029 | is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
|
---|
4030 | of the following `succeed_n'. */
|
---|
4031 | PREFIX(insert_op2) (set_number_at, laststart, 1
|
---|
4032 | + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
|
---|
4033 | b += 1 + 2 * OFFSET_ADDRESS_SIZE;
|
---|
4034 |
|
---|
4035 | if (upper_bound > 1)
|
---|
4036 | { /* More than one repetition is allowed, so
|
---|
4037 | append a backward jump to the `succeed_n'
|
---|
4038 | that starts this interval.
|
---|
4039 |
|
---|
4040 | When we've reached this during matching,
|
---|
4041 | we'll have matched the interval once, so
|
---|
4042 | jump back only `upper_bound - 1' times. */
|
---|
4043 | STORE_JUMP2 (jump_n, b, laststart
|
---|
4044 | + 2 * OFFSET_ADDRESS_SIZE + 1,
|
---|
4045 | upper_bound - 1);
|
---|
4046 | b += 1 + 2 * OFFSET_ADDRESS_SIZE;
|
---|
4047 |
|
---|
4048 | /* The location we want to set is the second
|
---|
4049 | parameter of the `jump_n'; that is `b-2' as
|
---|
4050 | an absolute address. `laststart' will be
|
---|
4051 | the `set_number_at' we're about to insert;
|
---|
4052 | `laststart+3' the number to set, the source
|
---|
4053 | for the relative address. But we are
|
---|
4054 | inserting into the middle of the pattern --
|
---|
4055 | so everything is getting moved up by 5.
|
---|
4056 | Conclusion: (b - 2) - (laststart + 3) + 5,
|
---|
4057 | i.e., b - laststart.
|
---|
4058 |
|
---|
4059 | We insert this at the beginning of the loop
|
---|
4060 | so that if we fail during matching, we'll
|
---|
4061 | reinitialize the bounds. */
|
---|
4062 | PREFIX(insert_op2) (set_number_at, laststart,
|
---|
4063 | b - laststart,
|
---|
4064 | upper_bound - 1, b);
|
---|
4065 | b += 1 + 2 * OFFSET_ADDRESS_SIZE;
|
---|
4066 | }
|
---|
4067 | }
|
---|
4068 | pending_exact = 0;
|
---|
4069 | break;
|
---|
4070 |
|
---|
4071 | invalid_interval:
|
---|
4072 | if (!(syntax & RE_INVALID_INTERVAL_ORD))
|
---|
4073 | FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
|
---|
4074 | unfetch_interval:
|
---|
4075 | /* Match the characters as literals. */
|
---|
4076 | p = beg_interval;
|
---|
4077 | c = '{';
|
---|
4078 | if (syntax & RE_NO_BK_BRACES)
|
---|
4079 | goto normal_char;
|
---|
4080 | else
|
---|
4081 | goto normal_backslash;
|
---|
4082 | }
|
---|
4083 |
|
---|
4084 | #ifdef emacs
|
---|
4085 | /* There is no way to specify the before_dot and after_dot
|
---|
4086 | operators. rms says this is ok. --karl */
|
---|
4087 | case '=':
|
---|
4088 | BUF_PUSH (at_dot);
|
---|
4089 | break;
|
---|
4090 |
|
---|
4091 | case 's':
|
---|
4092 | laststart = b;
|
---|
4093 | PATFETCH (c);
|
---|
4094 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
|
---|
4095 | break;
|
---|
4096 |
|
---|
4097 | case 'S':
|
---|
4098 | laststart = b;
|
---|
4099 | PATFETCH (c);
|
---|
4100 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
|
---|
4101 | break;
|
---|
4102 | #endif /* emacs */
|
---|
4103 |
|
---|
4104 |
|
---|
4105 | case 'w':
|
---|
4106 | if (syntax & RE_NO_GNU_OPS)
|
---|
4107 | goto normal_char;
|
---|
4108 | laststart = b;
|
---|
4109 | BUF_PUSH (wordchar);
|
---|
4110 | break;
|
---|
4111 |
|
---|
4112 |
|
---|
4113 | case 'W':
|
---|
4114 | if (syntax & RE_NO_GNU_OPS)
|
---|
4115 | goto normal_char;
|
---|
4116 | laststart = b;
|
---|
4117 | BUF_PUSH (notwordchar);
|
---|
4118 | break;
|
---|
4119 |
|
---|
4120 |
|
---|
4121 | case '<':
|
---|
4122 | if (syntax & RE_NO_GNU_OPS)
|
---|
4123 | goto normal_char;
|
---|
4124 | BUF_PUSH (wordbeg);
|
---|
4125 | break;
|
---|
4126 |
|
---|
4127 | case '>':
|
---|
4128 | if (syntax & RE_NO_GNU_OPS)
|
---|
4129 | goto normal_char;
|
---|
4130 | BUF_PUSH (wordend);
|
---|
4131 | break;
|
---|
4132 |
|
---|
4133 | case 'b':
|
---|
4134 | if (syntax & RE_NO_GNU_OPS)
|
---|
4135 | goto normal_char;
|
---|
4136 | BUF_PUSH (wordbound);
|
---|
4137 | break;
|
---|
4138 |
|
---|
4139 | case 'B':
|
---|
4140 | if (syntax & RE_NO_GNU_OPS)
|
---|
4141 | goto normal_char;
|
---|
4142 | BUF_PUSH (notwordbound);
|
---|
4143 | break;
|
---|
4144 |
|
---|
4145 | case '`':
|
---|
4146 | if (syntax & RE_NO_GNU_OPS)
|
---|
4147 | goto normal_char;
|
---|
4148 | BUF_PUSH (begbuf);
|
---|
4149 | break;
|
---|
4150 |
|
---|
4151 | case '\'':
|
---|
4152 | if (syntax & RE_NO_GNU_OPS)
|
---|
4153 | goto normal_char;
|
---|
4154 | BUF_PUSH (endbuf);
|
---|
4155 | break;
|
---|
4156 |
|
---|
4157 | case '1': case '2': case '3': case '4': case '5':
|
---|
4158 | case '6': case '7': case '8': case '9':
|
---|
4159 | if (syntax & RE_NO_BK_REFS)
|
---|
4160 | goto normal_char;
|
---|
4161 |
|
---|
4162 | c1 = c - '0';
|
---|
4163 |
|
---|
4164 | if (c1 > regnum)
|
---|
4165 | FREE_STACK_RETURN (REG_ESUBREG);
|
---|
4166 |
|
---|
4167 | /* Can't back reference to a subexpression if inside of it. */
|
---|
4168 | if (group_in_compile_stack (compile_stack, (regnum_t) c1))
|
---|
4169 | goto normal_char;
|
---|
4170 |
|
---|
4171 | laststart = b;
|
---|
4172 | BUF_PUSH_2 (duplicate, c1);
|
---|
4173 | break;
|
---|
4174 |
|
---|
4175 |
|
---|
4176 | case '+':
|
---|
4177 | case '?':
|
---|
4178 | if (syntax & RE_BK_PLUS_QM)
|
---|
4179 | goto handle_plus;
|
---|
4180 | else
|
---|
4181 | goto normal_backslash;
|
---|
4182 |
|
---|
4183 | default:
|
---|
4184 | normal_backslash:
|
---|
4185 | /* You might think it would be useful for \ to mean
|
---|
4186 | not to translate; but if we don't translate it
|
---|
4187 | it will never match anything. */
|
---|
4188 | c = TRANSLATE (c);
|
---|
4189 | goto normal_char;
|
---|
4190 | }
|
---|
4191 | break;
|
---|
4192 |
|
---|
4193 |
|
---|
4194 | default:
|
---|
4195 | /* Expects the character in `c'. */
|
---|
4196 | normal_char:
|
---|
4197 | /* If no exactn currently being built. */
|
---|
4198 | if (!pending_exact
|
---|
4199 | #ifdef WCHAR
|
---|
4200 | /* If last exactn handle binary(or character) and
|
---|
4201 | new exactn handle character(or binary). */
|
---|
4202 | || is_exactn_bin != is_binary[p - 1 - pattern]
|
---|
4203 | #endif /* WCHAR */
|
---|
4204 |
|
---|
4205 | /* If last exactn not at current position. */
|
---|
4206 | || pending_exact + *pending_exact + 1 != b
|
---|
4207 |
|
---|
4208 | /* We have only one byte following the exactn for the count. */
|
---|
4209 | || *pending_exact == (1 << BYTEWIDTH) - 1
|
---|
4210 |
|
---|
4211 | /* If followed by a repetition operator. */
|
---|
4212 | || *p == '*' || *p == '^'
|
---|
4213 | || ((syntax & RE_BK_PLUS_QM)
|
---|
4214 | ? *p == '\\' && (p[1] == '+' || p[1] == '?')
|
---|
4215 | : (*p == '+' || *p == '?'))
|
---|
4216 | || ((syntax & RE_INTERVALS)
|
---|
4217 | && ((syntax & RE_NO_BK_BRACES)
|
---|
4218 | ? *p == '{'
|
---|
4219 | : (p[0] == '\\' && p[1] == '{'))))
|
---|
4220 | {
|
---|
4221 | /* Start building a new exactn. */
|
---|
4222 |
|
---|
4223 | laststart = b;
|
---|
4224 |
|
---|
4225 | #ifdef WCHAR
|
---|
4226 | /* Is this exactn binary data or character? */
|
---|
4227 | is_exactn_bin = is_binary[p - 1 - pattern];
|
---|
4228 | if (is_exactn_bin)
|
---|
4229 | BUF_PUSH_2 (exactn_bin, 0);
|
---|
4230 | else
|
---|
4231 | BUF_PUSH_2 (exactn, 0);
|
---|
4232 | #else
|
---|
4233 | BUF_PUSH_2 (exactn, 0);
|
---|
4234 | #endif /* WCHAR */
|
---|
4235 | pending_exact = b - 1;
|
---|
4236 | }
|
---|
4237 |
|
---|
4238 | BUF_PUSH (c);
|
---|
4239 | (*pending_exact)++;
|
---|
4240 | break;
|
---|
4241 | } /* switch (c) */
|
---|
4242 | } /* while p != pend */
|
---|
4243 |
|
---|
4244 |
|
---|
4245 | /* Through the pattern now. */
|
---|
4246 |
|
---|
4247 | if (fixup_alt_jump)
|
---|
4248 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
|
---|
4249 |
|
---|
4250 | if (!COMPILE_STACK_EMPTY)
|
---|
4251 | FREE_STACK_RETURN (REG_EPAREN);
|
---|
4252 |
|
---|
4253 | /* If we don't want backtracking, force success
|
---|
4254 | the first time we reach the end of the compiled pattern. */
|
---|
4255 | if (syntax & RE_NO_POSIX_BACKTRACKING)
|
---|
4256 | BUF_PUSH (succeed);
|
---|
4257 |
|
---|
4258 | #ifdef WCHAR
|
---|
4259 | free (pattern);
|
---|
4260 | free (mbs_offset);
|
---|
4261 | free (is_binary);
|
---|
4262 | #endif
|
---|
4263 | free (compile_stack.stack);
|
---|
4264 |
|
---|
4265 | /* We have succeeded; set the length of the buffer. */
|
---|
4266 | #ifdef WCHAR
|
---|
4267 | bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
|
---|
4268 | #else
|
---|
4269 | bufp->used = b - bufp->buffer;
|
---|
4270 | #endif
|
---|
4271 |
|
---|
4272 | #ifdef DEBUG
|
---|
4273 | if (debug)
|
---|
4274 | {
|
---|
4275 | DEBUG_PRINT1 ("\nCompiled pattern: \n");
|
---|
4276 | PREFIX(print_compiled_pattern) (bufp);
|
---|
4277 | }
|
---|
4278 | #endif /* DEBUG */
|
---|
4279 |
|
---|
4280 | #ifndef MATCH_MAY_ALLOCATE
|
---|
4281 | /* Initialize the failure stack to the largest possible stack. This
|
---|
4282 | isn't necessary unless we're trying to avoid calling alloca in
|
---|
4283 | the search and match routines. */
|
---|
4284 | {
|
---|
4285 | int num_regs = bufp->re_nsub + 1;
|
---|
4286 |
|
---|
4287 | /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
|
---|
4288 | is strictly greater than re_max_failures, the largest possible stack
|
---|
4289 | is 2 * re_max_failures failure points. */
|
---|
4290 | if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
|
---|
4291 | {
|
---|
4292 | fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
|
---|
4293 |
|
---|
4294 | # ifdef emacs
|
---|
4295 | if (! fail_stack.stack)
|
---|
4296 | fail_stack.stack
|
---|
4297 | = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
|
---|
4298 | * sizeof (PREFIX(fail_stack_elt_t)));
|
---|
4299 | else
|
---|
4300 | fail_stack.stack
|
---|
4301 | = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
|
---|
4302 | (fail_stack.size
|
---|
4303 | * sizeof (PREFIX(fail_stack_elt_t))));
|
---|
4304 | # else /* not emacs */
|
---|
4305 | if (! fail_stack.stack)
|
---|
4306 | fail_stack.stack
|
---|
4307 | = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
|
---|
4308 | * sizeof (PREFIX(fail_stack_elt_t)));
|
---|
4309 | else
|
---|
4310 | fail_stack.stack
|
---|
4311 | = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
|
---|
4312 | (fail_stack.size
|
---|
4313 | * sizeof (PREFIX(fail_stack_elt_t))));
|
---|
4314 | # endif /* not emacs */
|
---|
4315 | }
|
---|
4316 |
|
---|
4317 | PREFIX(regex_grow_registers) (num_regs);
|
---|
4318 | }
|
---|
4319 | #endif /* not MATCH_MAY_ALLOCATE */
|
---|
4320 |
|
---|
4321 | return REG_NOERROR;
|
---|
4322 | } /* regex_compile */
|
---|
4323 |
|
---|
4324 | /* Subroutines for `regex_compile'. */
|
---|
4325 |
|
---|
4326 | /* Store OP at LOC followed by two-byte integer parameter ARG. */
|
---|
4327 | /* ifdef WCHAR, integer parameter is 1 wchar_t. */
|
---|
4328 |
|
---|
4329 | static void
|
---|
4330 | PREFIX(store_op1) (op, loc, arg)
|
---|
4331 | re_opcode_t op;
|
---|
4332 | UCHAR_T *loc;
|
---|
4333 | int arg;
|
---|
4334 | {
|
---|
4335 | *loc = (UCHAR_T) op;
|
---|
4336 | STORE_NUMBER (loc + 1, arg);
|
---|
4337 | }
|
---|
4338 |
|
---|
4339 |
|
---|
4340 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
|
---|
4341 | /* ifdef WCHAR, integer parameter is 1 wchar_t. */
|
---|
4342 |
|
---|
4343 | static void
|
---|
4344 | PREFIX(store_op2) (op, loc, arg1, arg2)
|
---|
4345 | re_opcode_t op;
|
---|
4346 | UCHAR_T *loc;
|
---|
4347 | int arg1, arg2;
|
---|
4348 | {
|
---|
4349 | *loc = (UCHAR_T) op;
|
---|
4350 | STORE_NUMBER (loc + 1, arg1);
|
---|
4351 | STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
|
---|
4352 | }
|
---|
4353 |
|
---|
4354 |
|
---|
4355 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC
|
---|
4356 | for OP followed by two-byte integer parameter ARG. */
|
---|
4357 | /* ifdef WCHAR, integer parameter is 1 wchar_t. */
|
---|
4358 |
|
---|
4359 | static void
|
---|
4360 | PREFIX(insert_op1) (op, loc, arg, end)
|
---|
4361 | re_opcode_t op;
|
---|
4362 | UCHAR_T *loc;
|
---|
4363 | int arg;
|
---|
4364 | UCHAR_T *end;
|
---|
4365 | {
|
---|
4366 | register UCHAR_T *pfrom = end;
|
---|
4367 | register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
|
---|
4368 |
|
---|
4369 | while (pfrom != loc)
|
---|
4370 | *--pto = *--pfrom;
|
---|
4371 |
|
---|
4372 | PREFIX(store_op1) (op, loc, arg);
|
---|
4373 | }
|
---|
4374 |
|
---|
4375 |
|
---|
4376 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
|
---|
4377 | /* ifdef WCHAR, integer parameter is 1 wchar_t. */
|
---|
4378 |
|
---|
4379 | static void
|
---|
4380 | PREFIX(insert_op2) (op, loc, arg1, arg2, end)
|
---|
4381 | re_opcode_t op;
|
---|
4382 | UCHAR_T *loc;
|
---|
4383 | int arg1, arg2;
|
---|
4384 | UCHAR_T *end;
|
---|
4385 | {
|
---|
4386 | register UCHAR_T *pfrom = end;
|
---|
4387 | register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
|
---|
4388 |
|
---|
4389 | while (pfrom != loc)
|
---|
4390 | *--pto = *--pfrom;
|
---|
4391 |
|
---|
4392 | PREFIX(store_op2) (op, loc, arg1, arg2);
|
---|
4393 | }
|
---|
4394 |
|
---|
4395 |
|
---|
4396 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes
|
---|
4397 | after an alternative or a begin-subexpression. We assume there is at
|
---|
4398 | least one character before the ^. */
|
---|
4399 |
|
---|
4400 | static boolean
|
---|
4401 | PREFIX(at_begline_loc_p) (pattern, p, syntax)
|
---|
4402 | const CHAR_T *pattern, *p;
|
---|
4403 | reg_syntax_t syntax;
|
---|
4404 | {
|
---|
4405 | const CHAR_T *prev = p - 2;
|
---|
4406 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
|
---|
4407 |
|
---|
4408 | return
|
---|
4409 | /* After a subexpression? */
|
---|
4410 | (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
|
---|
4411 | /* After an alternative? */
|
---|
4412 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
|
---|
4413 | }
|
---|
4414 |
|
---|
4415 |
|
---|
4416 | /* The dual of at_begline_loc_p. This one is for $. We assume there is
|
---|
4417 | at least one character after the $, i.e., `P < PEND'. */
|
---|
4418 |
|
---|
4419 | static boolean
|
---|
4420 | PREFIX(at_endline_loc_p) (p, pend, syntax)
|
---|
4421 | const CHAR_T *p, *pend;
|
---|
4422 | reg_syntax_t syntax;
|
---|
4423 | {
|
---|
4424 | const CHAR_T *next = p;
|
---|
4425 | boolean next_backslash = *next == '\\';
|
---|
4426 | const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
|
---|
4427 |
|
---|
4428 | return
|
---|
4429 | /* Before a subexpression? */
|
---|
4430 | (syntax & RE_NO_BK_PARENS ? *next == ')'
|
---|
4431 | : next_backslash && next_next && *next_next == ')')
|
---|
4432 | /* Before an alternative? */
|
---|
4433 | || (syntax & RE_NO_BK_VBAR ? *next == '|'
|
---|
4434 | : next_backslash && next_next && *next_next == '|');
|
---|
4435 | }
|
---|
4436 |
|
---|
4437 | #else /* not INSIDE_RECURSION */
|
---|
4438 |
|
---|
4439 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
---|
4440 | false if it's not. */
|
---|
4441 |
|
---|
4442 | static boolean
|
---|
4443 | group_in_compile_stack (compile_stack, regnum)
|
---|
4444 | compile_stack_type compile_stack;
|
---|
4445 | regnum_t regnum;
|
---|
4446 | {
|
---|
4447 | int this_element;
|
---|
4448 |
|
---|
4449 | for (this_element = compile_stack.avail - 1;
|
---|
4450 | this_element >= 0;
|
---|
4451 | this_element--)
|
---|
4452 | if (compile_stack.stack[this_element].regnum == regnum)
|
---|
4453 | return true;
|
---|
4454 |
|
---|
4455 | return false;
|
---|
4456 | }
|
---|
4457 | #endif /* not INSIDE_RECURSION */
|
---|
4458 |
|
---|
4459 | #ifdef INSIDE_RECURSION
|
---|
4460 |
|
---|
4461 | #ifdef WCHAR
|
---|
4462 | /* This insert space, which size is "num", into the pattern at "loc".
|
---|
4463 | "end" must point the end of the allocated buffer. */
|
---|
4464 | static void
|
---|
4465 | insert_space (num, loc, end)
|
---|
4466 | int num;
|
---|
4467 | CHAR_T *loc;
|
---|
4468 | CHAR_T *end;
|
---|
4469 | {
|
---|
4470 | register CHAR_T *pto = end;
|
---|
4471 | register CHAR_T *pfrom = end - num;
|
---|
4472 |
|
---|
4473 | while (pfrom >= loc)
|
---|
4474 | *pto-- = *pfrom--;
|
---|
4475 | }
|
---|
4476 | #endif /* WCHAR */
|
---|
4477 |
|
---|
4478 | #ifdef WCHAR
|
---|
4479 | static reg_errcode_t
|
---|
4480 | wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
|
---|
4481 | char_set)
|
---|
4482 | CHAR_T range_start_char;
|
---|
4483 | const CHAR_T **p_ptr, *pend;
|
---|
4484 | CHAR_T *char_set, *b;
|
---|
4485 | RE_TRANSLATE_TYPE translate;
|
---|
4486 | reg_syntax_t syntax;
|
---|
4487 | {
|
---|
4488 | const CHAR_T *p = *p_ptr;
|
---|
4489 | CHAR_T range_start, range_end;
|
---|
4490 | reg_errcode_t ret;
|
---|
4491 | # ifdef _LIBC
|
---|
4492 | uint32_t nrules;
|
---|
4493 | uint32_t start_val, end_val;
|
---|
4494 | # endif
|
---|
4495 | if (p == pend)
|
---|
4496 | return REG_ERANGE;
|
---|
4497 |
|
---|
4498 | # ifdef _LIBC
|
---|
4499 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
4500 | if (nrules != 0)
|
---|
4501 | {
|
---|
4502 | const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
|
---|
4503 | _NL_COLLATE_COLLSEQWC);
|
---|
4504 | const unsigned char *extra = (const unsigned char *)
|
---|
4505 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
---|
4506 |
|
---|
4507 | if (range_start_char < -1)
|
---|
4508 | {
|
---|
4509 | /* range_start is a collating symbol. */
|
---|
4510 | int32_t *wextra;
|
---|
4511 | /* Retreive the index and get collation sequence value. */
|
---|
4512 | wextra = (int32_t*)(extra + char_set[-range_start_char]);
|
---|
4513 | start_val = wextra[1 + *wextra];
|
---|
4514 | }
|
---|
4515 | else
|
---|
4516 | start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
|
---|
4517 |
|
---|
4518 | end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
|
---|
4519 |
|
---|
4520 | /* Report an error if the range is empty and the syntax prohibits
|
---|
4521 | this. */
|
---|
4522 | ret = ((syntax & RE_NO_EMPTY_RANGES)
|
---|
4523 | && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
|
---|
4524 |
|
---|
4525 | /* Insert space to the end of the char_ranges. */
|
---|
4526 | insert_space(2, b - char_set[5] - 2, b - 1);
|
---|
4527 | *(b - char_set[5] - 2) = (wchar_t)start_val;
|
---|
4528 | *(b - char_set[5] - 1) = (wchar_t)end_val;
|
---|
4529 | char_set[4]++; /* ranges_index */
|
---|
4530 | }
|
---|
4531 | else
|
---|
4532 | # endif
|
---|
4533 | {
|
---|
4534 | range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
|
---|
4535 | range_start_char;
|
---|
4536 | range_end = TRANSLATE (p[0]);
|
---|
4537 | /* Report an error if the range is empty and the syntax prohibits
|
---|
4538 | this. */
|
---|
4539 | ret = ((syntax & RE_NO_EMPTY_RANGES)
|
---|
4540 | && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
|
---|
4541 |
|
---|
4542 | /* Insert space to the end of the char_ranges. */
|
---|
4543 | insert_space(2, b - char_set[5] - 2, b - 1);
|
---|
4544 | *(b - char_set[5] - 2) = range_start;
|
---|
4545 | *(b - char_set[5] - 1) = range_end;
|
---|
4546 | char_set[4]++; /* ranges_index */
|
---|
4547 | }
|
---|
4548 | /* Have to increment the pointer into the pattern string, so the
|
---|
4549 | caller isn't still at the ending character. */
|
---|
4550 | (*p_ptr)++;
|
---|
4551 |
|
---|
4552 | return ret;
|
---|
4553 | }
|
---|
4554 | #else /* BYTE */
|
---|
4555 | /* Read the ending character of a range (in a bracket expression) from the
|
---|
4556 | uncompiled pattern *P_PTR (which ends at PEND). We assume the
|
---|
4557 | starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
|
---|
4558 | Then we set the translation of all bits between the starting and
|
---|
4559 | ending characters (inclusive) in the compiled pattern B.
|
---|
4560 |
|
---|
4561 | Return an error code.
