1 | /* Extended regular expression matching and search library.
|
---|
2 | Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
|
---|
3 | This file is part of the GNU C Library.
|
---|
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
|
---|
5 |
|
---|
6 | The GNU C Library is free software; you can redistribute it and/or
|
---|
7 | modify it under the terms of the GNU Lesser General Public
|
---|
8 | License as published by the Free Software Foundation; either
|
---|
9 | version 2.1 of the License, or (at your option) any later version.
|
---|
10 |
|
---|
11 | The GNU C Library is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | Lesser General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU Lesser General Public
|
---|
17 | License along with the GNU C Library; if not, write to the Free
|
---|
18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
---|
19 | 02110-1301 USA. */
|
---|
20 |
|
---|
21 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
|
---|
22 | int n) internal_function;
|
---|
23 | static void match_ctx_clean (re_match_context_t *mctx) internal_function;
|
---|
24 | static void match_ctx_free (re_match_context_t *cache) internal_function;
|
---|
25 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node,
|
---|
26 | int str_idx, int from, int to)
|
---|
27 | internal_function;
|
---|
28 | static int search_cur_bkref_entry (re_match_context_t *mctx, int str_idx)
|
---|
29 | internal_function;
|
---|
30 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node,
|
---|
31 | int str_idx) internal_function;
|
---|
32 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
|
---|
33 | int node, int str_idx)
|
---|
34 | internal_function;
|
---|
35 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
|
---|
36 | re_dfastate_t **limited_sts, int last_node,
|
---|
37 | int last_str_idx)
|
---|
38 | internal_function;
|
---|
39 | static reg_errcode_t re_search_internal (const regex_t *preg,
|
---|
40 | const char *string, int length,
|
---|
41 | int start, int range, int stop,
|
---|
42 | size_t nmatch, regmatch_t pmatch[],
|
---|
43 | int eflags) internal_function;
|
---|
44 | static int re_search_2_stub (struct re_pattern_buffer *bufp,
|
---|
45 | const char *string1, int length1,
|
---|
46 | const char *string2, int length2,
|
---|
47 | int start, int range, struct re_registers *regs,
|
---|
48 | int stop, int ret_len) internal_function;
|
---|
49 | static int re_search_stub (struct re_pattern_buffer *bufp,
|
---|
50 | const char *string, int length, int start,
|
---|
51 | int range, int stop, struct re_registers *regs,
|
---|
52 | int ret_len) internal_function;
|
---|
53 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
|
---|
54 | int nregs, int regs_allocated) internal_function;
|
---|
55 | static inline re_dfastate_t *acquire_init_state_context
|
---|
56 | (reg_errcode_t *err, const re_match_context_t *mctx, int idx)
|
---|
57 | __attribute ((always_inline)) internal_function;
|
---|
58 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx)
|
---|
59 | internal_function;
|
---|
60 | static int check_matching (re_match_context_t *mctx, int fl_longest_match,
|
---|
61 | int *p_match_first)
|
---|
62 | internal_function;
|
---|
63 | static int check_halt_node_context (const re_dfa_t *dfa, int node,
|
---|
64 | unsigned int context) internal_function;
|
---|
65 | static int check_halt_state_context (const re_match_context_t *mctx,
|
---|
66 | const re_dfastate_t *state, int idx)
|
---|
67 | internal_function;
|
---|
68 | static void update_regs (re_dfa_t *dfa, regmatch_t *pmatch,
|
---|
69 | regmatch_t *prev_idx_match, int cur_node,
|
---|
70 | int cur_idx, int nmatch) internal_function;
|
---|
71 | static int proceed_next_node (const re_match_context_t *mctx,
|
---|
72 | int nregs, regmatch_t *regs,
|
---|
73 | int *pidx, int node, re_node_set *eps_via_nodes,
|
---|
74 | struct re_fail_stack_t *fs) internal_function;
|
---|
75 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
|
---|
76 | int str_idx, int dest_node, int nregs,
|
---|
77 | regmatch_t *regs,