|
---|
4562 |
|
---|
4563 | We use these short variable names so we can use the same macros as
|
---|
4564 | `regex_compile' itself. */
|
---|
4565 |
|
---|
4566 | static reg_errcode_t
|
---|
4567 | byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
|
---|
4568 | unsigned int range_start_char;
|
---|
4569 | const char **p_ptr, *pend;
|
---|
4570 | RE_TRANSLATE_TYPE translate;
|
---|
4571 | reg_syntax_t syntax;
|
---|
4572 | unsigned char *b;
|
---|
4573 | {
|
---|
4574 | unsigned this_char;
|
---|
4575 | const char *p = *p_ptr;
|
---|
4576 | reg_errcode_t ret;
|
---|
4577 | # if _LIBC
|
---|
4578 | const unsigned char *collseq;
|
---|
4579 | unsigned int start_colseq;
|
---|
4580 | unsigned int end_colseq;
|
---|
4581 | # else
|
---|
4582 | unsigned end_char;
|
---|
4583 | # endif
|
---|
4584 |
|
---|
4585 | if (p == pend)
|
---|
4586 | return REG_ERANGE;
|
---|
4587 |
|
---|
4588 | /* Have to increment the pointer into the pattern string, so the
|
---|
4589 | caller isn't still at the ending character. */
|
---|
4590 | (*p_ptr)++;
|
---|
4591 |
|
---|
4592 | /* Report an error if the range is empty and the syntax prohibits this. */
|
---|
4593 | ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
---|
4594 |
|
---|
4595 | # if _LIBC
|
---|
4596 | collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
|
---|
4597 | _NL_COLLATE_COLLSEQMB);
|
---|
4598 |
|
---|
4599 | start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
|
---|
4600 | end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
|
---|
4601 | for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
|
---|
4602 | {
|
---|
4603 | unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
|
---|
4604 |
|
---|
4605 | if (start_colseq <= this_colseq && this_colseq <= end_colseq)
|
---|
4606 | {
|
---|
4607 | SET_LIST_BIT (TRANSLATE (this_char));
|
---|
4608 | ret = REG_NOERROR;
|
---|
4609 | }
|
---|
4610 | }
|
---|
4611 | # else
|
---|
4612 | /* Here we see why `this_char' has to be larger than an `unsigned
|
---|
4613 | char' -- we would otherwise go into an infinite loop, since all
|
---|
4614 | characters <= 0xff. */
|
---|
4615 | range_start_char = TRANSLATE (range_start_char);
|
---|
4616 | /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
|
---|
4617 | and some compilers cast it to int implicitly, so following for_loop
|
---|
4618 | may fall to (almost) infinite loop.
|
---|
4619 | e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
|
---|
4620 | To avoid this, we cast p[0] to unsigned int and truncate it. */
|
---|
4621 | end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
|
---|
4622 |
|
---|
4623 | for (this_char = range_start_char; this_char <= end_char; ++this_char)
|
---|
4624 | {
|
---|
4625 | SET_LIST_BIT (TRANSLATE (this_char));
|
---|
4626 | ret = REG_NOERROR;
|
---|
4627 | }
|
---|
4628 | # endif
|
---|
4629 |
|
---|
4630 | return ret;
|
---|
4631 | }
|
---|
4632 | #endif /* WCHAR */
|
---|
4633 | |
---|
4634 |
|
---|
4635 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
|
---|
4636 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
|
---|
4637 | characters can start a string that matches the pattern. This fastmap
|
---|
4638 | is used by re_search to skip quickly over impossible starting points.
|
---|
4639 |
|
---|
4640 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
---|
4641 | area as BUFP->fastmap.
|
---|
4642 |
|
---|
4643 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
|
---|
4644 | the pattern buffer.
|
---|
4645 |
|
---|
4646 | Returns 0 if we succeed, -2 if an internal error. */
|
---|
4647 |
|
---|
4648 | #ifdef WCHAR
|
---|
4649 | /* local function for re_compile_fastmap.
|
---|
4650 | truncate wchar_t character to char. */
|
---|
4651 | static unsigned char truncate_wchar (CHAR_T c);
|
---|
4652 |
|
---|
4653 | static unsigned char
|
---|
4654 | truncate_wchar (c)
|
---|
4655 | CHAR_T c;
|
---|
4656 | {
|
---|
4657 | unsigned char buf[MB_CUR_MAX];
|
---|
4658 | mbstate_t state;
|
---|
4659 | int retval;
|
---|
4660 | memset (&state, '\0', sizeof (state));
|
---|
4661 | # ifdef _LIBC
|
---|
4662 | retval = __wcrtomb (buf, c, &state);
|
---|
4663 | # else
|
---|
4664 | retval = wcrtomb (buf, c, &state);
|
---|
4665 | # endif
|
---|
4666 | return retval > 0 ? buf[0] : (unsigned char) c;
|
---|
4667 | }
|
---|
4668 | #endif /* WCHAR */
|
---|
4669 |
|
---|
4670 | static int
|
---|
4671 | PREFIX(re_compile_fastmap) (bufp)
|
---|
4672 | struct re_pattern_buffer *bufp;
|
---|
4673 | {
|
---|
4674 | int j, k;
|
---|
4675 | #ifdef MATCH_MAY_ALLOCATE
|
---|
4676 | PREFIX(fail_stack_type) fail_stack;
|
---|
4677 | #endif
|
---|
4678 | #ifndef REGEX_MALLOC
|
---|
4679 | char *destination;
|
---|
4680 | #endif
|
---|
4681 |
|
---|
4682 | register char *fastmap = bufp->fastmap;
|
---|
4683 |
|
---|
4684 | #ifdef WCHAR
|
---|
4685 | /* We need to cast pattern to (wchar_t*), because we casted this compiled
|
---|
4686 | pattern to (char*) in regex_compile. */
|
---|
4687 | UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
|
---|
4688 | register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
|
---|
4689 | #else /* BYTE */
|
---|
4690 | UCHAR_T *pattern = bufp->buffer;
|
---|
4691 | register UCHAR_T *pend = pattern + bufp->used;
|
---|
4692 | #endif /* WCHAR */
|
---|
4693 | UCHAR_T *p = pattern;
|
---|
4694 |
|
---|
4695 | #ifdef REL_ALLOC
|
---|
4696 | /* This holds the pointer to the failure stack, when
|
---|
4697 | it is allocated relocatably. */
|
---|
4698 | fail_stack_elt_t *failure_stack_ptr;
|
---|
4699 | #endif
|
---|
4700 |
|
---|
4701 | /* Assume that each path through the pattern can be null until
|
---|
4702 | proven otherwise. We set this false at the bottom of switch
|
---|
4703 | statement, to which we get only if a particular path doesn't
|
---|
4704 | match the empty string. */
|
---|
4705 | boolean path_can_be_null = true;
|
---|
4706 |
|
---|
4707 | /* We aren't doing a `succeed_n' to begin with. */
|
---|
4708 | boolean succeed_n_p = false;
|
---|
4709 |
|
---|
4710 | assert (fastmap != NULL && p != NULL);
|
---|
4711 |
|
---|
4712 | INIT_FAIL_STACK ();
|
---|
4713 | bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
|
---|
4714 | bufp->fastmap_accurate = 1; /* It will be when we're done. */
|
---|
4715 | bufp->can_be_null = 0;
|
---|
4716 |
|
---|
4717 | while (1)
|
---|
4718 | {
|
---|
4719 | if (p == pend || *p == succeed)
|
---|
4720 | {
|
---|
4721 | /* We have reached the (effective) end of pattern. */
|
---|
4722 | if (!FAIL_STACK_EMPTY ())
|
---|
4723 | {
|
---|
4724 | bufp->can_be_null |= path_can_be_null;
|
---|
4725 |
|
---|
4726 | /* Reset for next path. */
|
---|
4727 | path_can_be_null = true;
|
---|
4728 |
|
---|
4729 | p = fail_stack.stack[--fail_stack.avail].pointer;
|
---|
4730 |
|
---|
4731 | continue;
|
---|
4732 | }
|
---|
4733 | else
|
---|
4734 | break;
|
---|
4735 | }
|
---|
4736 |
|
---|
4737 | /* We should never be about to go beyond the end of the pattern. */
|
---|
4738 | assert (p < pend);
|
---|
4739 |
|
---|
4740 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
---|
4741 | {
|
---|
4742 |
|
---|
4743 | /* I guess the idea here is to simply not bother with a fastmap
|
---|
4744 | if a backreference is used, since it's too hard to figure out
|
---|
4745 | the fastmap for the corresponding group. Setting
|
---|
4746 | `can_be_null' stops `re_search_2' from using the fastmap, so
|
---|
4747 | that is all we do. */
|
---|
4748 | case duplicate:
|
---|
4749 | bufp->can_be_null = 1;
|
---|
4750 | goto done;
|
---|
4751 |
|
---|
4752 |
|
---|
4753 | /* Following are the cases which match a character. These end
|
---|
4754 | with `break'. */
|
---|
4755 |
|
---|
4756 | #ifdef WCHAR
|
---|
4757 | case exactn:
|
---|
4758 | fastmap[truncate_wchar(p[1])] = 1;
|
---|
4759 | break;
|
---|
4760 | #else /* BYTE */
|
---|
4761 | case exactn:
|
---|
4762 | fastmap[p[1]] = 1;
|
---|
4763 | break;
|
---|
4764 | #endif /* WCHAR */
|
---|
4765 | #ifdef MBS_SUPPORT
|
---|
4766 | case exactn_bin:
|
---|
4767 | fastmap[p[1]] = 1;
|
---|
4768 | break;
|
---|
4769 | #endif
|
---|
4770 |
|
---|
4771 | #ifdef WCHAR
|
---|
4772 | /* It is hard to distinguish fastmap from (multi byte) characters
|
---|
4773 | which depends on current locale. */
|
---|
4774 | case charset:
|
---|
4775 | case charset_not:
|
---|
4776 | case wordchar:
|
---|
4777 | case notwordchar:
|
---|
4778 | bufp->can_be_null = 1;
|
---|
4779 | goto done;
|
---|
4780 | #else /* BYTE */
|
---|
4781 | case charset:
|
---|
4782 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
---|
4783 | if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
|
---|
4784 | fastmap[j] = 1;
|
---|
4785 | break;
|
---|
4786 |
|
---|
4787 |
|
---|
4788 | case charset_not:
|
---|
4789 | /* Chars beyond end of map must be allowed. */
|
---|
4790 | for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
|
---|
4791 | fastmap[j] = 1;
|
---|
4792 |
|
---|
4793 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
---|
4794 | if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
|
---|
4795 | fastmap[j] = 1;
|
---|
4796 | break;
|
---|
4797 |
|
---|
4798 |
|
---|
4799 | case wordchar:
|
---|
4800 | for (j = 0; j < (1 << BYTEWIDTH); j++)
|
---|
4801 | if (SYNTAX (j) == Sword)
|
---|
4802 | fastmap[j] = 1;
|
---|
4803 | break;
|
---|
4804 |
|
---|
4805 |
|
---|
4806 | case notwordchar:
|
---|
4807 | for (j = 0; j < (1 << BYTEWIDTH); j++)
|
---|
4808 | if (SYNTAX (j) != Sword)
|
---|
4809 | fastmap[j] = 1;
|
---|
4810 | break;
|
---|
4811 | #endif /* WCHAR */
|
---|
4812 |
|
---|
4813 | case anychar:
|
---|
4814 | {
|
---|
4815 | int fastmap_newline = fastmap['\n'];
|
---|
4816 |
|
---|
4817 | /* `.' matches anything ... */
|
---|
4818 | for (j = 0; j < (1 << BYTEWIDTH); j++)
|
---|
4819 | fastmap[j] = 1;
|
---|
4820 |
|
---|
4821 | /* ... except perhaps newline. */
|
---|
4822 | if (!(bufp->syntax & RE_DOT_NEWLINE))
|
---|
4823 | fastmap['\n'] = fastmap_newline;
|
---|
4824 |
|
---|
4825 | /* Return if we have already set `can_be_null'; if we have,
|
---|
4826 | then the fastmap is irrelevant. Something's wrong here. */
|
---|
4827 | else if (bufp->can_be_null)
|
---|
4828 | goto done;
|
---|
4829 |
|
---|
4830 | /* Otherwise, have to check alternative paths. */
|
---|
4831 | break;
|
---|
4832 | }
|
---|
4833 |
|
---|
4834 | #ifdef emacs
|
---|
4835 | case syntaxspec:
|
---|
4836 | k = *p++;
|
---|
4837 | for (j = 0; j < (1 << BYTEWIDTH); j++)
|
---|
4838 | if (SYNTAX (j) == (enum syntaxcode) k)
|
---|
4839 | fastmap[j] = 1;
|
---|
4840 | break;
|
---|
4841 |
|
---|
4842 |
|
---|
4843 | case notsyntaxspec:
|
---|
4844 | k = *p++;
|
---|
4845 | for (j = 0; j < (1 << BYTEWIDTH); j++)
|
---|
4846 | if (SYNTAX (j) != (enum syntaxcode) k)
|
---|
4847 | fastmap[j] = 1;
|
---|
4848 | break;
|
---|
4849 |
|
---|
4850 |
|
---|
4851 | /* All cases after this match the empty string. These end with
|
---|
4852 | `continue'. */
|
---|
4853 |
|
---|
4854 |
|
---|
4855 | case before_dot:
|
---|
4856 | case at_dot:
|
---|
4857 | case after_dot:
|
---|
4858 | continue;
|
---|
4859 | #endif /* emacs */
|
---|
4860 |
|
---|
4861 |
|
---|
4862 | case no_op:
|
---|
4863 | case begline:
|
---|
4864 | case endline:
|
---|
4865 | case begbuf:
|
---|
4866 | case endbuf:
|
---|
4867 | case wordbound:
|
---|
4868 | case notwordbound:
|
---|
4869 | case wordbeg:
|
---|
4870 | case wordend:
|
---|
4871 | case push_dummy_failure:
|
---|
4872 | continue;
|
---|
4873 |
|
---|
4874 |
|
---|
4875 | case jump_n:
|
---|
4876 | case pop_failure_jump:
|
---|
4877 | case maybe_pop_jump:
|
---|
4878 | case jump:
|
---|
4879 | case jump_past_alt:
|
---|
4880 | case dummy_failure_jump:
|
---|
4881 | EXTRACT_NUMBER_AND_INCR (j, p);
|
---|
4882 | p += j;
|
---|
4883 | if (j > 0)
|
---|
4884 | continue;
|
---|
4885 |
|
---|
4886 | /* Jump backward implies we just went through the body of a
|
---|
4887 | loop and matched nothing. Opcode jumped to should be
|
---|
4888 | `on_failure_jump' or `succeed_n'. Just treat it like an
|
---|
4889 | ordinary jump. For a * loop, it has pushed its failure
|
---|
4890 | point already; if so, discard that as redundant. */
|
---|
4891 | if ((re_opcode_t) *p != on_failure_jump
|
---|
4892 | && (re_opcode_t) *p != succeed_n)
|
---|
4893 | continue;
|
---|
4894 |
|
---|
4895 | p++;
|
---|
4896 | EXTRACT_NUMBER_AND_INCR (j, p);
|
---|
4897 | p += j;
|
---|
4898 |
|
---|
4899 | /* If what's on the stack is where we are now, pop it. */
|
---|
4900 | if (!FAIL_STACK_EMPTY ()
|
---|
4901 | && fail_stack.stack[fail_stack.avail - 1].pointer == p)
|
---|
4902 | fail_stack.avail--;
|
---|
4903 |
|
---|
4904 | continue;
|
---|
4905 |
|
---|
4906 |
|
---|
4907 | case on_failure_jump:
|
---|
4908 | case on_failure_keep_string_jump:
|
---|
4909 | handle_on_failure_jump:
|
---|
4910 | EXTRACT_NUMBER_AND_INCR (j, p);
|
---|
4911 |
|
---|
4912 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the
|
---|
4913 | end of the pattern. We don't want to push such a point,
|
---|
4914 | since when we restore it above, entering the switch will
|
---|
4915 | increment `p' past the end of the pattern. We don't need
|
---|
4916 | to push such a point since we obviously won't find any more
|
---|
4917 | fastmap entries beyond `pend'. Such a pattern can match
|
---|
4918 | the null string, though. */
|
---|
4919 | if (p + j < pend)
|
---|
4920 | {
|
---|
4921 | if (!PUSH_PATTERN_OP (p + j, fail_stack))
|
---|
4922 | {
|
---|
4923 | RESET_FAIL_STACK ();
|
---|
4924 | return -2;
|
---|
4925 | }
|
---|
4926 | }
|
---|
4927 | else
|
---|
4928 | bufp->can_be_null = 1;
|
---|
4929 |
|
---|
4930 | if (succeed_n_p)
|
---|
4931 | {
|
---|
4932 | EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
|
---|
4933 | succeed_n_p = false;
|
---|
4934 | }
|
---|
4935 |
|
---|
4936 | continue;
|
---|
4937 |
|
---|
4938 |
|
---|
4939 | case succeed_n:
|
---|
4940 | /* Get to the number of times to succeed. */
|
---|
4941 | p += OFFSET_ADDRESS_SIZE;
|
---|
4942 |
|
---|
4943 | /* Increment p past the n for when k != 0. */
|
---|
4944 | EXTRACT_NUMBER_AND_INCR (k, p);
|
---|
4945 | if (k == 0)
|
---|
4946 | {
|
---|
4947 | p -= 2 * OFFSET_ADDRESS_SIZE;
|
---|
4948 | succeed_n_p = true; /* Spaghetti code alert. */
|
---|
4949 | goto handle_on_failure_jump;
|
---|
4950 | }
|
---|
4951 | continue;
|
---|
4952 |
|
---|
4953 |
|
---|
4954 | case set_number_at:
|
---|
4955 | p += 2 * OFFSET_ADDRESS_SIZE;
|
---|
4956 | continue;
|
---|
4957 |
|
---|
4958 |
|
---|
4959 | case start_memory:
|
---|
4960 | case stop_memory:
|
---|
4961 | p += 2;
|
---|
4962 | continue;
|
---|
4963 |
|
---|
4964 |
|
---|
4965 | default:
|
---|
4966 | abort (); /* We have listed all the cases. */
|
---|
4967 | } /* switch *p++ */
|
---|
4968 |
|
---|
4969 | /* Getting here means we have found the possible starting
|
---|
4970 | characters for one path of the pattern -- and that the empty
|
---|
4971 | string does not match. We need not follow this path further.
|
---|
4972 | Instead, look at the next alternative (remembered on the
|
---|
4973 | stack), or quit if no more. The test at the top of the loop
|
---|
4974 | does these things. */
|
---|
4975 | path_can_be_null = false;
|
---|
4976 | p = pend;
|
---|
4977 | } /* while p */
|
---|
4978 |
|
---|
4979 | /* Set `can_be_null' for the last path (also the first path, if the
|
---|
4980 | pattern is empty). */
|
---|
4981 | bufp->can_be_null |= path_can_be_null;
|
---|
4982 |
|
---|
4983 | done:
|
---|
4984 | RESET_FAIL_STACK ();
|
---|
4985 | return 0;
|
---|
4986 | }
|
---|
4987 |
|
---|
4988 | #else /* not INSIDE_RECURSION */
|
---|
4989 |
|
---|
4990 | int
|
---|
4991 | re_compile_fastmap (bufp)
|
---|
4992 | struct re_pattern_buffer *bufp;
|
---|
4993 | {
|
---|
4994 | # ifdef MBS_SUPPORT
|
---|
4995 | if (MB_CUR_MAX != 1)
|
---|
4996 | return wcs_re_compile_fastmap(bufp);
|
---|
4997 | else
|
---|
4998 | # endif
|
---|
4999 | return byte_re_compile_fastmap(bufp);
|
---|
5000 | } /* re_compile_fastmap */
|
---|
5001 | #ifdef _LIBC
|
---|
5002 | weak_alias (__re_compile_fastmap, re_compile_fastmap)
|
---|
5003 | #endif
|
---|
5004 | |
---|
5005 |
|
---|
5006 |
|
---|
5007 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
---|
5008 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
---|
5009 | this memory for recording register information. STARTS and ENDS
|
---|
5010 | must be allocated using the malloc library routine, and must each
|
---|
5011 | be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
---|
5012 |
|
---|
5013 | If NUM_REGS == 0, then subsequent matches should allocate their own
|
---|
5014 | register data.
|
---|
5015 |
|
---|
5016 | Unless this function is called, the first search or match using
|
---|
5017 | PATTERN_BUFFER will allocate its own register data, without
|
---|
5018 | freeing the old data. */
|
---|
5019 |
|
---|
5020 | void
|
---|
5021 | re_set_registers (bufp, regs, num_regs, starts, ends)
|
---|
5022 | struct re_pattern_buffer *bufp;
|
---|
5023 | struct re_registers *regs;
|
---|
5024 | unsigned num_regs;
|
---|
5025 | regoff_t *starts, *ends;
|
---|
5026 | {
|
---|
5027 | if (num_regs)
|
---|
5028 | {
|
---|
5029 | bufp->regs_allocated = REGS_REALLOCATE;
|
---|
5030 | regs->num_regs = num_regs;
|
---|
5031 | regs->start = starts;
|
---|
5032 | regs->end = ends;
|
---|
5033 | }
|
---|
5034 | else
|
---|
5035 | {
|
---|
5036 | bufp->regs_allocated = REGS_UNALLOCATED;
|
---|
5037 | regs->num_regs = 0;
|
---|
5038 | regs->start = regs->end = (regoff_t *) 0;
|
---|
5039 | }
|
---|
5040 | }
|
---|
5041 | #ifdef _LIBC
|
---|
5042 | weak_alias (__re_set_registers, re_set_registers)
|
---|
5043 | #endif
|
---|
5044 | |
---|
5045 |
|
---|
5046 | /* Searching routines. */
|
---|
5047 |
|
---|
5048 | /* Like re_search_2, below, but only one string is specified, and
|
---|
5049 | doesn't let you say where to stop matching. */
|
---|
5050 |
|
---|
5051 | int
|
---|
5052 | re_search (bufp, string, size, startpos, range, regs)
|
---|
5053 | struct re_pattern_buffer *bufp;
|
---|
5054 | const char *string;
|
---|
5055 | int size, startpos, range;
|
---|
5056 | struct re_registers *regs;
|
---|
5057 | {
|
---|
5058 | return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
|
---|
5059 | regs, size);
|
---|
5060 | }
|
---|
5061 | #ifdef _LIBC
|
---|
5062 | weak_alias (__re_search, re_search)
|
---|
5063 | #endif
|
---|
5064 |
|
---|
5065 |
|
---|
5066 | /* Using the compiled pattern in BUFP->buffer, first tries to match the
|
---|
5067 | virtual concatenation of STRING1 and STRING2, starting first at index
|
---|
5068 | STARTPOS, then at STARTPOS + 1, and so on.
|
---|
5069 |
|
---|
5070 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
|
---|
5071 |
|
---|
5072 | RANGE is how far to scan while trying to match. RANGE = 0 means try
|
---|
5073 | only at STARTPOS; in general, the last start tried is STARTPOS +
|
---|
5074 | RANGE.
|
---|
5075 |
|
---|
5076 | In REGS, return the indices of the virtual concatenation of STRING1
|
---|
5077 | and STRING2 that matched the entire BUFP->buffer and its contained
|
---|
5078 | subexpressions.
|
---|
5079 |
|
---|
5080 | Do not consider matching one past the index STOP in the virtual
|
---|
5081 | concatenation of STRING1 and STRING2.
|
---|
5082 |
|
---|
5083 | We return either the position in the strings at which the match was
|
---|
5084 | found, -1 if no match, or -2 if error (such as failure
|
---|
5085 | stack overflow). */
|
---|
5086 |
|
---|
5087 | int
|
---|
5088 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
|
---|
5089 | struct re_pattern_buffer *bufp;
|
---|
5090 | const char *string1, *string2;
|
---|
5091 | int size1, size2;
|
---|
5092 | int startpos;
|
---|
5093 | int range;
|
---|
5094 | struct re_registers *regs;
|
---|
5095 | int stop;
|
---|
5096 | {
|
---|
5097 | # ifdef MBS_SUPPORT
|
---|
5098 | if (MB_CUR_MAX != 1)
|
---|
5099 | return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
|
---|
5100 | range, regs, stop);
|
---|
5101 | else
|
---|
5102 | # endif
|
---|
5103 | return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
|
---|
5104 | range, regs, stop);
|
---|
5105 | } /* re_search_2 */
|
---|
5106 | #ifdef _LIBC
|
---|
5107 | weak_alias (__re_search_2, re_search_2)
|
---|
5108 | #endif
|
---|
5109 |
|
---|
5110 | #endif /* not INSIDE_RECURSION */
|
---|
5111 |
|
---|
5112 | #ifdef INSIDE_RECURSION
|
---|
5113 |
|
---|
5114 | #ifdef MATCH_MAY_ALLOCATE
|
---|
5115 | # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
|
---|
5116 | #else
|
---|
5117 | # define FREE_VAR(var) if (var) free (var); var = NULL
|
---|
5118 | #endif
|
---|
5119 |
|
---|
5120 | #ifdef WCHAR
|
---|
5121 | # define MAX_ALLOCA_SIZE 2000
|
---|
5122 |
|
---|
5123 | # define FREE_WCS_BUFFERS() \
|
---|
5124 | do { \
|
---|
5125 | if (size1 > MAX_ALLOCA_SIZE) \
|
---|
5126 | { \
|
---|
5127 | free (wcs_string1); \
|
---|
5128 | free (mbs_offset1); \
|
---|
5129 | } \
|
---|
5130 | else \
|
---|
5131 | { \
|
---|
5132 | FREE_VAR (wcs_string1); \
|
---|
5133 | FREE_VAR (mbs_offset1); \
|
---|
5134 | } \
|
---|
5135 | if (size2 > MAX_ALLOCA_SIZE) \
|
---|
5136 | { \
|
---|
5137 | free (wcs_string2); \
|
---|
5138 | free (mbs_offset2); \
|
---|
5139 | } \
|
---|
5140 | else \
|
---|
5141 | { \
|
---|
5142 | FREE_VAR (wcs_string2); \
|
---|
5143 | FREE_VAR (mbs_offset2); \
|
---|
5144 | } \
|
---|
5145 | } while (0)
|
---|
5146 |
|
---|
5147 | #endif
|
---|
5148 |
|
---|
5149 |
|
---|
5150 | static int
|
---|
5151 | PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
|
---|
5152 | regs, stop)
|
---|
5153 | struct re_pattern_buffer *bufp;
|
---|
5154 | const char *string1, *string2;
|
---|
5155 | int size1, size2;
|
---|
5156 | int startpos;
|
---|
5157 | int range;
|
---|
5158 | struct re_registers *regs;
|
---|
5159 | int stop;
|
---|
5160 | {
|
---|
5161 | int val;
|
---|
5162 | register char *fastmap = bufp->fastmap;
|
---|
5163 | register RE_TRANSLATE_TYPE translate = bufp->translate;
|
---|
5164 | int total_size = size1 + size2;
|
---|
5165 | int endpos = startpos + range;
|
---|
5166 | #ifdef WCHAR
|
---|
5167 | /* We need wchar_t* buffers correspond to cstring1, cstring2. */
|
---|
5168 | wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
|
---|
5169 | /* We need the size of wchar_t buffers correspond to csize1, csize2. */
|
---|
5170 | int wcs_size1 = 0, wcs_size2 = 0;
|
---|
5171 | /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
|
---|
5172 | int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
|
---|
5173 | /* They hold whether each wchar_t is binary data or not. */
|
---|
5174 | char *is_binary = NULL;
|
---|
5175 | #endif /* WCHAR */
|
---|
5176 |
|
---|
5177 | /* Check for out-of-range STARTPOS. */
|
---|
5178 | if (startpos < 0 || startpos > total_size)
|
---|
5179 | return -1;
|
---|
5180 |
|
---|
5181 | /* Fix up RANGE if it might eventually take us outside
|
---|
5182 | the virtual concatenation of STRING1 and STRING2.
|
---|
5183 | Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
|
---|
5184 | if (endpos < 0)
|
---|
5185 | range = 0 - startpos;
|
---|
5186 | else if (endpos > total_size)
|
---|
5187 | range = total_size - startpos;
|
---|
5188 |
|
---|
5189 | /* If the search isn't to be a backwards one, don't waste time in a
|
---|
5190 | search for a pattern that must be anchored. */
|
---|
5191 | if (bufp->used > 0 && range > 0
|
---|
5192 | && ((re_opcode_t) bufp->buffer[0] == begbuf
|
---|
5193 | /* `begline' is like `begbuf' if it cannot match at newlines. */
|
---|
5194 | || ((re_opcode_t) bufp->buffer[0] == begline
|
---|
5195 | && !bufp->newline_anchor)))
|
---|
5196 | {
|
---|
5197 | if (startpos > 0)
|
---|
5198 | return -1;
|
---|
5199 | else
|
---|
5200 | range = 1;
|
---|
5201 | }
|
---|
5202 |
|
---|
5203 | #ifdef emacs
|
---|
5204 | /* In a forward search for something that starts with \=.
|
---|
5205 | don't keep searching past point. */
|
---|
5206 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
|
---|
5207 | {
|
---|
5208 | range = PT - startpos;
|
---|
5209 | if (range <= 0)
|
---|
5210 | return -1;
|
---|
5211 | }
|
---|
5212 | #endif /* emacs */
|
---|
5213 |
|
---|
5214 | /* Update the fastmap now if not correct already. */
|
---|
5215 | if (fastmap && !bufp->fastmap_accurate)
|
---|
5216 | if (re_compile_fastmap (bufp) == -2)
|
---|
5217 | return -2;
|
---|
5218 |
|
---|
5219 | #ifdef WCHAR
|
---|
5220 | /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
|
---|
5221 | fill them with converted string. */
|
---|
5222 | if (size1 != 0)
|
---|
5223 | {
|
---|
5224 | if (size1 > MAX_ALLOCA_SIZE)
|
---|
5225 | {
|
---|
5226 | wcs_string1 = TALLOC (size1 + 1, CHAR_T);
|
---|
5227 | mbs_offset1 = TALLOC (size1 + 1, int);
|
---|
5228 | is_binary = TALLOC (size1 + 1, char);
|
---|
5229 | }
|
---|
5230 | else
|
---|
5231 | {
|
---|
5232 | wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
|
---|
5233 | mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
|
---|
5234 | is_binary = REGEX_TALLOC (size1 + 1, char);
|
---|
5235 | }
|
---|
5236 | if (!wcs_string1 || !mbs_offset1 || !is_binary)
|
---|
5237 | {
|
---|
5238 | if (size1 > MAX_ALLOCA_SIZE)
|
---|
5239 | {
|
---|
5240 | free (wcs_string1);
|
---|
5241 | free (mbs_offset1);
|
---|
5242 | free (is_binary);
|
---|
5243 | }
|
---|
5244 | else
|
---|
5245 | {
|
---|
5246 | FREE_VAR (wcs_string1);
|
---|
5247 | FREE_VAR (mbs_offset1);
|
---|
5248 | FREE_VAR (is_binary);
|
---|
5249 | }
|
---|
5250 | return -2;
|
---|
5251 | }
|
---|
5252 | wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
|
---|
5253 | mbs_offset1, is_binary);
|
---|
5254 | wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
|
---|
5255 | if (size1 > MAX_ALLOCA_SIZE)
|
---|
5256 | free (is_binary);
|
---|
5257 | else
|
---|
5258 | FREE_VAR (is_binary);
|
---|
5259 | }
|
---|
5260 | if (size2 != 0)
|
---|
5261 | {
|
---|
5262 | if (size2 > MAX_ALLOCA_SIZE)
|
---|
5263 | {
|
---|
5264 | wcs_string2 = TALLOC (size2 + 1, CHAR_T);
|
---|
5265 | mbs_offset2 = TALLOC (size2 + 1, int);
|
---|
5266 | is_binary = TALLOC (size2 + 1, char);
|
---|
5267 | }
|
---|
5268 | else
|
---|
5269 | {
|
---|
5270 | wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
|
---|
5271 | mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
|
---|
5272 | is_binary = REGEX_TALLOC (size2 + 1, char);
|
---|
5273 | }
|
---|
5274 | if (!wcs_string2 || !mbs_offset2 || !is_binary)
|
---|
5275 | {
|
---|
5276 | FREE_WCS_BUFFERS ();
|
---|
5277 | if (size2 > MAX_ALLOCA_SIZE)
|
---|
5278 | free (is_binary);
|
---|
5279 | else
|
---|
5280 | FREE_VAR (is_binary);
|
---|
5281 | return -2;
|
---|
5282 | }
|
---|
5283 | wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
|
---|
5284 | mbs_offset2, is_binary);
|
---|
5285 | wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
|
---|
5286 | if (size2 > MAX_ALLOCA_SIZE)
|
---|
5287 | free (is_binary);
|
---|
5288 | else
|
---|
5289 | FREE_VAR (is_binary);
|
---|
5290 | }
|
---|
5291 | #endif /* WCHAR */
|
---|
5292 |
|
---|
5293 |
|
---|
5294 | /* Loop through the string, looking for a place to start matching. */
|
---|
5295 | for (;;)
|
---|
5296 | {
|
---|
5297 | /* If a fastmap is supplied, skip quickly over characters that
|
---|
5298 | cannot be the start of a match. If the pattern can match the
|
---|
5299 | null string, however, we don't need to skip characters; we want
|
---|
5300 | the first null string. */
|
---|
5301 | if (fastmap && startpos < total_size && !bufp->can_be_null)
|
---|
5302 | {
|
---|
5303 | if (range > 0) /* Searching forwards. */
|
---|
5304 | {
|
---|
5305 | register const char *d;
|
---|
5306 | register int lim = 0;
|
---|
5307 | int irange = range;
|
---|
5308 |
|
---|
5309 | if (startpos < size1 && startpos + range >= size1)
|
---|
5310 | lim = range - (size1 - startpos);
|
---|
5311 |
|
---|
5312 | d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
|
---|
5313 |
|
---|
5314 | /* Written out as an if-else to avoid testing `translate'
|
---|
5315 | inside the loop. */
|
---|
5316 | if (translate)
|
---|
5317 | while (range > lim
|
---|
5318 | && !fastmap[(unsigned char)
|
---|
5319 | translate[(unsigned char) *d++]])
|
---|
5320 | range--;
|
---|
5321 | else
|
---|
5322 | while (range > lim && !fastmap[(unsigned char) *d++])
|
---|
5323 | range--;
|
---|
5324 |
|
---|
5325 | startpos += irange - range;
|
---|
5326 | }
|
---|
5327 | else /* Searching backwards. */
|
---|
5328 | {
|
---|
5329 | register CHAR_T c = (size1 == 0 || startpos >= size1
|
---|
5330 | ? string2[startpos - size1]
|
---|
5331 | : string1[startpos]);
|
---|
5332 |
|
---|
5333 | if (!fastmap[(unsigned char) TRANSLATE (c)])
|
---|
5334 | goto advance;
|
---|
5335 | }
|
---|
5336 | }
|
---|
5337 |
|
---|
5338 | /* If can't match the null string, and that's all we have left, fail. */
|
---|
5339 | if (range >= 0 && startpos == total_size && fastmap
|
---|
5340 | && !bufp->can_be_null)
|
---|
5341 | {
|
---|
5342 | #ifdef WCHAR
|
---|
5343 | FREE_WCS_BUFFERS ();
|
---|
5344 | #endif
|
---|
5345 | return -1;
|
---|
5346 | }
|
---|
5347 |
|
---|
5348 | #ifdef WCHAR
|
---|
5349 | val = wcs_re_match_2_internal (bufp, string1, size1, string2,
|
---|
5350 | size2, startpos, regs, stop,
|
---|
5351 | wcs_string1, wcs_size1,
|
---|
5352 | wcs_string2, wcs_size2,
|
---|
5353 | mbs_offset1, mbs_offset2);
|
---|
5354 | #else /* BYTE */
|
---|
5355 | val = byte_re_match_2_internal (bufp, string1, size1, string2,
|
---|
5356 | size2, startpos, regs, stop);
|
---|
5357 | #endif /* BYTE */
|
---|
5358 |
|
---|
5359 | #ifndef REGEX_MALLOC
|
---|
5360 | # ifdef C_ALLOCA
|
---|
5361 | alloca (0);
|
---|
5362 | # endif
|
---|
5363 | #endif
|
---|
5364 |
|
---|
5365 | if (val >= 0)
|
---|
5366 | {
|
---|
5367 | #ifdef WCHAR
|
---|
5368 | FREE_WCS_BUFFERS ();
|
---|
5369 | #endif
|
---|
5370 | return startpos;
|
---|
5371 | }
|
---|
5372 |
|
---|
5373 | if (val == -2)
|
---|
5374 | {
|
---|
5375 | #ifdef WCHAR
|
---|
5376 | FREE_WCS_BUFFERS ();
|
---|
5377 | #endif
|
---|
5378 | return -2;
|
---|
5379 | }
|
---|
5380 |
|
---|
5381 | advance:
|
---|
5382 | if (!range)
|
---|
5383 | break;
|
---|
5384 | else if (range > 0)
|
---|
5385 | {
|
---|
5386 | range--;
|
---|
5387 | startpos++;
|
---|
5388 | }
|
---|
5389 | else
|
---|
5390 | {
|
---|
5391 | range++;
|
---|
5392 | startpos--;
|
---|
5393 | }
|
---|
5394 | }
|
---|
5395 | #ifdef WCHAR
|
---|
5396 | FREE_WCS_BUFFERS ();
|
---|
5397 | #endif
|
---|
5398 | return -1;
|
---|
5399 | }
|
---|
5400 |
|
---|
5401 | #ifdef WCHAR
|
---|
5402 | /* This converts PTR, a pointer into one of the search wchar_t strings
|
---|
5403 | `string1' and `string2' into an multibyte string offset from the
|
---|
5404 | beginning of that string. We use mbs_offset to optimize.
|
---|
5405 | See convert_mbs_to_wcs. */
|
---|
5406 | # define POINTER_TO_OFFSET(ptr) \
|
---|
5407 | (FIRST_STRING_P (ptr) \
|
---|
5408 | ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
|
---|
5409 | : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
|
---|
5410 | + csize1)))
|
---|
5411 | #else /* BYTE */
|
---|
5412 | /* This converts PTR, a pointer into one of the search strings `string1'
|
---|
5413 | and `string2' into an offset from the beginning of that string. */
|
---|
5414 | # define POINTER_TO_OFFSET(ptr) \
|
---|
5415 | (FIRST_STRING_P (ptr) \
|
---|
5416 | ? ((regoff_t) ((ptr) - string1)) \
|
---|
5417 | : ((regoff_t) ((ptr) - string2 + size1)))
|
---|
5418 | #endif /* WCHAR */
|
---|
5419 |
|
---|
5420 | /* Macros for dealing with the split strings in re_match_2. */
|
---|
5421 |
|
---|
5422 | #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
|
---|
5423 |
|
---|
5424 | /* Call before fetching a character with *d. This switches over to
|
---|
5425 | string2 if necessary. */
|
---|
5426 | #define PREFETCH() \
|
---|
5427 | while (d == dend) \
|
---|
5428 | { \
|
---|
5429 | /* End of string2 => fail. */ \
|
---|
5430 | if (dend == end_match_2) \
|
---|
5431 | goto fail; \
|
---|
5432 | /* End of string1 => advance to string2. */ \
|
---|
5433 | d = string2; \
|
---|
5434 | dend = end_match_2; \
|
---|
5435 | }
|
---|
5436 |
|
---|
5437 | /* Test if at very beginning or at very end of the virtual concatenation
|
---|
5438 | of `string1' and `string2'. If only one string, it's `string2'. */
|
---|
5439 | #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
|
---|
5440 | #define AT_STRINGS_END(d) ((d) == end2)
|
---|
5441 |
|
---|
5442 |
|
---|
5443 | /* Test if D points to a character which is word-constituent. We have
|
---|
5444 | two special cases to check for: if past the end of string1, look at
|
---|
5445 | the first character in string2; and if before the beginning of
|
---|
5446 | string2, look at the last character in string1. */
|
---|
5447 | #ifdef WCHAR
|
---|
5448 | /* Use internationalized API instead of SYNTAX. */
|
---|
5449 | # define WORDCHAR_P(d) \
|
---|
5450 | (iswalnum ((wint_t)((d) == end1 ? *string2 \
|
---|
5451 | : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
|
---|
5452 | || ((d) == end1 ? *string2 \
|
---|
5453 | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
|
---|
5454 | #else /* BYTE */
|
---|
5455 | # define WORDCHAR_P(d) \
|
---|
5456 | (SYNTAX ((d) == end1 ? *string2 \
|
---|
5457 | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
|
---|
5458 | == Sword)
|
---|
5459 | #endif /* WCHAR */
|
---|
5460 |
|
---|
5461 | /* Disabled due to a compiler bug -- see comment at case wordbound */
|
---|
5462 | #if 0
|
---|
5463 | /* Test if the character before D and the one at D differ with respect
|
---|
5464 | to being word-constituent. */
|
---|
5465 | #define AT_WORD_BOUNDARY(d) \
|
---|
5466 | (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
|
---|
5467 | || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
|
---|
5468 | #endif
|
---|
5469 |
|
---|
5470 | /* Free everything we malloc. */
|
---|
5471 | #ifdef MATCH_MAY_ALLOCATE
|
---|
5472 | # ifdef WCHAR
|
---|
5473 | # define FREE_VARIABLES() \
|
---|
5474 | do { \
|
---|
5475 | REGEX_FREE_STACK (fail_stack.stack); \
|
---|
5476 | FREE_VAR (regstart); \
|
---|
5477 | FREE_VAR (regend); \
|
---|
5478 | FREE_VAR (old_regstart); \
|
---|
5479 | FREE_VAR (old_regend); \
|
---|
5480 | FREE_VAR (best_regstart); \
|
---|
5481 | FREE_VAR (best_regend); \
|
---|
5482 | FREE_VAR (reg_info); \
|
---|
5483 | FREE_VAR (reg_dummy); \
|
---|
5484 | FREE_VAR (reg_info_dummy); \
|
---|
5485 | if (!cant_free_wcs_buf) \
|
---|
5486 | { \
|
---|
5487 | FREE_VAR (string1); \
|
---|
5488 | FREE_VAR (string2); \
|
---|
5489 | FREE_VAR (mbs_offset1); \
|
---|
5490 | FREE_VAR (mbs_offset2); \
|
---|
5491 | } \
|
---|
5492 | } while (0)
|
---|
5493 | # else /* BYTE */
|
---|
5494 | # define FREE_VARIABLES() \
|
---|
5495 | do { \
|
---|
5496 | REGEX_FREE_STACK (fail_stack.stack); \
|
---|
5497 | FREE_VAR (regstart); \
|
---|
5498 | FREE_VAR (regend); \
|
---|
5499 | FREE_VAR (old_regstart); \
|
---|
5500 | FREE_VAR (old_regend); \
|
---|
5501 | FREE_VAR (best_regstart); \
|
---|
5502 | FREE_VAR (best_regend); \
|
---|
5503 | FREE_VAR (reg_info); \
|
---|
5504 | FREE_VAR (reg_dummy); \
|
---|
5505 | FREE_VAR (reg_info_dummy); \
|
---|
5506 | } while (0)
|
---|
5507 | # endif /* WCHAR */
|
---|
5508 | #else
|
---|
5509 | # ifdef WCHAR
|
---|
5510 | # define FREE_VARIABLES() \
|
---|
5511 | do { \
|
---|
5512 | if (!cant_free_wcs_buf) \
|
---|
5513 | { \
|
---|
5514 | FREE_VAR (string1); \
|
---|
5515 | FREE_VAR (string2); \
|
---|
5516 | FREE_VAR (mbs_offset1); \
|
---|
5517 | FREE_VAR (mbs_offset2); \
|
---|
5518 | } \
|
---|
5519 | } while (0)
|
---|
5520 | # else /* BYTE */
|
---|
5521 | # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
|
---|
5522 | # endif /* WCHAR */
|
---|
5523 | #endif /* not MATCH_MAY_ALLOCATE */
|
---|
5524 |
|
---|
5525 | /* These values must meet several constraints. They must not be valid
|
---|
5526 | register values; since we have a limit of 255 registers (because
|
---|
5527 | we use only one byte in the pattern for the register number), we can
|
---|
5528 | use numbers larger than 255. They must differ by 1, because of
|
---|
5529 | NUM_FAILURE_ITEMS above. And the value for the lowest register must
|
---|
5530 | be larger than the value for the highest register, so we do not try
|
---|
5531 | to actually save any registers when none are active. */
|
---|
5532 | #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
|
---|
5533 | #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
|
---|
5534 | |
---|
5535 |
|
---|
5536 | #else /* not INSIDE_RECURSION */
|
---|
5537 | /* Matching routines. */
|
---|
5538 |
|
---|
5539 | #ifndef emacs /* Emacs never uses this. */
|
---|
5540 | /* re_match is like re_match_2 except it takes only a single string. */
|
---|
5541 |
|
---|
5542 | int
|
---|
5543 | re_match (bufp, string, size, pos, regs)
|
---|
5544 | struct re_pattern_buffer *bufp;
|
---|
5545 | const char *string;
|
---|
5546 | int size, pos;
|
---|
5547 | struct re_registers *regs;
|
---|
5548 | {
|
---|
5549 | int result;
|
---|
5550 | # ifdef MBS_SUPPORT
|
---|
5551 | if (MB_CUR_MAX != 1)
|
---|
5552 | result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
|
---|
5553 | pos, regs, size,
|
---|
5554 | NULL, 0, NULL, 0, NULL, NULL);
|
---|
5555 | else
|
---|
5556 | # endif
|
---|
5557 | result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
|
---|
5558 | pos, regs, size);
|
---|
5559 | # ifndef REGEX_MALLOC
|
---|
5560 | # ifdef C_ALLOCA
|
---|
5561 | alloca (0);
|
---|
5562 | # endif
|
---|
5563 | # endif
|
---|
5564 | return result;
|
---|
5565 | }
|
---|
5566 | # ifdef _LIBC
|
---|
5567 | weak_alias (__re_match, re_match)
|
---|
5568 | # endif
|
---|
5569 | #endif /* not emacs */
|
---|
5570 |
|
---|
5571 | #endif /* not INSIDE_RECURSION */
|
---|
5572 |
|
---|
5573 | #ifdef INSIDE_RECURSION
|
---|
5574 | static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
|
---|
5575 | UCHAR_T *end,
|
---|
5576 | PREFIX(register_info_type) *reg_info));
|
---|
5577 | static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
|
---|
5578 | UCHAR_T *end,
|
---|
5579 | PREFIX(register_info_type) *reg_info));
|
---|
5580 | static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
|
---|
5581 | UCHAR_T *end,
|
---|
5582 | PREFIX(register_info_type) *reg_info));
|
---|
5583 | static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
|
---|
5584 | int len, char *translate));
|
---|
5585 | #else /* not INSIDE_RECURSION */
|
---|
5586 |
|
---|
5587 | /* re_match_2 matches the compiled pattern in BUFP against the
|
---|
5588 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
|
---|
5589 | and SIZE2, respectively). We start matching at POS, and stop
|
---|
5590 | matching at STOP.
|
---|
5591 |
|
---|
5592 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
|
---|
5593 | store offsets for the substring each group matched in REGS. See the
|
---|
5594 | documentation for exactly how many groups we fill.
|
---|
5595 |
|
---|
5596 | We return -1 if no match, -2 if an internal error (such as the
|
---|
5597 | failure stack overflowing). Otherwise, we return the length of the
|
---|
5598 | matched substring. */
|
---|
5599 |
|
---|
5600 | int
|
---|
5601 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
|
---|
5602 | struct re_pattern_buffer *bufp;
|
---|
5603 | const char *string1, *string2;
|
---|
5604 | int size1, size2;
|
---|
5605 | int pos;
|
---|
5606 | struct re_registers *regs;
|
---|
5607 | int stop;
|
---|
5608 | {
|
---|
5609 | int result;
|
---|
5610 | # ifdef MBS_SUPPORT
|
---|
5611 | if (MB_CUR_MAX != 1)
|
---|
5612 | result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
|
---|
5613 | pos, regs, stop,
|
---|
5614 | NULL, 0, NULL, 0, NULL, NULL);
|
---|
5615 | else
|
---|
5616 | # endif
|
---|
5617 | result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
|
---|
5618 | pos, regs, stop);
|
---|
5619 |
|
---|
5620 | #ifndef REGEX_MALLOC
|
---|
5621 | # ifdef C_ALLOCA
|
---|
5622 | alloca (0);
|
---|
5623 | # endif
|
---|
5624 | #endif
|
---|
5625 | return result;
|
---|
5626 | }
|
---|
5627 | #ifdef _LIBC
|
---|
5628 | weak_alias (__re_match_2, re_match_2)
|
---|
5629 | #endif
|
---|
5630 |
|
---|
5631 | #endif /* not INSIDE_RECURSION */
|
---|
5632 |
|
---|
5633 | #ifdef INSIDE_RECURSION
|
---|
5634 |
|
---|
5635 | #ifdef WCHAR
|
---|
5636 | static int count_mbs_length PARAMS ((int *, int));
|
---|
5637 |
|
---|
5638 | /* This check the substring (from 0, to length) of the multibyte string,
|
---|
5639 | to which offset_buffer correspond. And count how many wchar_t_characters
|
---|
5640 | the substring occupy. We use offset_buffer to optimization.
|
---|
5641 | See convert_mbs_to_wcs. */
|
---|
5642 |
|
---|
5643 | static int
|
---|
5644 | count_mbs_length(offset_buffer, length)
|
---|
5645 | int *offset_buffer;
|
---|
5646 | int length;
|
---|
5647 | {
|
---|
5648 | int upper, lower;
|
---|
5649 |
|
---|
5650 | /* Check whether the size is valid. */
|
---|
5651 | if (length < 0)
|
---|
5652 | return -1;
|
---|
5653 |
|
---|
5654 | if (offset_buffer == NULL)
|
---|
5655 | return 0;
|
---|
5656 |
|
---|
5657 | /* If there are no multibyte character, offset_buffer[i] == i.