|
---|
78 | re_node_set *eps_via_nodes) internal_function;
|
---|
79 | static int pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs,
|
---|
80 | regmatch_t *regs, re_node_set *eps_via_nodes) internal_function;
|
---|
81 | static reg_errcode_t set_regs (const regex_t *preg,
|
---|
82 | const re_match_context_t *mctx,
|
---|
83 | size_t nmatch, regmatch_t *pmatch,
|
---|
84 | int fl_backtrack) internal_function;
|
---|
85 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) internal_function;
|
---|
86 |
|
---|
87 | #ifdef RE_ENABLE_I18N
|
---|
88 | static int sift_states_iter_mb (const re_match_context_t *mctx,
|
---|
89 | re_sift_context_t *sctx,
|
---|
90 | int node_idx, int str_idx, int max_str_idx) internal_function;
|
---|
91 | #endif /* RE_ENABLE_I18N */
|
---|
92 | static reg_errcode_t sift_states_backward (re_match_context_t *mctx,
|
---|
93 | re_sift_context_t *sctx) internal_function;
|
---|
94 | static reg_errcode_t build_sifted_states (re_match_context_t *mctx,
|
---|
95 | re_sift_context_t *sctx, int str_idx,
|
---|
96 | re_node_set *cur_dest) internal_function;
|
---|
97 | static reg_errcode_t update_cur_sifted_state (re_match_context_t *mctx,
|
---|
98 | re_sift_context_t *sctx,
|
---|
99 | int str_idx,
|
---|
100 | re_node_set *dest_nodes) internal_function;
|
---|
101 | static reg_errcode_t add_epsilon_src_nodes (re_dfa_t *dfa,
|
---|
102 | re_node_set *dest_nodes,
|
---|
103 | const re_node_set *candidates) internal_function;
|
---|
104 | static reg_errcode_t sub_epsilon_src_nodes (re_dfa_t *dfa, int node,
|
---|
105 | re_node_set *dest_nodes,
|
---|
106 | const re_node_set *and_nodes) internal_function;
|
---|
107 | static int check_dst_limits (re_match_context_t *mctx, re_node_set *limits,
|
---|
108 | int dst_node, int dst_idx, int src_node,
|
---|
109 | int src_idx) internal_function;
|
---|
110 | static int check_dst_limits_calc_pos_1 (re_match_context_t *mctx,
|
---|
111 | int boundaries, int subexp_idx,
|
---|
112 | int from_node, int bkref_idx) internal_function;
|
---|
113 | static int check_dst_limits_calc_pos (re_match_context_t *mctx,
|
---|
114 | int limit, int subexp_idx,
|
---|
115 | int node, int str_idx,
|
---|
116 | int bkref_idx) internal_function;
|
---|
117 | static reg_errcode_t check_subexp_limits (re_dfa_t *dfa,
|
---|
118 | re_node_set *dest_nodes,
|
---|
119 | const re_node_set *candidates,
|
---|
120 | re_node_set *limits,
|
---|
121 | struct re_backref_cache_entry *bkref_ents,
|
---|
122 | int str_idx) internal_function;
|
---|
123 | static reg_errcode_t sift_states_bkref (re_match_context_t *mctx,
|
---|
124 | re_sift_context_t *sctx,
|
---|
125 | int str_idx, const re_node_set *candidates) internal_function;
|
---|
126 | static reg_errcode_t clean_state_log_if_needed (re_match_context_t *mctx,
|
---|
127 | int next_state_log_idx) internal_function;
|
---|
128 | static reg_errcode_t merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst,
|
---|
129 | re_dfastate_t **src, int num) internal_function;
|
---|
130 | static re_dfastate_t *find_recover_state (reg_errcode_t *err,
|
---|
131 | re_match_context_t *mctx) internal_function;
|
---|
132 | static re_dfastate_t *transit_state (reg_errcode_t *err,
|
---|
133 | re_match_context_t *mctx,
|
---|
134 | re_dfastate_t *state) internal_function;
|
---|
135 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err,
|
---|
136 | re_match_context_t *mctx,
|
---|
137 | re_dfastate_t *next_state) internal_function;
|
---|
138 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx,
|
---|
139 | re_node_set *cur_nodes,
|
---|
140 | int str_idx) internal_function;
|
---|
141 | #if 0
|
---|
142 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err,
|
---|
143 | re_match_context_t *mctx,
|
---|
144 | re_dfastate_t *pstate) internal_function;
|
---|
145 | #endif
|
---|
146 | #ifdef RE_ENABLE_I18N
|
---|
147 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx,
|
---|
148 | re_dfastate_t *pstate) internal_function;
|
---|
149 | #endif /* RE_ENABLE_I18N */
|
---|
150 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx,