|
---|
5658 | Optmize for this case. */
|
---|
5659 | if (offset_buffer[length] == length)
|
---|
5660 | return length;
|
---|
5661 |
|
---|
5662 | /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
|
---|
5663 | upper = length;
|
---|
5664 | lower = 0;
|
---|
5665 |
|
---|
5666 | while (true)
|
---|
5667 | {
|
---|
5668 | int middle = (lower + upper) / 2;
|
---|
5669 | if (middle == lower || middle == upper)
|
---|
5670 | break;
|
---|
5671 | if (offset_buffer[middle] > length)
|
---|
5672 | upper = middle;
|
---|
5673 | else if (offset_buffer[middle] < length)
|
---|
5674 | lower = middle;
|
---|
5675 | else
|
---|
5676 | return middle;
|
---|
5677 | }
|
---|
5678 |
|
---|
5679 | return -1;
|
---|
5680 | }
|
---|
5681 | #endif /* WCHAR */
|
---|
5682 |
|
---|
5683 | /* This is a separate function so that we can force an alloca cleanup
|
---|
5684 | afterwards. */
|
---|
5685 | #ifdef WCHAR
|
---|
5686 | static int
|
---|
5687 | wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
|
---|
5688 | regs, stop, string1, size1, string2, size2,
|
---|
5689 | mbs_offset1, mbs_offset2)
|
---|
5690 | struct re_pattern_buffer *bufp;
|
---|
5691 | const char *cstring1, *cstring2;
|
---|
5692 | int csize1, csize2;
|
---|
5693 | int pos;
|
---|
5694 | struct re_registers *regs;
|
---|
5695 | int stop;
|
---|
5696 | /* string1 == string2 == NULL means string1/2, size1/2 and
|
---|
5697 | mbs_offset1/2 need seting up in this function. */
|
---|
5698 | /* We need wchar_t* buffers correspond to cstring1, cstring2. */
|
---|
5699 | wchar_t *string1, *string2;
|
---|
5700 | /* We need the size of wchar_t buffers correspond to csize1, csize2. */
|
---|
5701 | int size1, size2;
|
---|
5702 | /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
|
---|
5703 | int *mbs_offset1, *mbs_offset2;
|
---|
5704 | #else /* BYTE */
|
---|
5705 | static int
|
---|
5706 | byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
|
---|
5707 | regs, stop)
|
---|
5708 | struct re_pattern_buffer *bufp;
|
---|
5709 | const char *string1, *string2;
|
---|
5710 | int size1, size2;
|
---|
5711 | int pos;
|
---|
5712 | struct re_registers *regs;
|
---|
5713 | int stop;
|
---|
5714 | #endif /* BYTE */
|
---|
5715 | {
|
---|
5716 | /* General temporaries. */
|
---|
5717 | int mcnt;
|
---|
5718 | UCHAR_T *p1;
|
---|
5719 | #ifdef WCHAR
|
---|
5720 | /* They hold whether each wchar_t is binary data or not. */
|
---|
5721 | char *is_binary = NULL;
|
---|
5722 | /* If true, we can't free string1/2, mbs_offset1/2. */
|
---|
5723 | int cant_free_wcs_buf = 1;
|
---|
5724 | #endif /* WCHAR */
|
---|
5725 |
|
---|
5726 | /* Just past the end of the corresponding string. */
|
---|
5727 | const CHAR_T *end1, *end2;
|
---|
5728 |
|
---|
5729 | /* Pointers into string1 and string2, just past the last characters in
|
---|
5730 | each to consider matching. */
|
---|
5731 | const CHAR_T *end_match_1, *end_match_2;
|
---|
5732 |
|
---|
5733 | /* Where we are in the data, and the end of the current string. */
|
---|
5734 | const CHAR_T *d, *dend;
|
---|
5735 |
|
---|
5736 | /* Where we are in the pattern, and the end of the pattern. */
|
---|
5737 | #ifdef WCHAR
|
---|
5738 | UCHAR_T *pattern, *p;
|
---|
5739 | register UCHAR_T *pend;
|
---|
5740 | #else /* BYTE */
|
---|
5741 | UCHAR_T *p = bufp->buffer;
|
---|
5742 | register UCHAR_T *pend = p + bufp->used;
|
---|
5743 | #endif /* WCHAR */
|
---|
5744 |
|
---|
5745 | /* Mark the opcode just after a start_memory, so we can test for an
|
---|
5746 | empty subpattern when we get to the stop_memory. */
|
---|
5747 | UCHAR_T *just_past_start_mem = 0;
|
---|
5748 |
|
---|
5749 | /* We use this to map every character in the string. */
|
---|
5750 | RE_TRANSLATE_TYPE translate = bufp->translate;
|
---|
5751 |
|
---|
5752 | /* Failure point stack. Each place that can handle a failure further
|
---|
5753 | down the line pushes a failure point on this stack. It consists of
|
---|
5754 | restart, regend, and reg_info for all registers corresponding to
|
---|
5755 | the subexpressions we're currently inside, plus the number of such
|
---|
5756 | registers, and, finally, two char *'s. The first char * is where
|
---|
5757 | to resume scanning the pattern; the second one is where to resume
|
---|
5758 | scanning the strings. If the latter is zero, the failure point is
|
---|
5759 | a ``dummy''; if a failure happens and the failure point is a dummy,
|
---|
5760 | it gets discarded and the next next one is tried. */
|
---|
5761 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
---|
5762 | PREFIX(fail_stack_type) fail_stack;
|
---|
5763 | #endif
|
---|
5764 | #ifdef DEBUG
|
---|
5765 | static unsigned failure_id;
|
---|
5766 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
|
---|
5767 | #endif
|
---|
5768 |
|
---|
5769 | #ifdef REL_ALLOC
|
---|
5770 | /* This holds the pointer to the failure stack, when
|
---|
5771 | it is allocated relocatably. */
|
---|
5772 | fail_stack_elt_t *failure_stack_ptr;
|
---|
5773 | #endif
|
---|
5774 |
|
---|
5775 | /* We fill all the registers internally, independent of what we
|
---|
5776 | return, for use in backreferences. The number here includes
|
---|
5777 | an element for register zero. */
|
---|
5778 | size_t num_regs = bufp->re_nsub + 1;
|
---|
5779 |
|
---|
5780 | /* The currently active registers. */
|
---|
5781 | active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
---|
5782 | active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
---|
5783 |
|
---|
5784 | /* Information on the contents of registers. These are pointers into
|
---|
5785 | the input strings; they record just what was matched (on this
|
---|
5786 | attempt) by a subexpression part of the pattern, that is, the
|
---|
5787 | regnum-th regstart pointer points to where in the pattern we began
|
---|
5788 | matching and the regnum-th regend points to right after where we
|
---|
5789 | stopped matching the regnum-th subexpression. (The zeroth register
|
---|
5790 | keeps track of what the whole pattern matches.) */
|
---|
5791 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
---|
5792 | const CHAR_T **regstart, **regend;
|
---|
5793 | #endif
|
---|
5794 |
|
---|
5795 | /* If a group that's operated upon by a repetition operator fails to
|
---|
5796 | match anything, then the register for its start will need to be
|
---|
5797 | restored because it will have been set to wherever in the string we
|
---|
5798 | are when we last see its open-group operator. Similarly for a
|
---|
5799 | register's end. */
|
---|
5800 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
---|
5801 | const CHAR_T **old_regstart, **old_regend;
|
---|
5802 | #endif
|
---|
5803 |
|
---|
5804 | /* The is_active field of reg_info helps us keep track of which (possibly
|
---|
5805 | nested) subexpressions we are currently in. The matched_something
|
---|
5806 | field of reg_info[reg_num] helps us tell whether or not we have
|
---|
5807 | matched any of the pattern so far this time through the reg_num-th
|
---|
5808 | subexpression. These two fields get reset each time through any
|
---|
5809 | loop their register is in. */
|
---|
5810 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
---|
5811 | PREFIX(register_info_type) *reg_info;
|
---|
5812 | #endif
|
---|
5813 |
|
---|
5814 | /* The following record the register info as found in the above
|
---|
5815 | variables when we find a match better than any we've seen before.
|
---|
5816 | This happens as we backtrack through the failure points, which in
|
---|
5817 | turn happens only if we have not yet matched the entire string. */
|
---|
5818 | unsigned best_regs_set = false;
|
---|
5819 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
---|
5820 | const CHAR_T **best_regstart, **best_regend;
|
---|
5821 | #endif
|
---|
5822 |
|
---|
5823 | /* Logically, this is `best_regend[0]'. But we don't want to have to
|
---|
5824 | allocate space for that if we're not allocating space for anything
|
---|
5825 | else (see below). Also, we never need info about register 0 for
|
---|
5826 | any of the other register vectors, and it seems rather a kludge to
|
---|
5827 | treat `best_regend' differently than the rest. So we keep track of
|
---|
5828 | the end of the best match so far in a separate variable. We
|
---|
5829 | initialize this to NULL so that when we backtrack the first time
|
---|
5830 | and need to test it, it's not garbage. */
|
---|
5831 | const CHAR_T *match_end = NULL;
|
---|
5832 |
|
---|
5833 | /* This helps SET_REGS_MATCHED avoid doing redundant work. */
|
---|
5834 | int set_regs_matched_done = 0;
|
---|
5835 |
|
---|
5836 | /* Used when we pop values we don't care about. */
|
---|
5837 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
---|
5838 | const CHAR_T **reg_dummy;
|
---|
5839 | PREFIX(register_info_type) *reg_info_dummy;
|
---|
5840 | #endif
|
---|
5841 |
|
---|
5842 | #ifdef DEBUG
|
---|
5843 | /* Counts the total number of registers pushed. */
|
---|
5844 | unsigned num_regs_pushed = 0;
|
---|
5845 | #endif
|
---|
5846 |
|
---|
5847 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
|
---|
5848 |
|
---|
5849 | INIT_FAIL_STACK ();
|
---|
5850 |
|
---|
5851 | #ifdef MATCH_MAY_ALLOCATE
|
---|
5852 | /* Do not bother to initialize all the register variables if there are
|
---|
5853 | no groups in the pattern, as it takes a fair amount of time. If
|
---|
5854 | there are groups, we include space for register 0 (the whole
|
---|
5855 | pattern), even though we never use it, since it simplifies the
|
---|
5856 | array indexing. We should fix this. */
|
---|
5857 | if (bufp->re_nsub)
|
---|
5858 | {
|
---|
5859 | regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
|
---|
5860 | regend = REGEX_TALLOC (num_regs, const CHAR_T *);
|
---|
5861 | old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
|
---|
5862 | old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
|
---|
5863 | best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
|
---|
5864 | best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
|
---|
5865 | reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
|
---|
5866 | reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
|
---|
5867 | reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
|
---|
5868 |
|
---|
5869 | if (!(regstart && regend && old_regstart && old_regend && reg_info
|
---|
5870 | && best_regstart && best_regend && reg_dummy && reg_info_dummy))
|
---|
5871 | {
|
---|
5872 | FREE_VARIABLES ();
|
---|
5873 | return -2;
|
---|
5874 | }
|
---|
5875 | }
|
---|
5876 | else
|
---|
5877 | {
|
---|
5878 | /* We must initialize all our variables to NULL, so that
|
---|
5879 | `FREE_VARIABLES' doesn't try to free them. */
|
---|
5880 | regstart = regend = old_regstart = old_regend = best_regstart
|
---|
5881 | = best_regend = reg_dummy = NULL;
|
---|
5882 | reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
|
---|
5883 | }
|
---|
5884 | #endif /* MATCH_MAY_ALLOCATE */
|
---|
5885 |
|
---|
5886 | /* The starting position is bogus. */
|
---|
5887 | #ifdef WCHAR
|
---|
5888 | if (pos < 0 || pos > csize1 + csize2)
|
---|
5889 | #else /* BYTE */
|
---|
5890 | if (pos < 0 || pos > size1 + size2)
|
---|
5891 | #endif
|
---|
5892 | {
|
---|
5893 | FREE_VARIABLES ();
|
---|
5894 | return -1;
|
---|
5895 | }
|
---|
5896 |
|
---|
5897 | #ifdef WCHAR
|
---|
5898 | /* Allocate wchar_t array for string1 and string2 and
|
---|
5899 | fill them with converted string. */
|
---|
5900 | if (string1 == NULL && string2 == NULL)
|
---|
5901 | {
|
---|
5902 | /* We need seting up buffers here. */
|
---|
5903 |
|
---|
5904 | /* We must free wcs buffers in this function. */
|
---|
5905 | cant_free_wcs_buf = 0;
|
---|
5906 |
|
---|
5907 | if (csize1 != 0)
|
---|
5908 | {
|
---|
5909 | string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
|
---|
5910 | mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
|
---|
5911 | is_binary = REGEX_TALLOC (csize1 + 1, char);
|
---|
5912 | if (!string1 || !mbs_offset1 || !is_binary)
|
---|
5913 | {
|
---|
5914 | FREE_VAR (string1);
|
---|
5915 | FREE_VAR (mbs_offset1);
|
---|
5916 | FREE_VAR (is_binary);
|
---|
5917 | return -2;
|
---|
5918 | }
|
---|
5919 | }
|
---|
5920 | if (csize2 != 0)
|
---|
5921 | {
|
---|
5922 | string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
|
---|
5923 | mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
|
---|
5924 | is_binary = REGEX_TALLOC (csize2 + 1, char);
|
---|
5925 | if (!string2 || !mbs_offset2 || !is_binary)
|
---|
5926 | {
|
---|
5927 | FREE_VAR (string1);
|
---|
5928 | FREE_VAR (mbs_offset1);
|
---|
5929 | FREE_VAR (string2);
|
---|
5930 | FREE_VAR (mbs_offset2);
|
---|
5931 | FREE_VAR (is_binary);
|
---|
5932 | return -2;
|
---|
5933 | }
|
---|
5934 | size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
|
---|
5935 | mbs_offset2, is_binary);
|
---|
5936 | string2[size2] = L'\0'; /* for a sentinel */
|
---|
5937 | FREE_VAR (is_binary);
|
---|
5938 | }
|
---|
5939 | }
|
---|
5940 |
|
---|
5941 | /* We need to cast pattern to (wchar_t*), because we casted this compiled
|
---|
5942 | pattern to (char*) in regex_compile. */
|
---|
5943 | p = pattern = (CHAR_T*)bufp->buffer;
|
---|
5944 | pend = (CHAR_T*)(bufp->buffer + bufp->used);
|
---|
5945 |
|
---|
5946 | #endif /* WCHAR */
|
---|
5947 |
|
---|
5948 | /* Initialize subexpression text positions to -1 to mark ones that no
|
---|
5949 | start_memory/stop_memory has been seen for. Also initialize the
|
---|
5950 | register information struct. */
|
---|
5951 | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
|
---|
5952 | {
|
---|
5953 | regstart[mcnt] = regend[mcnt]
|
---|
5954 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
|
---|
5955 |
|
---|
5956 | REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
|
---|
5957 | IS_ACTIVE (reg_info[mcnt]) = 0;
|
---|
5958 | MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
---|
5959 | EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
---|
5960 | }
|
---|
5961 |
|
---|
5962 | /* We move `string1' into `string2' if the latter's empty -- but not if
|
---|
5963 | `string1' is null. */
|
---|
5964 | if (size2 == 0 && string1 != NULL)
|
---|
5965 | {
|
---|
5966 | string2 = string1;
|
---|
5967 | size2 = size1;
|
---|
5968 | string1 = 0;
|
---|
5969 | size1 = 0;
|
---|
5970 | #ifdef WCHAR
|
---|
5971 | mbs_offset2 = mbs_offset1;
|
---|
5972 | csize2 = csize1;
|
---|
5973 | mbs_offset1 = NULL;
|
---|
5974 | csize1 = 0;
|
---|
5975 | #endif
|
---|
5976 | }
|
---|
5977 | end1 = string1 + size1;
|
---|
5978 | end2 = string2 + size2;
|
---|
5979 |
|
---|
5980 | /* Compute where to stop matching, within the two strings. */
|
---|
5981 | #ifdef WCHAR
|
---|
5982 | if (stop <= csize1)
|
---|
5983 | {
|
---|
5984 | mcnt = count_mbs_length(mbs_offset1, stop);
|
---|
5985 | end_match_1 = string1 + mcnt;
|
---|
5986 | end_match_2 = string2;
|
---|
5987 | }
|
---|
5988 | else
|
---|
5989 | {
|
---|
5990 | if (stop > csize1 + csize2)
|
---|
5991 | stop = csize1 + csize2;
|
---|
5992 | end_match_1 = end1;
|
---|
5993 | mcnt = count_mbs_length(mbs_offset2, stop-csize1);
|
---|
5994 | end_match_2 = string2 + mcnt;
|
---|
5995 | }
|
---|
5996 | if (mcnt < 0)
|
---|
5997 | { /* count_mbs_length return error. */
|
---|
5998 | FREE_VARIABLES ();
|
---|
5999 | return -1;
|
---|
6000 | }
|
---|
6001 | #else
|
---|
6002 | if (stop <= size1)
|
---|
6003 | {
|
---|
6004 | end_match_1 = string1 + stop;
|
---|
6005 | end_match_2 = string2;
|
---|
6006 | }
|
---|
6007 | else
|
---|
6008 | {
|
---|
6009 | end_match_1 = end1;
|
---|
6010 | end_match_2 = string2 + stop - size1;
|
---|
6011 | }
|
---|
6012 | #endif /* WCHAR */
|
---|
6013 |
|
---|
6014 | /* `p' scans through the pattern as `d' scans through the data.
|
---|
6015 | `dend' is the end of the input string that `d' points within. `d'
|
---|
6016 | is advanced into the following input string whenever necessary, but
|
---|
6017 | this happens before fetching; therefore, at the beginning of the
|
---|
6018 | loop, `d' can be pointing at the end of a string, but it cannot
|
---|
6019 | equal `string2'. */
|
---|
6020 | #ifdef WCHAR
|
---|
6021 | if (size1 > 0 && pos <= csize1)
|
---|
6022 | {
|
---|
6023 | mcnt = count_mbs_length(mbs_offset1, pos);
|
---|
6024 | d = string1 + mcnt;
|
---|
6025 | dend = end_match_1;
|
---|
6026 | }
|
---|
6027 | else
|
---|
6028 | {
|
---|
6029 | mcnt = count_mbs_length(mbs_offset2, pos-csize1);
|
---|
6030 | d = string2 + mcnt;
|
---|
6031 | dend = end_match_2;
|
---|
6032 | }
|
---|
6033 |
|
---|
6034 | if (mcnt < 0)
|
---|
6035 | { /* count_mbs_length return error. */
|
---|
6036 | FREE_VARIABLES ();
|
---|
6037 | return -1;
|
---|
6038 | }
|
---|
6039 | #else
|
---|
6040 | if (size1 > 0 && pos <= size1)
|
---|
6041 | {
|
---|
6042 | d = string1 + pos;
|
---|
6043 | dend = end_match_1;
|
---|
6044 | }
|
---|
6045 | else
|
---|
6046 | {
|
---|
6047 | d = string2 + pos - size1;
|
---|
6048 | dend = end_match_2;
|
---|
6049 | }
|
---|
6050 | #endif /* WCHAR */
|
---|
6051 |
|
---|
6052 | DEBUG_PRINT1 ("The compiled pattern is:\n");
|
---|
6053 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
|
---|
6054 | DEBUG_PRINT1 ("The string to match is: `");
|
---|
6055 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
|
---|
6056 | DEBUG_PRINT1 ("'\n");
|
---|
6057 |
|
---|
6058 | /* This loops over pattern commands. It exits by returning from the
|
---|
6059 | function if the match is complete, or it drops through if the match
|
---|
6060 | fails at this starting point in the input data. */
|
---|
6061 | for (;;)
|
---|
6062 | {
|
---|
6063 | #ifdef _LIBC
|
---|
6064 | DEBUG_PRINT2 ("\n%p: ", p);
|
---|
6065 | #else
|
---|
6066 | DEBUG_PRINT2 ("\n0x%x: ", p);
|
---|
6067 | #endif
|
---|
6068 |
|
---|
6069 | if (p == pend)
|
---|
6070 | { /* End of pattern means we might have succeeded. */
|
---|
6071 | DEBUG_PRINT1 ("end of pattern ... ");
|
---|
6072 |
|
---|
6073 | /* If we haven't matched the entire string, and we want the
|
---|
6074 | longest match, try backtracking. */
|
---|
6075 | if (d != end_match_2)
|
---|
6076 | {
|
---|
6077 | /* 1 if this match ends in the same string (string1 or string2)
|
---|
6078 | as the best previous match. */
|
---|
6079 | boolean same_str_p = (FIRST_STRING_P (match_end)
|
---|
6080 | == MATCHING_IN_FIRST_STRING);
|
---|
6081 | /* 1 if this match is the best seen so far. */
|
---|
6082 | boolean best_match_p;
|
---|
6083 |
|
---|
6084 | /* AIX compiler got confused when this was combined
|
---|
6085 | with the previous declaration. */
|
---|
6086 | if (same_str_p)
|
---|
6087 | best_match_p = d > match_end;
|
---|
6088 | else
|
---|
6089 | best_match_p = !MATCHING_IN_FIRST_STRING;
|
---|
6090 |
|
---|
6091 | DEBUG_PRINT1 ("backtracking.\n");
|
---|
6092 |
|
---|
6093 | if (!FAIL_STACK_EMPTY ())
|
---|
6094 | { /* More failure points to try. */
|
---|
6095 |
|
---|
6096 | /* If exceeds best match so far, save it. */
|
---|
6097 | if (!best_regs_set || best_match_p)
|
---|
6098 | {
|
---|
6099 | best_regs_set = true;
|
---|
6100 | match_end = d;
|
---|
6101 |
|
---|
6102 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
|
---|
6103 |
|
---|
6104 | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
|
---|
6105 | {
|
---|
6106 | best_regstart[mcnt] = regstart[mcnt];
|
---|
6107 | best_regend[mcnt] = regend[mcnt];
|
---|
6108 | }
|
---|
6109 | }
|
---|
6110 | goto fail;
|
---|
6111 | }
|
---|
6112 |
|
---|
6113 | /* If no failure points, don't restore garbage. And if
|
---|
6114 | last match is real best match, don't restore second
|
---|
6115 | best one. */
|
---|
6116 | else if (best_regs_set && !best_match_p)
|
---|
6117 | {
|
---|
6118 | restore_best_regs:
|
---|
6119 | /* Restore best match. It may happen that `dend ==
|
---|
6120 | end_match_1' while the restored d is in string2.
|
---|
6121 | For example, the pattern `x.*y.*z' against the
|
---|
6122 | strings `x-' and `y-z-', if the two strings are
|
---|
6123 | not consecutive in memory. */
|
---|
6124 | DEBUG_PRINT1 ("Restoring best registers.\n");
|
---|
6125 |
|
---|
6126 | d = match_end;
|
---|
6127 | dend = ((d >= string1 && d <= end1)
|
---|
6128 | ? end_match_1 : end_match_2);
|
---|
6129 |
|
---|
6130 | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
|
---|
6131 | {
|
---|
6132 | regstart[mcnt] = best_regstart[mcnt];
|
---|
6133 | regend[mcnt] = best_regend[mcnt];
|
---|
6134 | }
|
---|
6135 | }
|
---|
6136 | } /* d != end_match_2 */
|
---|
6137 |
|
---|
6138 | succeed_label:
|
---|
6139 | DEBUG_PRINT1 ("Accepting match.\n");
|
---|
6140 | /* If caller wants register contents data back, do it. */
|
---|
6141 | if (regs && !bufp->no_sub)
|
---|
6142 | {
|
---|
6143 | /* Have the register data arrays been allocated? */
|
---|
6144 | if (bufp->regs_allocated == REGS_UNALLOCATED)
|
---|
6145 | { /* No. So allocate them with malloc. We need one
|
---|
6146 | extra element beyond `num_regs' for the `-1' marker
|
---|
6147 | GNU code uses. */
|
---|
6148 | regs->num_regs = MAX (RE_NREGS, num_regs + 1);
|
---|
6149 | regs->start = TALLOC (regs->num_regs, regoff_t);
|
---|
6150 | regs->end = TALLOC (regs->num_regs, regoff_t);
|
---|
6151 | if (regs->start == NULL || regs->end == NULL)
|
---|
6152 | {
|
---|
6153 | FREE_VARIABLES ();
|
---|
6154 | return -2;
|
---|
6155 | }
|
---|
6156 | bufp->regs_allocated = REGS_REALLOCATE;
|
---|
6157 | }
|
---|
6158 | else if (bufp->regs_allocated == REGS_REALLOCATE)
|
---|
6159 | { /* Yes. If we need more elements than were already
|
---|
6160 | allocated, reallocate them. If we need fewer, just
|
---|
6161 | leave it alone. */
|
---|
6162 | if (regs->num_regs < num_regs + 1)
|
---|
6163 | {
|
---|
6164 | regs->num_regs = num_regs + 1;
|
---|
6165 | RETALLOC (regs->start, regs->num_regs, regoff_t);
|
---|
6166 | RETALLOC (regs->end, regs->num_regs, regoff_t);
|
---|
6167 | if (regs->start == NULL || regs->end == NULL)
|
---|
6168 | {
|
---|
6169 | FREE_VARIABLES ();
|
---|
6170 | return -2;
|
---|
6171 | }
|
---|
6172 | }
|
---|
6173 | }
|
---|
6174 | else
|
---|
6175 | {
|
---|
6176 | /* These braces fend off a "empty body in an else-statement"
|
---|
6177 | warning under GCC when assert expands to nothing. */
|
---|
6178 | assert (bufp->regs_allocated == REGS_FIXED);
|
---|
6179 | }
|
---|
6180 |
|
---|
6181 | /* Convert the pointer data in `regstart' and `regend' to
|
---|
6182 | indices. Register zero has to be set differently,
|
---|
6183 | since we haven't kept track of any info for it. */
|
---|
6184 | if (regs->num_regs > 0)
|
---|
6185 | {
|
---|
6186 | regs->start[0] = pos;
|
---|
6187 | #ifdef WCHAR
|
---|
6188 | if (MATCHING_IN_FIRST_STRING)
|
---|
6189 | regs->end[0] = mbs_offset1 != NULL ?
|
---|
6190 | mbs_offset1[d-string1] : 0;
|
---|
6191 | else
|
---|
6192 | regs->end[0] = csize1 + (mbs_offset2 != NULL ?
|
---|
6193 | mbs_offset2[d-string2] : 0);
|
---|
6194 | #else
|
---|
6195 | regs->end[0] = (MATCHING_IN_FIRST_STRING
|
---|
6196 | ? ((regoff_t) (d - string1))
|
---|
6197 | : ((regoff_t) (d - string2 + size1)));
|
---|
6198 | #endif /* WCHAR */
|
---|
6199 | }
|
---|
6200 |
|
---|
6201 | /* Go through the first `min (num_regs, regs->num_regs)'
|
---|
6202 | registers, since that is all we initialized. */
|
---|
6203 | for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
|
---|
6204 | mcnt++)
|
---|
6205 | {
|
---|
6206 | if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
|
---|
6207 | regs->start[mcnt] = regs->end[mcnt] = -1;
|
---|
6208 | else
|
---|
6209 | {
|
---|
6210 | regs->start[mcnt]
|
---|
6211 | = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
|
---|
6212 | regs->end[mcnt]
|
---|
6213 | = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
|
---|
6214 | }
|
---|
6215 | }
|
---|
6216 |
|
---|
6217 | /* If the regs structure we return has more elements than
|
---|
6218 | were in the pattern, set the extra elements to -1. If
|
---|
6219 | we (re)allocated the registers, this is the case,
|
---|
6220 | because we always allocate enough to have at least one
|
---|
6221 | -1 at the end. */
|
---|
6222 | for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
|
---|
6223 | regs->start[mcnt] = regs->end[mcnt] = -1;
|
---|
6224 | } /* regs && !bufp->no_sub */
|
---|
6225 |
|
---|
6226 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
|
---|
6227 | nfailure_points_pushed, nfailure_points_popped,
|
---|
6228 | nfailure_points_pushed - nfailure_points_popped);
|
---|
6229 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
|
---|
6230 |
|
---|
6231 | #ifdef WCHAR
|
---|
6232 | if (MATCHING_IN_FIRST_STRING)
|
---|
6233 | mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
|
---|
6234 | else
|
---|
6235 | mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
|
---|
6236 | csize1;
|
---|
6237 | mcnt -= pos;
|
---|
6238 | #else
|
---|
6239 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING
|
---|
6240 | ? string1
|
---|
6241 | : string2 - size1);
|
---|
6242 | #endif /* WCHAR */
|
---|
6243 |
|
---|
6244 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
|
---|
6245 |
|
---|
6246 | FREE_VARIABLES ();
|
---|
6247 | return mcnt;
|
---|
6248 | }
|
---|
6249 |
|
---|
6250 | /* Otherwise match next pattern command. */
|
---|
6251 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
---|
6252 | {
|
---|
6253 | /* Ignore these. Used to ignore the n of succeed_n's which
|
---|
6254 | currently have n == 0. */
|
---|
6255 | case no_op:
|
---|
6256 | DEBUG_PRINT1 ("EXECUTING no_op.\n");
|
---|
6257 | break;
|
---|
6258 |
|
---|
6259 | case succeed:
|
---|
6260 | DEBUG_PRINT1 ("EXECUTING succeed.\n");
|
---|
6261 | goto succeed_label;
|
---|
6262 |
|
---|
6263 | /* Match the next n pattern characters exactly. The following
|
---|
6264 | byte in the pattern defines n, and the n bytes after that
|
---|
6265 | are the characters to match. */
|
---|
6266 | case exactn:
|
---|
6267 | #ifdef MBS_SUPPORT
|
---|
6268 | case exactn_bin:
|
---|
6269 | #endif
|
---|
6270 | mcnt = *p++;
|
---|
6271 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
|
---|
6272 |
|
---|
6273 | /* This is written out as an if-else so we don't waste time
|
---|
6274 | testing `translate' inside the loop. */
|
---|
6275 | if (translate)
|
---|
6276 | {
|
---|
6277 | do
|
---|
6278 | {
|
---|
6279 | PREFETCH ();
|
---|
6280 | #ifdef WCHAR
|
---|
6281 | if (*d <= 0xff)
|
---|
6282 | {
|
---|
6283 | if ((UCHAR_T) translate[(unsigned char) *d++]
|
---|
6284 | != (UCHAR_T) *p++)
|
---|
6285 | goto fail;
|
---|
6286 | }
|
---|
6287 | else
|
---|
6288 | {
|
---|
6289 | if (*d++ != (CHAR_T) *p++)
|
---|
6290 | goto fail;
|
---|
6291 | }
|
---|
6292 | #else
|
---|
6293 | if ((UCHAR_T) translate[(unsigned char) *d++]
|
---|
6294 | != (UCHAR_T) *p++)
|
---|
6295 | goto fail;
|
---|
6296 | #endif /* WCHAR */
|
---|
6297 | }
|
---|
6298 | while (--mcnt);
|
---|
6299 | }
|
---|
6300 | else
|
---|
6301 | {
|
---|
6302 | do
|
---|
6303 | {
|
---|
6304 | PREFETCH ();
|
---|
6305 | if (*d++ != (CHAR_T) *p++) goto fail;
|
---|
6306 | }
|
---|
6307 | while (--mcnt);
|
---|
6308 | }
|
---|
6309 | SET_REGS_MATCHED ();
|
---|
6310 | break;
|
---|
6311 |
|
---|
6312 |
|
---|
6313 | /* Match any character except possibly a newline or a null. */
|
---|
6314 | case anychar:
|
---|
6315 | DEBUG_PRINT1 ("EXECUTING anychar.\n");
|
---|
6316 |
|
---|
6317 | PREFETCH ();
|
---|
6318 |
|
---|
6319 | if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
|
---|
6320 | || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
|
---|
6321 | goto fail;
|
---|
6322 |
|
---|
6323 | SET_REGS_MATCHED ();
|
---|
6324 | DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
|
---|
6325 | d++;
|
---|
6326 | break;
|
---|
6327 |
|
---|
6328 |
|
---|
6329 | case charset:
|
---|
6330 | case charset_not:
|
---|
6331 | {
|
---|
6332 | register UCHAR_T c;
|
---|
6333 | #ifdef WCHAR
|
---|
6334 | unsigned int i, char_class_length, coll_symbol_length,
|
---|
6335 | equiv_class_length, ranges_length, chars_length, length;
|
---|
6336 | CHAR_T *workp, *workp2, *charset_top;
|
---|
6337 | #define WORK_BUFFER_SIZE 128
|
---|
6338 | CHAR_T str_buf[WORK_BUFFER_SIZE];
|
---|
6339 | # ifdef _LIBC
|
---|
6340 | uint32_t nrules;
|
---|
6341 | # endif /* _LIBC */
|
---|
6342 | #endif /* WCHAR */
|
---|
6343 | boolean not = (re_opcode_t) *(p - 1) == charset_not;
|
---|
6344 |
|
---|
6345 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
|
---|
6346 | PREFETCH ();
|
---|
6347 | c = TRANSLATE (*d); /* The character to match. */
|
---|
6348 | #ifdef WCHAR
|
---|
6349 | # ifdef _LIBC
|
---|
6350 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
6351 | # endif /* _LIBC */
|
---|
6352 | charset_top = p - 1;
|
---|
6353 | char_class_length = *p++;
|
---|
6354 | coll_symbol_length = *p++;
|
---|
6355 | equiv_class_length = *p++;
|
---|
6356 | ranges_length = *p++;
|
---|
6357 | chars_length = *p++;
|
---|
6358 | /* p points charset[6], so the address of the next instruction
|
---|
6359 | (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
|
---|
6360 | where l=length of char_classes, m=length of collating_symbol,
|
---|
6361 | n=equivalence_class, o=length of char_range,
|
---|
6362 | p'=length of character. */
|
---|
6363 | workp = p;
|
---|
6364 | /* Update p to indicate the next instruction. */
|
---|
6365 | p += char_class_length + coll_symbol_length+ equiv_class_length +
|
---|
6366 | 2*ranges_length + chars_length;
|
---|
6367 |
|
---|
6368 | /* match with char_class? */
|
---|
6369 | for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
|
---|
6370 | {
|
---|
6371 | wctype_t wctype;
|
---|
6372 | uintptr_t alignedp = ((uintptr_t)workp
|
---|
6373 | + __alignof__(wctype_t) - 1)
|
---|
6374 | & ~(uintptr_t)(__alignof__(wctype_t) - 1);
|
---|
6375 | wctype = *((wctype_t*)alignedp);
|
---|
6376 | workp += CHAR_CLASS_SIZE;
|
---|
6377 | # ifdef _LIBC
|
---|
6378 | if (__iswctype((wint_t)c, wctype))
|
---|
6379 | goto char_set_matched;
|
---|
6380 | # else
|
---|
6381 | if (iswctype((wint_t)c, wctype))
|
---|
6382 | goto char_set_matched;
|
---|
6383 | # endif
|
---|
6384 | }
|
---|
6385 |
|
---|
6386 | /* match with collating_symbol? */
|
---|
6387 | # ifdef _LIBC
|
---|
6388 | if (nrules != 0)
|
---|
6389 | {
|
---|
6390 | const unsigned char *extra = (const unsigned char *)
|
---|
6391 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
---|
6392 |
|
---|
6393 | for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
|
---|
6394 | workp++)
|
---|
6395 | {
|
---|
6396 | int32_t *wextra;
|
---|
6397 | wextra = (int32_t*)(extra + *workp++);
|
---|
6398 | for (i = 0; i < *wextra; ++i)
|
---|
6399 | if (TRANSLATE(d[i]) != wextra[1 + i])
|
---|
6400 | break;
|
---|
6401 |
|
---|
6402 | if (i == *wextra)
|
---|
6403 | {
|
---|
6404 | /* Update d, however d will be incremented at
|
---|
6405 | char_set_matched:, we decrement d here. */
|
---|
6406 | d += i - 1;
|
---|
6407 | goto char_set_matched;
|
---|
6408 | }
|
---|
6409 | }
|
---|
6410 | }
|
---|
6411 | else /* (nrules == 0) */
|
---|
6412 | # endif
|
---|
6413 | /* If we can't look up collation data, we use wcscoll
|
---|
6414 | instead. */
|
---|
6415 | {
|
---|
6416 | for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
|
---|
6417 | {
|
---|
6418 | const CHAR_T *backup_d = d, *backup_dend = dend;
|
---|
6419 | # ifdef _LIBC
|
---|
6420 | length = __wcslen (workp);
|
---|
6421 | # else
|
---|
6422 | length = wcslen (workp);
|
---|
6423 | # endif
|
---|
6424 |
|
---|
6425 | /* If wcscoll(the collating symbol, whole string) > 0,
|
---|
6426 | any substring of the string never match with the
|
---|
6427 | collating symbol. */
|
---|
6428 | # ifdef _LIBC
|
---|
6429 | if (__wcscoll (workp, d) > 0)
|
---|
6430 | # else
|
---|
6431 | if (wcscoll (workp, d) > 0)
|
---|
6432 | # endif
|
---|
6433 | {
|
---|
6434 | workp += length + 1;
|
---|
6435 | continue;
|
---|
6436 | }
|
---|
6437 |
|
---|
6438 | /* First, we compare the collating symbol with
|
---|
6439 | the first character of the string.
|
---|
6440 | If it don't match, we add the next character to
|
---|
6441 | the compare buffer in turn. */
|
---|
6442 | for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
|
---|
6443 | {
|
---|
6444 | int match;
|
---|
6445 | if (d == dend)
|
---|
6446 | {
|
---|
6447 | if (dend == end_match_2)
|
---|
6448 | break;
|
---|
6449 | d = string2;
|
---|
6450 | dend = end_match_2;
|
---|
6451 | }
|
---|
6452 |
|
---|
6453 | /* add next character to the compare buffer. */
|
---|
6454 | str_buf[i] = TRANSLATE(*d);
|
---|
6455 | str_buf[i+1] = '\0';
|
---|
6456 |
|
---|
6457 | # ifdef _LIBC
|
---|
6458 | match = __wcscoll (workp, str_buf);
|
---|
6459 | # else
|
---|
6460 | match = wcscoll (workp, str_buf);
|
---|
6461 | # endif
|
---|
6462 | if (match == 0)
|
---|
6463 | goto char_set_matched;
|
---|
6464 |
|
---|
6465 | if (match < 0)
|
---|
6466 | /* (str_buf > workp) indicate (str_buf + X > workp),
|
---|
6467 | because for all X (str_buf + X > str_buf).
|
---|
6468 | So we don't need continue this loop. */
|
---|
6469 | break;
|
---|
6470 |
|
---|
6471 | /* Otherwise(str_buf < workp),
|
---|
6472 | (str_buf+next_character) may equals (workp).
|
---|
6473 | So we continue this loop. */
|
---|
6474 | }
|
---|
6475 | /* not matched */
|
---|
6476 | d = backup_d;
|
---|
6477 | dend = backup_dend;
|
---|
6478 | workp += length + 1;
|
---|
6479 | }
|
---|
6480 | }
|
---|
6481 | /* match with equivalence_class? */
|
---|
6482 | # ifdef _LIBC
|
---|
6483 | if (nrules != 0)
|
---|
6484 | {
|
---|
6485 | const CHAR_T *backup_d = d, *backup_dend = dend;
|
---|
6486 | /* Try to match the equivalence class against
|
---|
6487 | those known to the collate implementation. */
|
---|
6488 | const int32_t *table;
|
---|
6489 | const int32_t *weights;
|
---|
6490 | const int32_t *extra;
|
---|
6491 | const int32_t *indirect;
|
---|
6492 | int32_t idx, idx2;
|
---|
6493 | wint_t *cp;
|
---|
6494 | size_t len;
|
---|
6495 |
|
---|
6496 | /* This #include defines a local function! */
|
---|
6497 | # include <locale/weightwc.h>
|
---|
6498 |
|
---|
6499 | table = (const int32_t *)
|
---|
6500 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
|
---|
6501 | weights = (const wint_t *)
|
---|
6502 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
|
---|
6503 | extra = (const wint_t *)
|
---|
6504 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
|
---|
6505 | indirect = (const int32_t *)
|
---|
6506 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
|
---|
6507 |
|
---|
6508 | /* Write 1 collating element to str_buf, and
|
---|
6509 | get its index. */
|
---|
6510 | idx2 = 0;
|
---|
6511 |
|
---|
6512 | for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
|
---|
6513 | {
|
---|
6514 | cp = (wint_t*)str_buf;
|
---|
6515 | if (d == dend)
|
---|
6516 | {
|
---|
6517 | if (dend == end_match_2)
|
---|
6518 | break;
|
---|
6519 | d = string2;
|
---|
6520 | dend = end_match_2;
|
---|
6521 | }
|
---|
6522 | str_buf[i] = TRANSLATE(*(d+i));
|
---|
6523 | str_buf[i+1] = '\0'; /* sentinel */
|
---|
6524 | idx2 = findidx ((const wint_t**)&cp);
|
---|
6525 | }
|
---|
6526 |
|
---|
6527 | /* Update d, however d will be incremented at
|
---|
6528 | char_set_matched:, we decrement d here. */
|
---|
6529 | d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
|
---|
6530 | if (d >= dend)
|
---|
6531 | {
|
---|
6532 | if (dend == end_match_2)
|
---|
6533 | d = dend;
|
---|
6534 | else
|
---|
6535 | {
|
---|
6536 | d = string2;
|
---|
6537 | dend = end_match_2;
|
---|
6538 | }
|
---|
6539 | }
|
---|
6540 |
|
---|
6541 | len = weights[idx2];
|
---|
6542 |
|
---|
6543 | for (workp2 = workp + equiv_class_length ; workp < workp2 ;
|
---|
6544 | workp++)
|
---|
6545 | {
|
---|
6546 | idx = (int32_t)*workp;
|
---|
6547 | /* We already checked idx != 0 in regex_compile. */
|
---|
6548 |
|
---|
6549 | if (idx2 != 0 && len == weights[idx])
|
---|
6550 | {
|
---|
6551 | int cnt = 0;
|
---|
6552 | while (cnt < len && (weights[idx + 1 + cnt]
|
---|
6553 | == weights[idx2 + 1 + cnt]))
|
---|
6554 | ++cnt;
|
---|
6555 |
|
---|
6556 | if (cnt == len)
|
---|
6557 | goto char_set_matched;
|
---|
6558 | }
|
---|
6559 | }
|
---|
6560 | /* not matched */
|
---|
6561 | d = backup_d;
|
---|
6562 | dend = backup_dend;
|
---|
6563 | }
|
---|
6564 | else /* (nrules == 0) */
|
---|
6565 | # endif
|
---|
6566 | /* If we can't look up collation data, we use wcscoll
|
---|
6567 | instead. */
|
---|
6568 | {
|
---|
6569 | for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
|
---|
6570 | {
|
---|
6571 | const CHAR_T *backup_d = d, *backup_dend = dend;
|
---|
6572 | # ifdef _LIBC
|
---|
6573 | length = __wcslen (workp);
|
---|
6574 | # else
|
---|
6575 | length = wcslen (workp);
|
---|
6576 | # endif
|
---|
6577 |
|
---|
6578 | /* If wcscoll(the collating symbol, whole string) > 0,
|
---|
6579 | any substring of the string never match with the
|
---|
6580 | collating symbol. */
|
---|
6581 | # ifdef _LIBC
|
---|
6582 | if (__wcscoll (workp, d) > 0)
|
---|
6583 | # else
|
---|
6584 | if (wcscoll (workp, d) > 0)
|
---|
6585 | # endif
|
---|
6586 | {
|
---|
6587 | workp += length + 1;
|
---|
6588 | break;
|
---|
6589 | }
|
---|
6590 |
|
---|
6591 | /* First, we compare the equivalence class with
|
---|
6592 | the first character of the string.
|
---|
6593 | If it don't match, we add the next character to
|
---|
6594 | the compare buffer in turn. */
|
---|
6595 | for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
|
---|
6596 | {
|
---|
6597 | int match;
|
---|
6598 | if (d == dend)
|
---|
6599 | {
|
---|
6600 | if (dend == end_match_2)
|
---|
6601 | break;
|
---|
6602 | d = string2;
|
---|
6603 | dend = end_match_2;
|
---|
6604 | }
|
---|
6605 |
|
---|
6606 | /* add next character to the compare buffer. */
|
---|
6607 | str_buf[i] = TRANSLATE(*d);
|
---|
6608 | str_buf[i+1] = '\0';
|
---|
6609 |
|
---|
6610 | # ifdef _LIBC
|
---|
6611 | match = __wcscoll (workp, str_buf);
|
---|
6612 | # else
|
---|
6613 | match = wcscoll (workp, str_buf);
|
---|
6614 | # endif
|
---|
6615 |
|
---|
6616 | if (match == 0)
|
---|
6617 | goto char_set_matched;
|
---|
6618 |
|
---|
6619 | if (match < 0)
|
---|
6620 | /* (str_buf > workp) indicate (str_buf + X > workp),
|
---|
6621 | because for all X (str_buf + X > str_buf).
|
---|
6622 | So we don't need continue this loop. */
|
---|
6623 | break;
|
---|
6624 |
|
---|
6625 | /* Otherwise(str_buf < workp),
|
---|
6626 | (str_buf+next_character) may equals (workp).
|
---|
6627 | So we continue this loop. */
|
---|
6628 | }
|
---|
6629 | /* not matched */
|
---|
6630 | d = backup_d;
|
---|
6631 | dend = backup_dend;
|
---|
6632 | workp += length + 1;
|
---|
6633 | }
|
---|
6634 | }
|
---|
6635 |
|
---|
6636 | /* match with char_range? */
|
---|
6637 | # ifdef _LIBC
|
---|
6638 | if (nrules != 0)
|
---|
6639 | {
|
---|
6640 | uint32_t collseqval;
|
---|
6641 | const char *collseq = (const char *)
|
---|
6642 | _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
|
---|
6643 |
|
---|
6644 | collseqval = collseq_table_lookup (collseq, c);
|
---|
6645 |
|
---|
6646 | for (; workp < p - chars_length ;)
|
---|
6647 | {
|
---|
6648 | uint32_t start_val, end_val;
|
---|
6649 |
|
---|
6650 | /* We already compute the collation sequence value
|
---|
6651 | of the characters (or collating symbols). */
|
---|
6652 | start_val = (uint32_t) *workp++; /* range_start */
|
---|
6653 | end_val = (uint32_t) *workp++; /* range_end */
|
---|
6654 |
|
---|
6655 | if (start_val <= collseqval && collseqval <= end_val)
|
---|
6656 | goto char_set_matched;
|
---|
6657 | }
|
---|
6658 | }
|
---|
6659 | else
|
---|
6660 | # endif
|
---|
6661 | {
|
---|
6662 | /* We set range_start_char at str_buf[0], range_end_char
|
---|
6663 | at str_buf[4], and compared char at str_buf[2]. */
|
---|
6664 | str_buf[1] = 0;
|
---|
6665 | str_buf[2] = c;
|
---|
6666 | str_buf[3] = 0;
|
---|
6667 | str_buf[5] = 0;
|
---|
6668 | for (; workp < p - chars_length ;)
|
---|
6669 | {
|
---|
6670 | wchar_t *range_start_char, *range_end_char;
|
---|
6671 |
|
---|
6672 | /* match if (range_start_char <= c <= range_end_char). */
|
---|
6673 |
|
---|
6674 | /* If range_start(or end) < 0, we assume -range_start(end)
|
---|
6675 | is the offset of the collating symbol which is specified
|
---|
6676 | as the character of the range start(end). */
|
---|
6677 |
|
---|
6678 | /* range_start */
|
---|
6679 | if (*workp < 0)
|
---|
6680 | range_start_char = charset_top - (*workp++);
|
---|
6681 | else
|
---|
6682 | {
|
---|
6683 | str_buf[0] = *workp++;
|
---|
6684 | range_start_char = str_buf;
|
---|
6685 | }
|
---|
6686 |
|
---|
6687 | /* range_end */
|
---|
6688 | if (*workp < 0)
|
---|
6689 | range_end_char = charset_top - (*workp++);
|
---|
6690 | else
|
---|
6691 | {
|
---|
6692 | str_buf[4] = *workp++;
|
---|
6693 | range_end_char = str_buf + 4;
|
---|
6694 | }
|
---|
6695 |
|
---|
6696 | # ifdef _LIBC
|
---|
6697 | if (__wcscoll (range_start_char, str_buf+2) <= 0
|
---|
6698 | && __wcscoll (str_buf+2, range_end_char) <= 0)
|
---|
6699 | # else
|
---|
6700 | if (wcscoll (range_start_char, str_buf+2) <= 0
|
---|
6701 | && wcscoll (str_buf+2, range_end_char) <= 0)
|
---|
6702 | # endif
|
---|
6703 | goto char_set_matched;
|
---|
6704 | }
|
---|
6705 | }
|
---|
6706 |
|
---|
6707 | /* match with char? */
|
---|
6708 | for (; workp < p ; workp++)
|
---|
6709 | if (c == *workp)
|
---|
6710 | goto char_set_matched;
|
---|
6711 |
|
---|
6712 | not = !not;
|
---|
6713 |
|
---|
6714 | char_set_matched:
|
---|
6715 | if (not) goto fail;
|
---|
6716 | #else
|
---|
6717 | /* Cast to `unsigned' instead of `unsigned char' in case the
|
---|
6718 | bit list is a full 32 bytes long. */
|
---|
6719 | if (c < (unsigned) (*p * BYTEWIDTH)
|
---|
6720 | && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
---|
6721 | not = !not;
|
---|
6722 |
|
---|
6723 | p += 1 + *p;
|
---|
6724 |
|
---|
6725 | if (!not) goto fail;
|
---|
6726 | #undef WORK_BUFFER_SIZE
|
---|
6727 | #endif /* WCHAR */
|
---|
6728 | SET_REGS_MATCHED ();
|
---|
6729 | d++;
|
---|
6730 | break;
|
---|
6731 | }
|
---|
6732 |
|
---|
6733 |
|
---|
6734 | /* The beginning of a group is represented by start_memory.
|
---|
6735 | The arguments are the register number in the next byte, and the
|
---|
6736 | number of groups inner to this one in the next. The text
|
---|
6737 | matched within the group is recorded (in the internal
|
---|
6738 | registers data structure) under the register number. */
|
---|
6739 | case start_memory:
|
---|
6740 | DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
|
---|
6741 | (long int) *p, (long int) p[1]);
|
---|
6742 |
|
---|
6743 | /* Find out if this group can match the empty string. */
|
---|
6744 | p1 = p; /* To send to group_match_null_string_p. */
|
---|
6745 |
|
---|
6746 | if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
|
---|
6747 | REG_MATCH_NULL_STRING_P (reg_info[*p])
|
---|
6748 | = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
|
---|
6749 |
|
---|
6750 | /* Save the position in the string where we were the last time
|
---|
6751 | we were at this open-group operator in case the group is
|
---|
6752 | operated upon by a repetition operator, e.g., with `(a*)*b'
|
---|
6753 | against `ab'; then we want to ignore where we are now in
|
---|
6754 | the string in case this attempt to match fails. */
|
---|
6755 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
---|
6756 | ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
|
---|
6757 | : regstart[*p];
|
---|
6758 | DEBUG_PRINT2 (" old_regstart: %d\n",
|
---|
6759 | POINTER_TO_OFFSET (old_regstart[*p]));
|
---|
6760 |
|
---|
6761 | regstart[*p] = d;
|
---|
6762 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
|
---|
6763 |
|
---|
6764 | IS_ACTIVE (reg_info[*p]) = 1;
|
---|
6765 | MATCHED_SOMETHING (reg_info[*p]) = 0;
|
---|
6766 |
|
---|
6767 | /* Clear this whenever we change the register activity status. */
|
---|
6768 | set_regs_matched_done = 0;
|
---|
6769 |
|
---|
6770 | /* This is the new highest active register. */
|
---|
6771 | highest_active_reg = *p;
|
---|
6772 |
|
---|
6773 | /* If nothing was active before, this is the new lowest active
|
---|
6774 | register. */
|
---|
6775 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
---|
6776 | lowest_active_reg = *p;
|
---|
6777 |
|
---|
6778 | /* Move past the register number and inner group count. */
|
---|
6779 | p += 2;
|
---|
6780 | just_past_start_mem = p;
|
---|
6781 |
|
---|
6782 | break;
|
---|
6783 |
|
---|
6784 |
|
---|
6785 | /* The stop_memory opcode represents the end of a group. Its
|
---|
6786 | arguments are the same as start_memory's: the register
|
---|
6787 | number, and the number of inner groups. */
|
---|
6788 | case stop_memory:
|
---|
6789 | DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
|
---|
6790 | (long int) *p, (long int) p[1]);
|
---|
6791 |
|
---|
6792 | /* We need to save the string position the last time we were at
|
---|
6793 | this close-group operator in case the group is operated
|
---|
6794 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
|
---|
6795 | against `aba'; then we want to ignore where we are now in
|
---|
6796 | the string in case this attempt to match fails. */
|
---|
6797 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
---|
6798 | ? REG_UNSET (regend[*p]) ? d : regend[*p]
|
---|
6799 | : regend[*p];
|
---|
6800 | DEBUG_PRINT2 (" old_regend: %d\n",
|
---|
6801 | POINTER_TO_OFFSET (old_regend[*p]));
|
---|
6802 |
|
---|
6803 | regend[*p] = d;
|
---|
6804 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
|
---|
6805 |
|
---|
6806 | /* This register isn't active anymore. */
|
---|
6807 | IS_ACTIVE (reg_info[*p]) = 0;
|
---|
6808 |
|
---|
6809 | /* Clear this whenever we change the register activity status. */
|
---|
6810 | set_regs_matched_done = 0;
|
---|
6811 |
|
---|
6812 | /* If this was the only register active, nothing is active
|
---|
6813 | anymore. */
|
---|
6814 | if (lowest_active_reg == highest_active_reg)
|
---|
6815 | {
|
---|
6816 | lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
---|
6817 | highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
---|
6818 | }
|
---|
6819 | else
|
---|
6820 | { /* We must scan for the new highest active register, since
|
---|
6821 | it isn't necessarily one less than now: consider
|
---|
6822 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the
|
---|
6823 | new highest active register is 1. */
|
---|
6824 | UCHAR_T r = *p - 1;
|
---|
6825 | while (r > 0 && !IS_ACTIVE (reg_info[r]))
|
---|
6826 | r--;
|
---|
6827 |
|
---|
6828 | /* If we end up at register zero, that means that we saved
|
---|
6829 | the registers as the result of an `on_failure_jump', not
|
---|
6830 | a `start_memory', and we jumped to past the innermost
|
---|
6831 | `stop_memory'. For example, in ((.)*) we save
|
---|
6832 | registers 1 and 2 as a result of the *, but when we pop
|
---|
6833 | back to the second ), we are at the stop_memory 1.
|
---|
6834 | Thus, nothing is active. */
|
---|
6835 | if (r == 0)
|
---|
6836 | {
|
---|
6837 | lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
---|
6838 | highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
---|
6839 | }
|
---|
6840 | else
|
---|
6841 | highest_active_reg = r;
|
---|
6842 | }
|
---|
6843 |
|
---|
6844 | /* If just failed to match something this time around with a
|
---|
6845 | group that's operated on by a repetition operator, try to
|
---|
6846 | force exit from the ``loop'', and restore the register
|
---|
6847 | information for this group that we had before trying this
|
---|
6848 | last match. */
|
---|
6849 | if ((!MATCHED_SOMETHING (reg_info[*p])
|
---|
6850 | || just_past_start_mem == p - 1)
|
---|
6851 | && (p + 2) < pend)
|
---|
6852 | {
|
---|
6853 | boolean is_a_jump_n = false;
|
---|
6854 |
|
---|
6855 | p1 = p + 2;
|
---|
6856 | mcnt = 0;
|
---|
6857 | switch ((re_opcode_t) *p1++)
|
---|
6858 | {
|
---|
6859 | case jump_n:
|
---|
6860 | is_a_jump_n = true;
|
---|
6861 | case pop_failure_jump:
|
---|
6862 | case maybe_pop_jump:
|
---|
6863 | case jump:
|
---|
6864 | case dummy_failure_jump:
|
---|
6865 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
6866 | if (is_a_jump_n)
|
---|
6867 | p1 += OFFSET_ADDRESS_SIZE;
|
---|
6868 | break;
|
---|
6869 |
|
---|
6870 | default:
|
---|
6871 | /* do nothing */ ;
|
---|
6872 | }
|
---|
6873 | p1 += mcnt;
|
---|
6874 |
|
---|
6875 | /* If the next operation is a jump backwards in the pattern
|
---|
6876 | to an on_failure_jump right before the start_memory
|
---|
6877 | corresponding to this stop_memory, exit from the loop
|
---|
6878 | by forcing a failure after pushing on the stack the
|
---|
6879 | on_failure_jump's jump in the pattern, and d. */
|
---|
6880 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
|
---|
6881 | && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
|
---|
6882 | && p1[2+OFFSET_ADDRESS_SIZE] == *p)
|
---|
6883 | {
|
---|
6884 | /* If this group ever matched anything, then restore
|
---|
6885 | what its registers were before trying this last
|
---|
6886 | failed match, e.g., with `(a*)*b' against `ab' for
|
---|
6887 | regstart[1], and, e.g., with `((a*)*(b*)*)*'
|
---|
6888 | against `aba' for regend[3].
|
---|
6889 |
|
---|
6890 | Also restore the registers for inner groups for,
|
---|
6891 | e.g., `((a*)(b*))*' against `aba' (register 3 would
|
---|
6892 | otherwise get trashed). */
|
---|
6893 |
|
---|
6894 | if (EVER_MATCHED_SOMETHING (reg_info[*p]))
|
---|
6895 | {
|
---|
6896 | unsigned r;
|
---|
6897 |
|
---|
6898 | EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
|
---|
6899 |
|
---|
6900 | /* Restore this and inner groups' (if any) registers. */
|
---|
6901 | for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
|
---|
6902 | r++)
|
---|
6903 | {
|
---|
6904 | regstart[r] = old_regstart[r];
|
---|
6905 |
|
---|
6906 | /* xx why this test? */
|
---|
6907 | if (old_regend[r] >= regstart[r])
|
---|
6908 | regend[r] = old_regend[r];
|
---|
6909 | }
|
---|
6910 | }
|
---|
6911 | p1++;
|
---|
6912 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
6913 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
|
---|
6914 |
|
---|
6915 | goto fail;
|
---|
6916 | }
|
---|
6917 | }
|
---|
6918 |
|
---|
6919 | /* Move past the register number and the inner group count. */
|
---|
6920 | p += 2;
|
---|
6921 | break;
|
---|
6922 |
|
---|
6923 |
|
---|
6924 | /* \<digit> has been turned into a `duplicate' command which is
|
---|
6925 | followed by the numeric value of <digit> as the register number. */
|
---|
6926 | case duplicate:
|
---|
6927 | {
|
---|
6928 | register const CHAR_T *d2, *dend2;
|
---|
6929 | int regno = *p++; /* Get which register to match against. */
|
---|
6930 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
|
---|
6931 |
|
---|
6932 | /* Can't back reference a group which we've never matched. */
|
---|
6933 | if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
|
---|
6934 | goto fail;
|
---|
6935 |
|
---|
6936 | /* Where in input to try to start matching. */
|
---|
6937 | d2 = regstart[regno];
|
---|
6938 |
|
---|
6939 | /* Where to stop matching; if both the place to start and
|
---|
6940 | the place to stop matching are in the same string, then
|
---|
6941 | set to the place to stop, otherwise, for now have to use
|
---|
6942 | the end of the first string. */
|
---|
6943 |
|
---|
6944 | dend2 = ((FIRST_STRING_P (regstart[regno])
|
---|
6945 | == FIRST_STRING_P (regend[regno]))
|
---|
6946 | ? regend[regno] : end_match_1);
|
---|
6947 | for (;;)
|
---|
6948 | {
|
---|
6949 | /* If necessary, advance to next segment in register
|
---|
6950 | contents. */
|
---|
6951 | while (d2 == dend2)
|
---|
6952 | {
|
---|
6953 | if (dend2 == end_match_2) break;
|
---|
6954 | if (dend2 == regend[regno]) break;
|
---|
6955 |
|
---|
6956 | /* End of string1 => advance to string2. */
|
---|
6957 | d2 = string2;
|
---|
6958 | dend2 = regend[regno];
|
---|
6959 | }
|
---|
6960 | /* At end of register contents => success */
|
---|
6961 | if (d2 == dend2) break;
|
---|
6962 |
|
---|
6963 | /* If necessary, advance to next segment in data. */
|
---|
6964 | PREFETCH ();
|
---|
6965 |
|
---|
6966 | /* How many characters left in this segment to match. */
|
---|
6967 | mcnt = dend - d;
|
---|
6968 |
|
---|
6969 | /* Want how many consecutive characters we can match in
|
---|
6970 | one shot, so, if necessary, adjust the count. */
|
---|
6971 | if (mcnt > dend2 - d2)
|
---|
6972 | mcnt = dend2 - d2;
|
---|
6973 |
|
---|
6974 | /* Compare that many; failure if mismatch, else move
|
---|
6975 | past them. */
|
---|
6976 | if (translate
|
---|
6977 | ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
|
---|
6978 | : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
|
---|
6979 | goto fail;
|
---|
6980 | d += mcnt, d2 += mcnt;
|
---|
6981 |
|
---|
6982 | /* Do this because we've match some characters. */
|
---|
6983 | SET_REGS_MATCHED ();
|
---|
6984 | }
|
---|
6985 | }
|
---|
6986 | break;
|
---|
6987 |
|
---|
6988 |
|
---|
6989 | /* begline matches the empty string at the beginning of the string
|
---|
6990 | (unless `not_bol' is set in `bufp'), and, if
|
---|
6991 | `newline_anchor' is set, after newlines. */
|
---|
6992 | case begline:
|
---|
6993 | DEBUG_PRINT1 ("EXECUTING begline.\n");
|
---|
6994 |
|
---|
6995 | if (AT_STRINGS_BEG (d))
|
---|
6996 | {
|
---|
6997 | if (!bufp->not_bol) break;
|
---|
6998 | }
|
---|
6999 | else if (d[-1] == '\n' && bufp->newline_anchor)
|
---|
7000 | {
|
---|
7001 | break;
|
---|
7002 | }
|
---|
7003 | /* In all other cases, we fail. */
|
---|
7004 | goto fail;
|
---|
7005 |
|
---|
7006 |
|
---|
7007 | /* endline is the dual of begline. */
|
---|
7008 | case endline:
|
---|
7009 | DEBUG_PRINT1 ("EXECUTING endline.\n");
|
---|
7010 |
|
---|
7011 | if (AT_STRINGS_END (d))
|
---|
7012 | {
|
---|
7013 | if (!bufp->not_eol) break;
|
---|
7014 | }
|
---|
7015 |
|
---|
7016 | /* We have to ``prefetch'' the next character. */
|
---|
7017 | else if ((d == end1 ? *string2 : *d) == '\n'
|
---|
7018 | && bufp->newline_anchor)
|
---|
7019 | {
|
---|
7020 | break;
|
---|
7021 | }
|
---|
7022 | goto fail;
|
---|
7023 |
|
---|
7024 |
|
---|
7025 | /* Match at the very beginning of the data. */
|
---|
7026 | case begbuf:
|
---|
7027 | DEBUG_PRINT1 ("EXECUTING begbuf.\n");
|
---|
7028 | if (AT_STRINGS_BEG (d))
|
---|
7029 | break;
|
---|
7030 | goto fail;
|
---|
7031 |
|
---|
7032 |
|
---|
7033 | /* Match at the very end of the data. */
|
---|
7034 | case endbuf:
|
---|
7035 | DEBUG_PRINT1 ("EXECUTING endbuf.\n");
|
---|
7036 | if (AT_STRINGS_END (d))
|
---|
7037 | break;
|
---|
7038 | goto fail;
|
---|
7039 |
|
---|
7040 |
|
---|
7041 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It
|
---|
7042 | pushes NULL as the value for the string on the stack. Then
|
---|
7043 | `pop_failure_point' will keep the current value for the
|
---|
7044 | string, instead of restoring it. To see why, consider
|
---|
7045 | matching `foo\nbar' against `.*\n'. The .* matches the foo;
|
---|
7046 | then the . fails against the \n. But the next thing we want
|
---|
7047 | to do is match the \n against the \n; if we restored the
|
---|
7048 | string value, we would be back at the foo.
|
---|
7049 |
|
---|
7050 | Because this is used only in specific cases, we don't need to
|
---|
7051 | check all the things that `on_failure_jump' does, to make
|
---|
7052 | sure the right things get saved on the stack. Hence we don't
|
---|
7053 | share its code. The only reason to push anything on the
|
---|
7054 | stack at all is that otherwise we would have to change
|
---|
7055 | `anychar's code to do something besides goto fail in this
|
---|
7056 | case; that seems worse than this. */
|
---|
7057 | case on_failure_keep_string_jump:
|
---|
7058 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
|
---|
7059 |
|
---|
7060 | EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
---|
7061 | #ifdef _LIBC
|
---|
7062 | DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
|
---|
7063 | #else
|
---|
7064 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
|
---|
7065 | #endif
|
---|
7066 |
|
---|
7067 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
|
---|
7068 | break;
|
---|
7069 |
|
---|
7070 |
|
---|
7071 | /* Uses of on_failure_jump:
|
---|
7072 |
|
---|
7073 | Each alternative starts with an on_failure_jump that points
|
---|
7074 | to the beginning of the next alternative. Each alternative
|
---|
7075 | except the last ends with a jump that in effect jumps past
|
---|
7076 | the rest of the alternatives. (They really jump to the
|
---|
7077 | ending jump of the following alternative, because tensioning
|
---|
7078 | these jumps is a hassle.)
|
---|
7079 |
|
---|
7080 | Repeats start with an on_failure_jump that points past both
|
---|
7081 | the repetition text and either the following jump or
|
---|
7082 | pop_failure_jump back to this on_failure_jump. */
|
---|
7083 | case on_failure_jump:
|
---|
7084 | on_failure:
|
---|
7085 | DEBUG_PRINT1 ("EXECUTING on_failure_jump");
|
---|
7086 |
|
---|
7087 | EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
---|
7088 | #ifdef _LIBC
|
---|
7089 | DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
|
---|
7090 | #else
|
---|
7091 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
|
---|
7092 | #endif
|
---|
7093 |
|
---|
7094 | /* If this on_failure_jump comes right before a group (i.e.,
|
---|
7095 | the original * applied to a group), save the information
|
---|
7096 | for that group and all inner ones, so that if we fail back
|
---|
7097 | to this point, the group's information will be correct.
|
---|
7098 | For example, in \(a*\)*\1, we need the preceding group,
|
---|
7099 | and in \(zz\(a*\)b*\)\2, we need the inner group. */
|
---|
7100 |
|
---|
7101 | /* We can't use `p' to check ahead because we push
|
---|
7102 | a failure point to `p + mcnt' after we do this. */
|
---|
7103 | p1 = p;
|
---|
7104 |
|
---|
7105 | /* We need to skip no_op's before we look for the
|
---|
7106 | start_memory in case this on_failure_jump is happening as
|
---|
7107 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
|
---|
7108 | against aba. */
|
---|
7109 | while (p1 < pend && (re_opcode_t) *p1 == no_op)
|
---|
7110 | p1++;
|
---|
7111 |
|
---|
7112 | if (p1 < pend && (re_opcode_t) *p1 == start_memory)
|
---|
7113 | {
|
---|
7114 | /* We have a new highest active register now. This will
|
---|
7115 | get reset at the start_memory we are about to get to,
|
---|
7116 | but we will have saved all the registers relevant to
|
---|
7117 | this repetition op, as described above. */
|
---|
7118 | highest_active_reg = *(p1 + 1) + *(p1 + 2);
|
---|
7119 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
---|
7120 | lowest_active_reg = *(p1 + 1);
|
---|
7121 | }
|
---|
7122 |
|
---|
7123 | DEBUG_PRINT1 (":\n");
|
---|
7124 | PUSH_FAILURE_POINT (p + mcnt, d, -2);
|
---|
7125 | break;
|
---|
7126 |
|
---|
7127 |
|
---|
7128 | /* A smart repeat ends with `maybe_pop_jump'.
|
---|
7129 | We change it to either `pop_failure_jump' or `jump'. */
|
---|
7130 | case maybe_pop_jump:
|
---|
7131 | EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
---|
7132 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
|
---|
7133 | {
|
---|
7134 | register UCHAR_T *p2 = p;
|
---|
7135 |
|
---|
7136 | /* Compare the beginning of the repeat with what in the
|
---|
7137 | pattern follows its end. If we can establish that there
|
---|
7138 | is nothing that they would both match, i.e., that we
|
---|
7139 | would have to backtrack because of (as in, e.g., `a*a')
|
---|
7140 | then we can change to pop_failure_jump, because we'll
|
---|
7141 | never have to backtrack.
|
---|
7142 |
|
---|
7143 | This is not true in the case of alternatives: in
|
---|
7144 | `(a|ab)*' we do need to backtrack to the `ab' alternative
|
---|
7145 | (e.g., if the string was `ab'). But instead of trying to
|
---|
7146 | detect that here, the alternative has put on a dummy
|
---|
7147 | failure point which is what we will end up popping. */
|
---|
7148 |
|
---|
7149 | /* Skip over open/close-group commands.
|
---|
7150 | If what follows this loop is a ...+ construct,
|
---|
7151 | look at what begins its body, since we will have to
|
---|
7152 | match at least one of that. */
|
---|
7153 | while (1)
|
---|
7154 | {
|
---|
7155 | if (p2 + 2 < pend
|
---|
7156 | && ((re_opcode_t) *p2 == stop_memory
|
---|
7157 | || (re_opcode_t) *p2 == start_memory))
|
---|
7158 | p2 += 3;
|
---|
7159 | else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
|
---|
7160 | && (re_opcode_t) *p2 == dummy_failure_jump)
|
---|
7161 | p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
|
---|
7162 | else
|
---|
7163 | break;
|
---|
7164 | }
|
---|
7165 |
|
---|
7166 | p1 = p + mcnt;
|
---|
7167 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
|
---|
7168 | to the `maybe_finalize_jump' of this case. Examine what
|
---|
7169 | follows. */
|
---|
7170 |
|
---|
7171 | /* If we're at the end of the pattern, we can change. */
|
---|
7172 | if (p2 == pend)
|
---|
7173 | {
|
---|
7174 | /* Consider what happens when matching ":\(.*\)"
|
---|
7175 | against ":/". I don't really understand this code
|
---|
7176 | yet. */
|
---|
7177 | p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
|
---|
7178 | pop_failure_jump;
|
---|
7179 | DEBUG_PRINT1
|
---|
7180 | (" End of pattern: change to `pop_failure_jump'.\n");
|
---|
7181 | }
|
---|
7182 |
|
---|
7183 | else if ((re_opcode_t) *p2 == exactn
|
---|
7184 | #ifdef MBS_SUPPORT
|
---|
7185 | || (re_opcode_t) *p2 == exactn_bin
|
---|
7186 | #endif
|
---|
7187 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
|
---|
7188 | {
|
---|
7189 | register UCHAR_T c
|
---|
7190 | = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
|
---|
7191 |
|
---|
7192 | if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
|
---|
7193 | #ifdef MBS_SUPPORT
|
---|
7194 | || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
|
---|
7195 | #endif
|
---|
7196 | ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
|
---|
7197 | {
|
---|
7198 | p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
|
---|
7199 | pop_failure_jump;
|
---|
7200 | #ifdef WCHAR
|
---|
7201 | DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
|
---|
7202 | (wint_t) c,
|
---|
7203 | (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
|
---|
7204 | #else
|
---|
7205 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
|
---|
7206 | (char) c,
|
---|
7207 | (char) p1[3+OFFSET_ADDRESS_SIZE]);
|
---|
7208 | #endif
|
---|
7209 | }
|
---|
7210 |
|
---|
7211 | #ifndef WCHAR
|
---|
7212 | else if ((re_opcode_t) p1[3] == charset
|
---|
7213 | || (re_opcode_t) p1[3] == charset_not)
|
---|
7214 | {
|
---|
7215 | int not = (re_opcode_t) p1[3] == charset_not;
|
---|
7216 |
|
---|
7217 | if (c < (unsigned) (p1[4] * BYTEWIDTH)
|
---|
7218 | && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
---|
7219 | not = !not;
|
---|
7220 |
|
---|
7221 | /* `not' is equal to 1 if c would match, which means
|
---|
7222 | that we can't change to pop_failure_jump. */
|
---|
7223 | if (!not)
|
---|
7224 | {
|
---|
7225 | p[-3] = (unsigned char) pop_failure_jump;
|
---|
7226 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
---|
7227 | }
|
---|
7228 | }
|
---|
7229 | #endif /* not WCHAR */
|
---|
7230 | }
|
---|
7231 | #ifndef WCHAR
|
---|
7232 | else if ((re_opcode_t) *p2 == charset)
|
---|
7233 | {
|
---|
7234 | /* We win if the first character of the loop is not part
|
---|
7235 | of the charset. */
|
---|
7236 | if ((re_opcode_t) p1[3] == exactn
|
---|
7237 | && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
|
---|
7238 | && (p2[2 + p1[5] / BYTEWIDTH]
|
---|
7239 | & (1 << (p1[5] % BYTEWIDTH)))))
|
---|
7240 | {
|
---|
7241 | p[-3] = (unsigned char) pop_failure_jump;
|
---|
7242 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
---|
7243 | }
|
---|
7244 |
|
---|
7245 | else if ((re_opcode_t) p1[3] == charset_not)
|
---|
7246 | {
|
---|
7247 | int idx;
|
---|
7248 | /* We win if the charset_not inside the loop
|
---|
7249 | lists every character listed in the charset after. */
|
---|
7250 | for (idx = 0; idx < (int) p2[1]; idx++)
|
---|
7251 | if (! (p2[2 + idx] == 0
|
---|
7252 | || (idx < (int) p1[4]
|
---|
7253 | && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
|
---|
7254 | break;
|
---|
7255 |
|
---|
7256 | if (idx == p2[1])
|
---|
7257 | {
|
---|
7258 | p[-3] = (unsigned char) pop_failure_jump;
|
---|
7259 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
---|
7260 | }
|
---|
7261 | }
|
---|
7262 | else if ((re_opcode_t) p1[3] == charset)
|
---|
7263 | {
|
---|
7264 | int idx;
|
---|
7265 | /* We win if the charset inside the loop
|
---|
7266 | has no overlap with the one after the loop. */
|
---|
7267 | for (idx = 0;
|
---|
7268 | idx < (int) p2[1] && idx < (int) p1[4];
|
---|
7269 | idx++)
|
---|
7270 | if ((p2[2 + idx] & p1[5 + idx]) != 0)
|
---|
7271 | break;
|
---|
7272 |
|
---|
7273 | if (idx == p2[1] || idx == p1[4])
|
---|
7274 | {
|
---|
7275 | p[-3] = (unsigned char) pop_failure_jump;
|
---|
7276 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
|
---|
7277 | }
|
---|
7278 | }
|
---|
7279 | }
|
---|
7280 | #endif /* not WCHAR */
|
---|
7281 | }
|
---|
7282 | p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
|
---|
7283 | if ((re_opcode_t) p[-1] != pop_failure_jump)
|
---|
7284 | {
|
---|
7285 | p[-1] = (UCHAR_T) jump;
|
---|
7286 | DEBUG_PRINT1 (" Match => jump.\n");
|
---|
7287 | goto unconditional_jump;
|
---|
7288 | }
|
---|
7289 | /* Note fall through. */
|
---|
7290 |
|
---|
7291 |
|
---|
7292 | /* The end of a simple repeat has a pop_failure_jump back to
|
---|
7293 | its matching on_failure_jump, where the latter will push a
|
---|
7294 | failure point. The pop_failure_jump takes off failure
|
---|
7295 | points put on by this pop_failure_jump's matching
|
---|
7296 | on_failure_jump; we got through the pattern to here from the
|
---|
7297 | matching on_failure_jump, so didn't fail. */
|
---|
7298 | case pop_failure_jump:
|
---|
7299 | {
|
---|
7300 | /* We need to pass separate storage for the lowest and
|
---|
7301 | highest registers, even though we don't care about the
|
---|
7302 | actual values. Otherwise, we will restore only one
|
---|
7303 | register from the stack, since lowest will == highest in
|
---|
7304 | `pop_failure_point'. */
|
---|
7305 | active_reg_t dummy_low_reg, dummy_high_reg;
|
---|
7306 | UCHAR_T *pdummy = NULL;
|
---|
7307 | const CHAR_T *sdummy = NULL;
|
---|
7308 |
|
---|
7309 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
|
---|
7310 | POP_FAILURE_POINT (sdummy, pdummy,
|
---|
7311 | dummy_low_reg, dummy_high_reg,
|
---|
7312 | reg_dummy, reg_dummy, reg_info_dummy);
|
---|
7313 | }
|
---|
7314 | /* Note fall through. */
|
---|
7315 |
|
---|
7316 | unconditional_jump:
|
---|
7317 | #ifdef _LIBC
|
---|
7318 | DEBUG_PRINT2 ("\n%p: ", p);
|
---|
7319 | #else
|
---|
7320 | DEBUG_PRINT2 ("\n0x%x: ", p);
|
---|
7321 | #endif
|
---|
7322 | /* Note fall through. */
|
---|
7323 |
|
---|
7324 | /* Unconditionally jump (without popping any failure points). */
|
---|
7325 | case jump:
|
---|
7326 | EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
|
---|
7327 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
|
---|
7328 | p += mcnt; /* Do the jump. */
|
---|
7329 | #ifdef _LIBC
|
---|
7330 | DEBUG_PRINT2 ("(to %p).\n", p);
|
---|
7331 | #else
|
---|
7332 | DEBUG_PRINT2 ("(to 0x%x).\n", p);
|
---|
7333 | #endif
|
---|
7334 | break;
|
---|
7335 |
|
---|
7336 |
|
---|
7337 | /* We need this opcode so we can detect where alternatives end
|
---|
7338 | in `group_match_null_string_p' et al. */
|
---|
7339 | case jump_past_alt:
|
---|
7340 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
|
---|
7341 | goto unconditional_jump;
|
---|
7342 |
|
---|
7343 |
|
---|
7344 | /* Normally, the on_failure_jump pushes a failure point, which
|
---|
7345 | then gets popped at pop_failure_jump. We will end up at
|
---|
7346 | pop_failure_jump, also, and with a pattern of, say, `a+', we
|
---|
7347 | are skipping over the on_failure_jump, so we have to push
|
---|
7348 | something meaningless for pop_failure_jump to pop. */
|
---|
7349 | case dummy_failure_jump:
|
---|
7350 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
|
---|
7351 | /* It doesn't matter what we push for the string here. What
|
---|
7352 | the code at `fail' tests is the value for the pattern. */
|
---|
7353 | PUSH_FAILURE_POINT (NULL, NULL, -2);
|
---|
7354 | goto unconditional_jump;
|
---|
7355 |
|
---|
7356 |
|
---|
7357 | /* At the end of an alternative, we need to push a dummy failure
|
---|
7358 | point in case we are followed by a `pop_failure_jump', because
|
---|
7359 | we don't want the failure point for the alternative to be
|
---|
7360 | popped. For example, matching `(a|ab)*' against `aab'
|
---|
7361 | requires that we match the `ab' alternative. */
|
---|
7362 | case push_dummy_failure:
|
---|
7363 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
|
---|
7364 | /* See comments just above at `dummy_failure_jump' about the
|
---|
7365 | two zeroes. */
|
---|
7366 | PUSH_FAILURE_POINT (NULL, NULL, -2);
|
---|
7367 | break;
|
---|
7368 |
|
---|
7369 | /* Have to succeed matching what follows at least n times.
|
---|
7370 | After that, handle like `on_failure_jump'. */
|
---|
7371 | case succeed_n:
|
---|
7372 | EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
|
---|
7373 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
|
---|
7374 |
|
---|
7375 | assert (mcnt >= 0);
|
---|
7376 | /* Originally, this is how many times we HAVE to succeed. */
|
---|
7377 | if (mcnt > 0)
|
---|
7378 | {
|
---|
7379 | mcnt--;
|
---|
7380 | p += OFFSET_ADDRESS_SIZE;
|
---|
7381 | STORE_NUMBER_AND_INCR (p, mcnt);
|
---|
7382 | #ifdef _LIBC
|
---|
7383 | DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
|
---|
7384 | , mcnt);
|
---|
7385 | #else
|
---|
7386 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
|
---|
7387 | , mcnt);
|
---|
7388 | #endif
|
---|
7389 | }
|
---|
7390 | else if (mcnt == 0)
|
---|
7391 | {
|
---|
7392 | #ifdef _LIBC
|
---|
7393 | DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
|
---|
7394 | p + OFFSET_ADDRESS_SIZE);
|
---|
7395 | #else
|
---|
7396 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
|
---|
7397 | p + OFFSET_ADDRESS_SIZE);
|
---|
7398 | #endif /* _LIBC */
|
---|
7399 |
|
---|
7400 | #ifdef WCHAR
|
---|
7401 | p[1] = (UCHAR_T) no_op;
|
---|
7402 | #else
|
---|
7403 | p[2] = (UCHAR_T) no_op;
|
---|
7404 | p[3] = (UCHAR_T) no_op;
|
---|
7405 | #endif /* WCHAR */
|
---|
7406 | goto on_failure;
|
---|
7407 | }
|
---|
7408 | break;
|
---|
7409 |
|
---|
7410 | case jump_n:
|
---|
7411 | EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
|
---|
7412 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
|
---|
7413 |
|
---|
7414 | /* Originally, this is how many times we CAN jump. */
|
---|
7415 | if (mcnt)
|
---|
7416 | {
|
---|
7417 | mcnt--;
|
---|
7418 | STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
|
---|
7419 |
|
---|
7420 | #ifdef _LIBC
|
---|
7421 | DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
|
---|
7422 | mcnt);
|
---|
7423 | #else
|
---|
7424 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
|
---|
7425 | mcnt);
|
---|
7426 | #endif /* _LIBC */
|
---|
7427 | goto unconditional_jump;
|
---|
7428 | }
|
---|
7429 | /* If don't have to jump any more, skip over the rest of command. */
|
---|
7430 | else
|
---|
7431 | p += 2 * OFFSET_ADDRESS_SIZE;
|
---|
7432 | break;
|
---|
7433 |
|
---|
7434 | case set_number_at:
|
---|
7435 | {
|
---|
7436 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
|
---|
7437 |
|
---|
7438 | EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
---|
7439 | p1 = p + mcnt;
|
---|
7440 | EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
---|
7441 | #ifdef _LIBC
|
---|
7442 | DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
|
---|
7443 | #else
|
---|
7444 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
|
---|
7445 | #endif
|
---|
7446 | STORE_NUMBER (p1, mcnt);
|
---|
7447 | break;
|
---|
7448 | }
|
---|
7449 |
|
---|
7450 | #if 0
|
---|
7451 | /* The DEC Alpha C compiler 3.x generates incorrect code for the
|
---|
7452 | test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
|
---|
7453 | AT_WORD_BOUNDARY, so this code is disabled. Expanding the
|
---|
7454 | macro and introducing temporary variables works around the bug. */
|
---|
7455 |
|
---|
7456 | case wordbound:
|
---|
7457 | DEBUG_PRINT1 ("EXECUTING wordbound.\n");
|
---|
7458 | if (AT_WORD_BOUNDARY (d))
|
---|
7459 | break;
|
---|
7460 | goto fail;
|
---|
7461 |
|
---|
7462 | case notwordbound:
|
---|
7463 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
|
---|
7464 | if (AT_WORD_BOUNDARY (d))
|
---|
7465 | goto fail;
|
---|
7466 | break;
|
---|
7467 | #else
|
---|
7468 | case wordbound:
|
---|
7469 | {
|
---|
7470 | boolean prevchar, thischar;
|
---|
7471 |
|
---|
7472 | DEBUG_PRINT1 ("EXECUTING wordbound.\n");
|
---|
7473 | if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
|
---|
7474 | break;
|
---|
7475 |
|
---|
7476 | prevchar = WORDCHAR_P (d - 1);
|
---|
7477 | thischar = WORDCHAR_P (d);
|
---|
7478 | if (prevchar != thischar)
|
---|
7479 | break;
|
---|
7480 | goto fail;
|
---|
7481 | }
|
---|
7482 |
|
---|
7483 | case notwordbound:
|
---|
7484 | {
|
---|
7485 | boolean prevchar, thischar;
|
---|
7486 |
|
---|
7487 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
|
---|
7488 | if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
|
---|
7489 | goto fail;
|
---|
7490 |
|
---|
7491 | prevchar = WORDCHAR_P (d - 1);
|
---|
7492 | thischar = WORDCHAR_P (d);
|
---|
7493 | if (prevchar != thischar)
|
---|
7494 | goto fail;
|
---|
7495 | break;
|
---|
7496 | }
|
---|
7497 | #endif
|
---|
7498 |
|
---|
7499 | case wordbeg:
|
---|
7500 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
|
---|
7501 | if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
|
---|
7502 | && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
|
---|
7503 | break;
|
---|
7504 | goto fail;
|
---|
7505 |
|
---|
7506 | case wordend:
|
---|
7507 | DEBUG_PRINT1 ("EXECUTING wordend.\n");
|
---|
7508 | if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
|
---|
7509 | && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
|
---|
7510 | break;
|
---|
7511 | goto fail;
|
---|
7512 |
|
---|
7513 | #ifdef emacs
|
---|
7514 | case before_dot:
|
---|
7515 | DEBUG_PRINT1 ("EXECUTING before_dot.\n");
|
---|
7516 | if (PTR_CHAR_POS ((unsigned char *) d) >= point)
|
---|
7517 | goto fail;
|
---|
7518 | break;
|
---|
7519 |
|
---|
7520 | case at_dot:
|
---|
7521 | DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
---|
7522 | if (PTR_CHAR_POS ((unsigned char *) d) != point)
|
---|
7523 | goto fail;
|
---|
7524 | break;
|
---|
7525 |
|
---|
7526 | case after_dot:
|
---|
7527 | DEBUG_PRINT1 ("EXECUTING after_dot.\n");
|
---|
7528 | if (PTR_CHAR_POS ((unsigned char *) d) <= point)
|
---|
7529 | goto fail;
|
---|
7530 | break;
|
---|
7531 |
|
---|
7532 | case syntaxspec:
|
---|
7533 | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
|
---|
7534 | mcnt = *p++;
|
---|
7535 | goto matchsyntax;
|
---|
7536 |
|
---|
7537 | case wordchar:
|
---|
7538 | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
|
---|
7539 | mcnt = (int) Sword;
|
---|
7540 | matchsyntax:
|
---|
7541 | PREFETCH ();
|
---|
7542 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
|
---|
7543 | d++;
|
---|
7544 | if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
|
---|
7545 | goto fail;
|
---|
7546 | SET_REGS_MATCHED ();
|
---|
7547 | break;
|
---|
7548 |
|
---|
7549 | case notsyntaxspec:
|
---|
7550 | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
|
---|
7551 | mcnt = *p++;
|
---|
7552 | goto matchnotsyntax;
|
---|
7553 |
|
---|
7554 | case notwordchar:
|
---|
7555 | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
|
---|
7556 | mcnt = (int) Sword;
|
---|
7557 | matchnotsyntax:
|
---|
7558 | PREFETCH ();
|
---|
7559 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
|
---|
7560 | d++;
|
---|
7561 | if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
|
---|
7562 | goto fail;
|
---|
7563 | SET_REGS_MATCHED ();
|
---|
7564 | break;
|
---|
7565 |
|
---|
7566 | #else /* not emacs */
|
---|
7567 | case wordchar:
|
---|
7568 | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
|
---|
7569 | PREFETCH ();
|
---|
7570 | if (!WORDCHAR_P (d))
|
---|
7571 | goto fail;
|
---|
7572 | SET_REGS_MATCHED ();
|
---|
7573 | d++;
|
---|
7574 | break;
|
---|
7575 |
|
---|
7576 | case notwordchar:
|
---|
7577 | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
|
---|
7578 | PREFETCH ();
|
---|
7579 | if (WORDCHAR_P (d))
|
---|
7580 | goto fail;
|
---|
7581 | SET_REGS_MATCHED ();
|
---|
7582 | d++;
|
---|
7583 | break;
|
---|
7584 | #endif /* not emacs */
|
---|
7585 |
|
---|
7586 | default:
|
---|
7587 | abort ();
|
---|
7588 | }
|
---|
7589 | continue; /* Successfully executed one pattern command; keep going. */
|
---|
7590 |
|
---|
7591 |
|
---|
7592 | /* We goto here if a matching operation fails. */
|
---|
7593 | fail:
|
---|
7594 | if (!FAIL_STACK_EMPTY ())
|
---|
7595 | { /* A restart point is known. Restore to that state. */
|
---|
7596 | DEBUG_PRINT1 ("\nFAIL:\n");
|
---|
7597 | POP_FAILURE_POINT (d, p,
|
---|
7598 | lowest_active_reg, highest_active_reg,
|
---|
7599 | regstart, regend, reg_info);
|
---|
7600 |
|
---|
7601 | /* If this failure point is a dummy, try the next one. */
|
---|
7602 | if (!p)
|
---|
7603 | goto fail;
|
---|
7604 |
|
---|
7605 | /* If we failed to the end of the pattern, don't examine *p. */
|
---|
7606 | assert (p <= pend);
|
---|
7607 | if (p < pend)
|
---|
7608 | {
|
---|
7609 | boolean is_a_jump_n = false;
|
---|
7610 |
|
---|
7611 | /* If failed to a backwards jump that's part of a repetition
|
---|
7612 | loop, need to pop this failure point and use the next one. */
|
---|
7613 | switch ((re_opcode_t) *p)
|
---|
7614 | {
|
---|
7615 | case jump_n:
|
---|
7616 | is_a_jump_n = true;
|
---|
7617 | case maybe_pop_jump:
|
---|
7618 | case pop_failure_jump:
|
---|
7619 | case jump:
|
---|
7620 | p1 = p + 1;
|
---|
7621 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
7622 | p1 += mcnt;
|
---|
7623 |
|
---|
7624 | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
|
---|
7625 | || (!is_a_jump_n
|
---|
7626 | && (re_opcode_t) *p1 == on_failure_jump))
|
---|
7627 | goto fail;
|
---|
7628 | break;
|
---|
7629 | default:
|
---|
7630 | /* do nothing */ ;
|
---|
7631 | }
|
---|
7632 | }
|
---|
7633 |
|
---|
7634 | if (d >= string1 && d <= end1)
|
---|
7635 | dend = end_match_1;
|
---|
7636 | }
|
---|
7637 | else
|
---|
7638 | break; /* Matching at this starting point really fails. */
|
---|
7639 | } /* for (;;) */
|
---|
7640 |
|
---|
7641 | if (best_regs_set)
|
---|
7642 | goto restore_best_regs;
|
---|
7643 |
|
---|
7644 | FREE_VARIABLES ();
|
---|
7645 |
|
---|
7646 | return -1; /* Failure to match. */
|
---|
7647 | } /* re_match_2 */
|
---|
7648 | |
---|
7649 |
|
---|
7650 | /* Subroutine definitions for re_match_2. */
|
---|
7651 |
|
---|
7652 |
|
---|
7653 | /* We are passed P pointing to a register number after a start_memory.
|
---|
7654 |
|
---|
7655 | Return true if the pattern up to the corresponding stop_memory can
|
---|
7656 | match the empty string, and false otherwise.
|
---|
7657 |
|
---|
7658 | If we find the matching stop_memory, sets P to point to one past its number.
|
---|
7659 | Otherwise, sets P to an undefined byte less than or equal to END.
|
---|
7660 |
|
---|
7661 | We don't handle duplicates properly (yet). */
|
---|
7662 |
|
---|
7663 | static boolean
|
---|
7664 | PREFIX(group_match_null_string_p) (p, end, reg_info)
|
---|
7665 | UCHAR_T **p, *end;
|
---|
7666 | PREFIX(register_info_type) *reg_info;
|
---|
7667 | {
|
---|
7668 | int mcnt;
|
---|
7669 | /* Point to after the args to the start_memory. */
|
---|
7670 | UCHAR_T *p1 = *p + 2;
|
---|
7671 |
|
---|
7672 | while (p1 < end)
|
---|
7673 | {
|
---|
7674 | /* Skip over opcodes that can match nothing, and return true or
|
---|
7675 | false, as appropriate, when we get to one that can't, or to the
|
---|
7676 | matching stop_memory. */
|
---|
7677 |
|
---|
7678 | switch ((re_opcode_t) *p1)
|
---|
7679 | {
|
---|
7680 | /* Could be either a loop or a series of alternatives. */
|
---|
7681 | case on_failure_jump:
|
---|
7682 | p1++;
|
---|
7683 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
7684 |
|
---|
7685 | /* If the next operation is not a jump backwards in the
|
---|
7686 | pattern. */
|
---|
7687 |
|
---|
7688 | if (mcnt >= 0)
|
---|
7689 | {
|
---|
7690 | /* Go through the on_failure_jumps of the alternatives,
|
---|
7691 | seeing if any of the alternatives cannot match nothing.
|
---|
7692 | The last alternative starts with only a jump,
|
---|
7693 | whereas the rest start with on_failure_jump and end
|
---|
7694 | with a jump, e.g., here is the pattern for `a|b|c':
|
---|
7695 |
|
---|
7696 | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
|
---|
7697 | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
|
---|
7698 | /exactn/1/c
|
---|
7699 |
|
---|
7700 | So, we have to first go through the first (n-1)
|
---|
7701 | alternatives and then deal with the last one separately. */
|
---|
7702 |
|
---|
7703 |
|
---|
7704 | /* Deal with the first (n-1) alternatives, which start
|
---|
7705 | with an on_failure_jump (see above) that jumps to right
|
---|
7706 | past a jump_past_alt. */
|
---|
7707 |
|
---|
7708 | while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
|
---|
7709 | jump_past_alt)
|
---|
7710 | {
|
---|
7711 | /* `mcnt' holds how many bytes long the alternative
|
---|
7712 | is, including the ending `jump_past_alt' and
|
---|
7713 | its number. */
|
---|
7714 |
|
---|
7715 | if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
|
---|
7716 | (1 + OFFSET_ADDRESS_SIZE),
|
---|
7717 | reg_info))
|
---|
7718 | return false;
|
---|
7719 |
|
---|
7720 | /* Move to right after this alternative, including the
|
---|
7721 | jump_past_alt. */
|
---|
7722 | p1 += mcnt;
|
---|
7723 |
|
---|
7724 | /* Break if it's the beginning of an n-th alternative
|
---|
7725 | that doesn't begin with an on_failure_jump. */
|
---|
7726 | if ((re_opcode_t) *p1 != on_failure_jump)
|
---|
7727 | break;
|
---|
7728 |
|
---|
7729 | /* Still have to check that it's not an n-th
|
---|
7730 | alternative that starts with an on_failure_jump. */
|
---|
7731 | p1++;
|
---|
7732 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
7733 | if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
|
---|
7734 | jump_past_alt)
|
---|
7735 | {
|
---|
7736 | /* Get to the beginning of the n-th alternative. */
|
---|
7737 | p1 -= 1 + OFFSET_ADDRESS_SIZE;
|
---|
7738 | break;
|
---|
7739 | }
|
---|
7740 | }
|
---|
7741 |
|
---|
7742 | /* Deal with the last alternative: go back and get number
|
---|
7743 | of the `jump_past_alt' just before it. `mcnt' contains
|
---|
7744 | the length of the alternative. */
|
---|
7745 | EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
|
---|
7746 |
|
---|
7747 | if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
|
---|
7748 | return false;
|
---|
7749 |
|
---|
7750 | p1 += mcnt; /* Get past the n-th alternative. */
|
---|
7751 | } /* if mcnt > 0 */
|
---|
7752 | break;
|
---|
7753 |
|
---|
7754 |
|
---|
7755 | case stop_memory:
|
---|
7756 | assert (p1[1] == **p);
|
---|
7757 | *p = p1 + 2;
|
---|
7758 | return true;
|
---|
7759 |
|
---|
7760 |
|
---|
7761 | default:
|
---|
7762 | if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
|
---|
7763 | return false;
|
---|
7764 | }
|
---|
7765 | } /* while p1 < end */
|
---|
7766 |
|
---|
7767 | return false;
|
---|
7768 | } /* group_match_null_string_p */
|
---|
7769 |
|
---|
7770 |
|
---|
7771 | /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
|
---|
7772 | It expects P to be the first byte of a single alternative and END one
|
---|
7773 | byte past the last. The alternative can contain groups. */
|
---|
7774 |
|
---|
7775 | static boolean
|
---|
7776 | PREFIX(alt_match_null_string_p) (p, end, reg_info)
|
---|
7777 | UCHAR_T *p, *end;
|
---|
7778 | PREFIX(register_info_type) *reg_info;
|
---|
7779 | {
|
---|
7780 | int mcnt;
|
---|
7781 | UCHAR_T *p1 = p;
|
---|
7782 |
|
---|
7783 | while (p1 < end)
|
---|
7784 | {
|
---|
7785 | /* Skip over opcodes that can match nothing, and break when we get
|
---|
7786 | to one that can't. */
|
---|
7787 |
|
---|
7788 | switch ((re_opcode_t) *p1)
|
---|
7789 | {
|
---|
7790 | /* It's a loop. */
|
---|
7791 | case on_failure_jump:
|
---|
7792 | p1++;
|
---|
7793 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
7794 | p1 += mcnt;
|
---|
7795 | break;
|
---|
7796 |
|
---|
7797 | default:
|
---|
7798 | if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
|
---|
7799 | return false;
|
---|
7800 | }
|
---|
7801 | } /* while p1 < end */
|
---|
7802 |
|
---|
7803 | return true;
|
---|
7804 | } /* alt_match_null_string_p */
|
---|
7805 |
|
---|
7806 |
|
---|
7807 | /* Deals with the ops common to group_match_null_string_p and
|
---|
7808 | alt_match_null_string_p.
|
---|
7809 |
|
---|
7810 | Sets P to one after the op and its arguments, if any. */
|
---|
7811 |
|
---|
7812 | static boolean
|
---|
7813 | PREFIX(common_op_match_null_string_p) (p, end, reg_info)
|
---|
7814 | UCHAR_T **p, *end;
|
---|
7815 | PREFIX(register_info_type) *reg_info;
|
---|
7816 | {
|
---|
7817 | int mcnt;
|
---|
7818 | boolean ret;
|
---|
7819 | int reg_no;
|
---|
7820 | UCHAR_T *p1 = *p;
|
---|
7821 |
|
---|
7822 | switch ((re_opcode_t) *p1++)
|
---|
7823 | {
|
---|
7824 | case no_op:
|
---|
7825 | case begline:
|
---|
7826 | case endline:
|
---|
7827 | case begbuf:
|
---|
7828 | case endbuf:
|
---|
7829 | case wordbeg:
|
---|
7830 | case wordend:
|
---|
7831 | case wordbound:
|
---|
7832 | case notwordbound:
|
---|
7833 | #ifdef emacs
|
---|
7834 | case before_dot:
|
---|
7835 | case at_dot:
|
---|
7836 | case after_dot:
|
---|
7837 | #endif
|
---|
7838 | break;
|
---|
7839 |
|
---|
7840 | case start_memory:
|
---|
7841 | reg_no = *p1;
|
---|
7842 | assert (reg_no > 0 && reg_no <= MAX_REGNUM);
|
---|
7843 | ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
|
---|
7844 |
|
---|
7845 | /* Have to set this here in case we're checking a group which
|
---|
7846 | contains a group and a back reference to it. */
|
---|
7847 |
|
---|
7848 | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
|
---|
7849 | REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
|
---|
7850 |
|
---|
7851 | if (!ret)
|
---|
7852 | return false;
|
---|
7853 | break;
|
---|
7854 |
|
---|
7855 | /* If this is an optimized succeed_n for zero times, make the jump. */
|
---|
7856 | case jump:
|
---|
7857 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
7858 | if (mcnt >= 0)
|
---|
7859 | p1 += mcnt;
|
---|
7860 | else
|
---|
7861 | return false;
|
---|
7862 | break;
|
---|
7863 |
|
---|
7864 | case succeed_n:
|
---|
7865 | /* Get to the number of times to succeed. */
|
---|
7866 | p1 += OFFSET_ADDRESS_SIZE;
|
---|
7867 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
7868 |
|
---|
7869 | if (mcnt == 0)
|
---|
7870 | {
|
---|
7871 | p1 -= 2 * OFFSET_ADDRESS_SIZE;
|
---|
7872 | EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
---|
7873 | p1 += mcnt;
|
---|
7874 | }
|
---|
7875 | else
|
---|
7876 | return false;
|
---|
7877 | break;
|
---|
7878 |
|
---|
7879 | case duplicate:
|
---|
7880 | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
|
---|
7881 | return false;
|
---|
7882 | break;
|
---|
7883 |
|
---|
7884 | case set_number_at:
|
---|
7885 | p1 += 2 * OFFSET_ADDRESS_SIZE;
|
---|
7886 |
|
---|
7887 | default:
|
---|
7888 | /* All other opcodes mean we cannot match the empty string. */
|
---|
7889 | return false;
|
---|
7890 | }
|
---|
7891 |
|
---|
7892 | *p = p1;
|
---|
7893 | return true;
|
---|
7894 | } /* common_op_match_null_string_p */
|
---|
7895 |
|
---|
7896 |
|
---|
7897 | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
|
---|
7898 | bytes; nonzero otherwise. */
|
---|
7899 |
|
---|
7900 | static int
|
---|
7901 | PREFIX(bcmp_translate) (s1, s2, len, translate)
|
---|
7902 | const CHAR_T *s1, *s2;
|
---|
7903 | register int len;
|
---|
7904 | RE_TRANSLATE_TYPE translate;
|
---|
7905 | {
|
---|
7906 | register const UCHAR_T *p1 = (const UCHAR_T *) s1;
|
---|
7907 | register const UCHAR_T *p2 = (const UCHAR_T *) s2;
|
---|
7908 | while (len)
|
---|
7909 | {
|
---|
7910 | #ifdef WCHAR
|
---|
7911 | if (((*p1<=0xff)?translate[*p1++]:*p1++)
|
---|
7912 | != ((*p2<=0xff)?translate[*p2++]:*p2++))
|
---|
7913 | return 1;
|
---|
7914 | #else /* BYTE */
|
---|
7915 | if (translate[*p1++] != translate[*p2++]) return 1;
|
---|
7916 | #endif /* WCHAR */
|
---|
7917 | len--;
|
---|
7918 | }
|
---|
7919 | return 0;
|
---|
7920 | }
|
---|
7921 | |
---|
7922 |
|
---|
7923 |
|
---|
7924 | #else /* not INSIDE_RECURSION */
|
---|
7925 |
|
---|
7926 | /* Entry points for GNU code. */
|
---|
7927 |
|
---|
7928 | /* re_compile_pattern is the GNU regular expression compiler: it
|
---|
7929 | compiles PATTERN (of length SIZE) and puts the result in BUFP.
|
---|
7930 | Returns 0 if the pattern was valid, otherwise an error string.
|
---|
7931 |
|
---|
7932 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
---|
7933 | are set in BUFP on entry.
|
---|
7934 |
|
---|
7935 | We call regex_compile to do the actual compilation. */
|
---|
7936 |
|
---|
7937 | const char *
|
---|
7938 | re_compile_pattern (pattern, length, bufp)
|
---|
7939 | const char *pattern;
|
---|
7940 | size_t length;
|
---|
7941 | struct re_pattern_buffer *bufp;
|
---|
7942 | {
|
---|
7943 | reg_errcode_t ret;
|
---|
7944 |
|
---|
7945 | /* GNU code is written to assume at least RE_NREGS registers will be set
|
---|
7946 | (and at least one extra will be -1). */
|
---|
7947 | bufp->regs_allocated = REGS_UNALLOCATED;
|
---|
7948 |
|
---|
7949 | /* And GNU code determines whether or not to get register information
|
---|
7950 | by passing null for the REGS argument to re_match, etc., not by
|
---|
7951 | setting no_sub. */
|
---|
7952 | bufp->no_sub = 0;
|
---|
7953 |
|
---|
7954 | /* Match anchors at newline. */
|
---|
7955 | bufp->newline_anchor = 1;
|
---|
7956 |
|
---|
7957 | # ifdef MBS_SUPPORT
|
---|
7958 | if (MB_CUR_MAX != 1)
|
---|
7959 | ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
|
---|
7960 | else
|
---|
7961 | # endif
|
---|
7962 | ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
|
---|
7963 |
|
---|
7964 | if (!ret)
|
---|
7965 | return NULL;
|
---|
7966 | return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
|
---|
7967 | }
|
---|
7968 | #ifdef _LIBC
|
---|
7969 | weak_alias (__re_compile_pattern, re_compile_pattern)
|
---|
7970 | #endif
|
---|
7971 | |
---|
7972 |
|
---|
7973 | /* Entry points compatible with 4.2 BSD regex library. We don't define
|
---|
7974 | them unless specifically requested. */
|
---|
7975 |
|
---|
7976 | #if defined _REGEX_RE_COMP || defined _LIBC
|
---|
7977 |
|
---|
7978 | /* BSD has one and only one pattern buffer. */
|
---|
7979 | static struct re_pattern_buffer re_comp_buf;
|
---|
7980 |
|
---|
7981 | char *
|
---|
7982 | #ifdef _LIBC
|
---|
7983 | /* Make these definitions weak in libc, so POSIX programs can redefine
|
---|
7984 | these names if they don't use our functions, and still use
|
---|
7985 | regcomp/regexec below without link errors. */
|
---|
7986 | weak_function
|
---|
7987 | #endif
|
---|
7988 | re_comp (s)
|
---|
7989 | const char *s;
|
---|
7990 | {
|
---|
7991 | reg_errcode_t ret;
|
---|
7992 |
|
---|
7993 | if (!s)
|
---|
7994 | {
|
---|
7995 | if (!re_comp_buf.buffer)
|
---|
7996 | return gettext ("No previous regular expression");
|
---|
7997 | return 0;
|
---|
7998 | }
|
---|
7999 |
|
---|
8000 | if (!re_comp_buf.buffer)
|
---|
8001 | {
|
---|
8002 | re_comp_buf.buffer = (unsigned char *) malloc (200);
|
---|
8003 | if (re_comp_buf.buffer == NULL)
|
---|
8004 | return (char *) gettext (re_error_msgid
|
---|
8005 | + re_error_msgid_idx[(int) REG_ESPACE]);
|
---|
8006 | re_comp_buf.allocated = 200;
|
---|
8007 |
|
---|
8008 | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
|
---|
8009 | if (re_comp_buf.fastmap == NULL)
|
---|
8010 | return (char *) gettext (re_error_msgid
|
---|
8011 | + re_error_msgid_idx[(int) REG_ESPACE]);
|
---|
8012 | }
|
---|
8013 |
|
---|
8014 | /* Since `re_exec' always passes NULL for the `regs' argument, we
|
---|
8015 | don't need to initialize the pattern buffer fields which affect it. */
|
---|
8016 |
|
---|
8017 | /* Match anchors at newlines. */
|
---|
8018 | re_comp_buf.newline_anchor = 1;
|
---|
8019 |
|
---|
8020 | # ifdef MBS_SUPPORT
|
---|
8021 | if (MB_CUR_MAX != 1)
|
---|
8022 | ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
|
---|
8023 | else
|
---|
8024 | # endif
|
---|
8025 | ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
|
---|
8026 |
|
---|
8027 | if (!ret)
|
---|
8028 | return NULL;
|
---|
8029 |
|
---|
8030 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
---|
8031 | return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
|
---|
8032 | }
|
---|
8033 |
|
---|
8034 |
|
---|
8035 | int
|
---|
8036 | #ifdef _LIBC
|
---|
8037 | weak_function
|
---|
8038 | #endif
|
---|
8039 | re_exec (s)
|
---|
8040 | const char *s;
|
---|
8041 | {
|
---|
8042 | const int len = strlen (s);
|
---|
8043 | return
|
---|
8044 | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
|
---|
8045 | }
|
---|
8046 |
|
---|
8047 | #endif /* _REGEX_RE_COMP */
|
---|
8048 | |
---|
8049 |
|
---|
8050 | /* POSIX.2 functions. Don't define these for Emacs. */
|
---|
8051 |
|
---|
8052 | #ifndef emacs
|
---|
8053 |
|
---|
8054 | /* regcomp takes a regular expression as a string and compiles it.
|
---|
8055 |
|
---|
8056 | PREG is a regex_t *. We do not expect any fields to be initialized,
|
---|
8057 | since POSIX says we shouldn't. Thus, we set
|
---|
8058 |
|
---|
8059 | `buffer' to the compiled pattern;
|
---|
8060 | `used' to the length of the compiled pattern;
|
---|
8061 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
---|
8062 | REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
---|
8063 | RE_SYNTAX_POSIX_BASIC;
|
---|
8064 | `newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
---|
8065 | `fastmap' to an allocated space for the fastmap;
|
---|
8066 | `fastmap_accurate' to zero;
|
---|
8067 | `re_nsub' to the number of subexpressions in PATTERN.
|
---|
8068 |
|
---|
8069 | PATTERN is the address of the pattern string.
|
---|
8070 |
|
---|
8071 | CFLAGS is a series of bits which affect compilation.
|
---|
8072 |
|
---|
8073 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
---|
8074 | use POSIX basic syntax.
|
---|
8075 |
|
---|
8076 | If REG_NEWLINE is set, then . and [^...] don't match newline.
|
---|
8077 | Also, regexec will try a match beginning after every newline.
|
---|
8078 |
|
---|
8079 | If REG_ICASE is set, then we considers upper- and lowercase
|
---|
8080 | versions of letters to be equivalent when matching.
|
---|
8081 |
|
---|
8082 | If REG_NOSUB is set, then when PREG is passed to regexec, that
|
---|
8083 | routine will report only success or failure, and nothing about the
|
---|
8084 | registers.
|
---|
8085 |
|
---|
8086 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
---|
8087 | the return codes and their meanings.) */
|
---|
8088 |
|
---|
8089 | int
|
---|
8090 | regcomp (preg, pattern, cflags)
|
---|
8091 | regex_t *preg;
|
---|
8092 | const char *pattern;
|
---|
8093 | int cflags;
|
---|
8094 | {
|
---|
8095 | reg_errcode_t ret;
|
---|
8096 | reg_syntax_t syntax
|
---|
8097 | = (cflags & REG_EXTENDED) ?
|
---|
8098 | RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
|
---|
8099 |
|
---|
8100 | /* regex_compile will allocate the space for the compiled pattern. */
|
---|
8101 | preg->buffer = 0;
|
---|
8102 | preg->allocated = 0;
|
---|
8103 | preg->used = 0;
|
---|
8104 |
|
---|
8105 | /* Try to allocate space for the fastmap. */
|
---|
8106 | preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
|
---|
8107 |
|
---|
8108 | if (cflags & REG_ICASE)
|
---|
8109 | {
|
---|
8110 | unsigned i;
|
---|
8111 |
|
---|
8112 | preg->translate
|
---|
8113 | = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
|
---|
8114 | * sizeof (*(RE_TRANSLATE_TYPE)0));
|
---|
8115 | if (preg->translate == NULL)
|
---|
8116 | return (int) REG_ESPACE;
|
---|
8117 |
|
---|
8118 | /* Map uppercase characters to corresponding lowercase ones. */
|
---|
8119 | for (i = 0; i < CHAR_SET_SIZE; i++)
|
---|
8120 | preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
|
---|
8121 | }
|
---|
8122 | else
|
---|
8123 | preg->translate = NULL;
|
---|
8124 |
|
---|
8125 | /* If REG_NEWLINE is set, newlines are treated differently. */
|
---|
8126 | if (cflags & REG_NEWLINE)
|
---|
8127 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
---|
8128 | syntax &= ~RE_DOT_NEWLINE;
|
---|
8129 | syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
---|
8130 | /* It also changes the matching behavior. */
|
---|
8131 | preg->newline_anchor = 1;
|
---|
8132 | }
|
---|
8133 | else
|
---|
8134 | preg->newline_anchor = 0;
|
---|
8135 |
|
---|
8136 | preg->no_sub = !!(cflags & REG_NOSUB);
|
---|
8137 |
|
---|
8138 | /* POSIX says a null character in the pattern terminates it, so we
|
---|
8139 | can use strlen here in compiling the pattern. */
|
---|
8140 | # ifdef MBS_SUPPORT
|
---|
8141 | if (MB_CUR_MAX != 1)
|
---|
8142 | ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
|
---|
8143 | else
|
---|
8144 | # endif
|
---|
8145 | ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
|
---|
8146 |
|
---|
8147 | /* POSIX doesn't distinguish between an unmatched open-group and an
|
---|
8148 | unmatched close-group: both are REG_EPAREN. */
|
---|
8149 | if (ret == REG_ERPAREN) ret = REG_EPAREN;
|
---|
8150 |
|
---|
8151 | if (ret == REG_NOERROR && preg->fastmap)
|
---|
8152 | {
|
---|
8153 | /* Compute the fastmap now, since regexec cannot modify the pattern
|
---|
8154 | buffer. */
|
---|
8155 | if (re_compile_fastmap (preg) == -2)
|
---|
8156 | {
|
---|
8157 | /* Some error occurred while computing the fastmap, just forget
|
---|
8158 | about it. */
|
---|
8159 | free (preg->fastmap);
|
---|
8160 | preg->fastmap = NULL;
|
---|
8161 | }
|
---|
8162 | }
|
---|
8163 |
|
---|
8164 | return (int) ret;
|
---|
8165 | }
|
---|
8166 | #ifdef _LIBC
|
---|
8167 | weak_alias (__regcomp, regcomp)
|
---|
8168 | #endif
|
---|
8169 |
|
---|
8170 |
|
---|
8171 | /* regexec searches for a given pattern, specified by PREG, in the
|
---|
8172 | string STRING.
|
---|
8173 |
|
---|
8174 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
---|
8175 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
---|
8176 | least NMATCH elements, and we set them to the offsets of the
|
---|
8177 | corresponding matched substrings.
|
---|
8178 |
|
---|
8179 | EFLAGS specifies `execution flags' which affect matching: if
|
---|
8180 | REG_NOTBOL is set, then ^ does not match at the beginning of the
|
---|
8181 | string; if REG_NOTEOL is set, then $ does not match at the end.
|
---|
8182 |
|
---|
8183 | We return 0 if we find a match and REG_NOMATCH if not. */
|
---|
8184 |
|
---|
8185 | int
|
---|
8186 | regexec (preg, string, nmatch, pmatch, eflags)
|
---|
8187 | const regex_t *preg;
|
---|
8188 | const char *string;
|
---|
8189 | size_t nmatch;
|
---|
8190 | regmatch_t pmatch[];
|
---|
8191 | int eflags;
|
---|
8192 | {
|
---|
8193 | int ret;
|
---|
8194 | struct re_registers regs;
|
---|
8195 | regex_t private_preg;
|
---|
8196 | int len = strlen (string);
|
---|
8197 | boolean want_reg_info = !preg->no_sub && nmatch > 0;
|
---|
8198 |
|
---|
8199 | private_preg = *preg;
|
---|
8200 |
|
---|
8201 | private_preg.not_bol = !!(eflags & REG_NOTBOL);
|
---|
8202 | private_preg.not_eol = !!(eflags & REG_NOTEOL);
|
---|
8203 |
|
---|
8204 | /* The user has told us exactly how many registers to return
|
---|
8205 | information about, via `nmatch'. We have to pass that on to the
|
---|
8206 | matching routines. */
|
---|
8207 | private_preg.regs_allocated = REGS_FIXED;
|
---|
8208 |
|
---|
8209 | if (want_reg_info)
|
---|
8210 | {
|
---|
8211 | regs.num_regs = nmatch;
|
---|
8212 | regs.start = TALLOC (nmatch * 2, regoff_t);
|
---|
8213 | if (regs.start == NULL)
|
---|
8214 | return (int) REG_NOMATCH;
|
---|
8215 | regs.end = regs.start + nmatch;
|
---|
8216 | }
|
---|
8217 |
|
---|
8218 | /* Perform the searching operation. */
|
---|
8219 | ret = re_search (&private_preg, string, len,
|
---|
8220 | /* start: */ 0, /* range: */ len,
|
---|
8221 | want_reg_info ? ®s : (struct re_registers *) 0);
|
---|
8222 |
|
---|
8223 | /* Copy the register information to the POSIX structure. */
|
---|
8224 | if (want_reg_info)
|
---|
8225 | {
|
---|
8226 | if (ret >= 0)
|
---|
8227 | {
|
---|
8228 | unsigned r;
|
---|
8229 |
|
---|
8230 | for (r = 0; r < nmatch; r++)
|
---|
8231 | {
|
---|
8232 | pmatch[r].rm_so = regs.start[r];
|
---|
8233 | pmatch[r].rm_eo = regs.end[r];
|
---|
8234 | }
|
---|
8235 | }
|
---|
8236 |
|
---|
8237 | /* If we needed the temporary register info, free the space now. */
|
---|
8238 | free (regs.start);
|
---|
8239 | }
|
---|
8240 |
|
---|
8241 | /* We want zero return to mean success, unlike `re_search'. */
|
---|
8242 | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
|
---|
8243 | }
|
---|
8244 | #ifdef _LIBC
|
---|
8245 | weak_alias (__regexec, regexec)
|
---|
8246 | #endif
|
---|
8247 |
|
---|
8248 |
|
---|
8249 | /* Returns a message corresponding to an error code, ERRCODE, returned
|
---|
8250 | from either regcomp or regexec. We don't use PREG here. */
|
---|
8251 |
|
---|
8252 | size_t
|
---|
8253 | regerror (errcode, preg, errbuf, errbuf_size)
|
---|
8254 | int errcode;
|
---|
8255 | const regex_t *preg;
|
---|
8256 | char *errbuf;
|
---|
8257 | size_t errbuf_size;
|
---|
8258 | {
|
---|
8259 | const char *msg;
|
---|
8260 | size_t msg_size;
|
---|
8261 |
|
---|
8262 | if (errcode < 0
|
---|
8263 | || errcode >= (int) (sizeof (re_error_msgid_idx)
|
---|
8264 | / sizeof (re_error_msgid_idx[0])))
|
---|
8265 | /* Only error codes returned by the rest of the code should be passed
|
---|
8266 | to this routine. If we are given anything else, or if other regex
|
---|
8267 | code generates an invalid error code, then the program has a bug.
|
---|
8268 | Dump core so we can fix it. */
|
---|
8269 | abort ();
|
---|
8270 |
|
---|
8271 | msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
|
---|
8272 |
|
---|
8273 | msg_size = strlen (msg) + 1; /* Includes the null. */
|
---|
8274 |
|
---|
8275 | if (errbuf_size != 0)
|
---|
8276 | {
|
---|
8277 | if (msg_size > errbuf_size)
|
---|
8278 | {
|
---|
8279 | #if defined HAVE_MEMPCPY || defined _LIBC
|
---|
8280 | *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
|
---|
8281 | #else
|
---|
8282 | memcpy (errbuf, msg, errbuf_size - 1);
|
---|
8283 | errbuf[errbuf_size - 1] = 0;
|
---|
8284 | #endif
|
---|
8285 | }
|
---|
8286 | else
|
---|
8287 | memcpy (errbuf, msg, msg_size);
|
---|
8288 | }
|
---|
8289 |
|
---|
8290 | return msg_size;
|
---|
8291 | }
|
---|
8292 | #ifdef _LIBC
|
---|
8293 | weak_alias (__regerror, regerror)
|
---|
8294 | #endif
|
---|
8295 |
|
---|
8296 |
|
---|
8297 | /* Free dynamically allocated space used by PREG. */
|
---|
8298 |
|
---|
8299 | void
|
---|
8300 | regfree (preg)
|
---|
8301 | regex_t *preg;
|
---|
8302 | {
|
---|
8303 | if (preg->buffer != NULL)
|
---|
8304 | free (preg->buffer);
|
---|
8305 | preg->buffer = NULL;
|
---|
8306 |
|
---|
8307 | preg->allocated = 0;
|
---|
8308 | preg->used = 0;
|
---|
8309 |
|
---|
8310 | if (preg->fastmap != NULL)
|
---|
8311 | free (preg->fastmap);
|
---|
8312 | preg->fastmap = NULL;
|
---|
8313 | preg->fastmap_accurate = 0;
|
---|
8314 |
|
---|
8315 | if (preg->translate != NULL)
|
---|
8316 | free (preg->translate);
|
---|
8317 | preg->translate = NULL;
|
---|
8318 | }
|
---|
8319 | #ifdef _LIBC
|
---|
8320 | weak_alias (__regfree, regfree)
|
---|
8321 | #endif
|
---|
8322 |
|
---|
8323 | #endif /* not emacs */
|
---|
8324 |
|
---|
8325 | #endif /* not INSIDE_RECURSION */
|
---|
8326 |
|
---|
8327 | |
---|
8328 |
|
---|
8329 | #undef STORE_NUMBER
|
---|
8330 | #undef STORE_NUMBER_AND_INCR
|
---|
8331 | #undef EXTRACT_NUMBER
|
---|
8332 | #undef EXTRACT_NUMBER_AND_INCR
|
---|
8333 |
|
---|
8334 | #undef DEBUG_PRINT_COMPILED_PATTERN
|
---|
8335 | #undef DEBUG_PRINT_DOUBLE_STRING
|
---|
8336 |
|
---|
8337 | #undef INIT_FAIL_STACK
|
---|
8338 | #undef RESET_FAIL_STACK
|
---|
8339 | #undef DOUBLE_FAIL_STACK
|
---|
8340 | #undef PUSH_PATTERN_OP
|
---|
8341 | #undef PUSH_FAILURE_POINTER
|
---|
8342 | #undef PUSH_FAILURE_INT
|
---|
8343 | #undef PUSH_FAILURE_ELT
|
---|
8344 | #undef POP_FAILURE_POINTER
|
---|
8345 | #undef POP_FAILURE_INT
|
---|
8346 | #undef POP_FAILURE_ELT
|
---|
8347 | #undef DEBUG_PUSH
|
---|
8348 | #undef DEBUG_POP
|
---|
8349 | #undef PUSH_FAILURE_POINT
|
---|
8350 | #undef POP_FAILURE_POINT
|
---|
8351 |
|
---|
8352 | #undef REG_UNSET_VALUE
|
---|
8353 | #undef REG_UNSET
|
---|
8354 |
|
---|
8355 | #undef PATFETCH
|
---|
8356 | #undef PATFETCH_RAW
|
---|
8357 | #undef PATUNFETCH
|
---|
8358 | #undef TRANSLATE
|
---|
8359 |
|
---|
8360 | #undef INIT_BUF_SIZE
|
---|
8361 | #undef GET_BUFFER_SPACE
|
---|
8362 | #undef BUF_PUSH
|
---|
8363 | #undef BUF_PUSH_2
|
---|
8364 | #undef BUF_PUSH_3
|
---|
8365 | #undef STORE_JUMP
|
---|
8366 | #undef STORE_JUMP2
|
---|
8367 | #undef INSERT_JUMP
|
---|
8368 | #undef INSERT_JUMP2
|
---|
8369 | #undef EXTEND_BUFFER
|
---|
8370 | #undef GET_UNSIGNED_NUMBER
|
---|
8371 | #undef FREE_STACK_RETURN
|
---|
8372 |
|
---|
8373 | # undef POINTER_TO_OFFSET
|
---|
8374 | # undef MATCHING_IN_FRST_STRING
|
---|
8375 | # undef PREFETCH
|
---|
8376 | # undef AT_STRINGS_BEG
|
---|
8377 | # undef AT_STRINGS_END
|
---|
8378 | # undef WORDCHAR_P
|
---|
8379 | # undef FREE_VAR
|
---|
8380 | # undef FREE_VARIABLES
|
---|
8381 | # undef NO_HIGHEST_ACTIVE_REG
|
---|
8382 | # undef NO_LOWEST_ACTIVE_REG
|
---|
8383 |
|
---|
8384 | # undef CHAR_T
|
---|
8385 | # undef UCHAR_T
|
---|
8386 | # undef COMPILED_BUFFER_VAR
|
---|
8387 | # undef OFFSET_ADDRESS_SIZE
|
---|
8388 | # undef CHAR_CLASS_SIZE
|
---|
8389 | # undef PREFIX
|
---|
8390 | # undef ARG_PREFIX
|
---|
8391 | # undef PUT_CHAR
|
---|
8392 | # undef BYTE
|
---|
8393 | # undef WCHAR
|
---|
8394 |
|
---|
8395 | # define DEFINED_ONCE
|
---|