|
---|
151 | const re_node_set *nodes) internal_function;
|
---|
152 | static reg_errcode_t get_subexp (re_match_context_t *mctx,
|
---|
153 | int bkref_node, int bkref_str_idx) internal_function;
|
---|
154 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx,
|
---|
155 | const re_sub_match_top_t *sub_top,
|
---|
156 | re_sub_match_last_t *sub_last,
|
---|
157 | int bkref_node, int bkref_str) internal_function;
|
---|
158 | static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
|
---|
159 | int subexp_idx, int type) internal_function;
|
---|
160 | static reg_errcode_t check_arrival (re_match_context_t *mctx,
|
---|
161 | state_array_t *path, int top_node,
|
---|
162 | int top_str, int last_node, int last_str,
|
---|
163 | int type) internal_function;
|
---|
164 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx,
|
---|
165 | int str_idx,
|
---|
166 | re_node_set *cur_nodes,
|
---|
167 | re_node_set *next_nodes) internal_function;
|
---|
168 | static reg_errcode_t check_arrival_expand_ecl (re_dfa_t *dfa,
|
---|
169 | re_node_set *cur_nodes,
|
---|
170 | int ex_subexp, int type) internal_function;
|
---|
171 | static reg_errcode_t check_arrival_expand_ecl_sub (re_dfa_t *dfa,
|
---|
172 | re_node_set *dst_nodes,
|
---|
173 | int target, int ex_subexp,
|
---|
174 | int type) internal_function;
|
---|
175 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx,
|
---|
176 | re_node_set *cur_nodes, int cur_str,
|
---|
177 | int subexp_num, int type) internal_function;
|
---|
178 | static int build_trtable (re_dfa_t *dfa,
|
---|
179 | re_dfastate_t *state) internal_function;
|
---|
180 | #ifdef RE_ENABLE_I18N
|
---|
181 | static int check_node_accept_bytes (re_dfa_t *dfa, int node_idx,
|
---|
182 | const re_string_t *input, int idx) internal_function;
|
---|
183 | # ifdef _LIBC
|
---|
184 | static unsigned int find_collation_sequence_value (const unsigned char *mbs,
|
---|
185 | size_t name_len) internal_function;
|
---|
186 | # endif /* _LIBC */
|
---|
187 | #endif /* RE_ENABLE_I18N */
|
---|
188 | static int group_nodes_into_DFAstates (re_dfa_t *dfa,
|
---|
189 | const re_dfastate_t *state,
|
---|
190 | re_node_set *states_node,
|
---|
191 | bitset *states_ch) internal_function;
|
---|
192 | static int check_node_accept (const re_match_context_t *mctx,
|
---|
193 | const re_token_t *node, int idx) internal_function;
|
---|
194 | static reg_errcode_t extend_buffers (re_match_context_t *mctx) internal_function;
|
---|
195 | |
---|
196 |
|
---|
197 | /* Entry point for POSIX code. */
|
---|
198 |
|
---|
199 | /* regexec searches for a given pattern, specified by PREG, in the
|
---|
200 | string STRING.
|
---|
201 |
|
---|
202 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
---|
203 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
---|
204 | least NMATCH elements, and we set them to the offsets of the
|
---|
205 | corresponding matched substrings.
|
---|
206 |
|
---|
207 | EFLAGS specifies `execution flags' which affect matching: if
|
---|
208 | REG_NOTBOL is set, then ^ does not match at the beginning of the
|
---|
209 | string; if REG_NOTEOL is set, then $ does not match at the end.
|
---|
210 |
|
---|
211 | We return 0 if we find a match and REG_NOMATCH if not. */
|
---|
212 |
|
---|
213 | int
|
---|
214 | regexec (preg, string, nmatch, pmatch, eflags)
|
---|
215 | const regex_t *__restrict preg;
|
---|
216 | const char *__restrict string;
|
---|
217 | size_t nmatch;
|
---|
218 | regmatch_t pmatch[];
|
---|
219 | int eflags;
|
---|
220 | {
|
---|
221 | reg_errcode_t err;
|
---|
222 | int start, length;
|
---|
223 |
|
---|
224 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND))
|
---|
225 | return REG_BADPAT;
|
---|
226 |
|
---|
227 | if (eflags & REG_STARTEND)
|
---|
228 | {
|
---|
229 | start = pmatch[0].rm_so;
|
---|
230 | length = pmatch[0].rm_eo;
|
---|
231 | }
|
---|
232 | else
|
---|
233 | {
|
---|
234 | start = 0;
|
---|
235 | length = strlen (string);
|
---|
236 | }
|
---|
237 | if (preg->no_sub)
|
---|
238 | err = re_search_internal (preg, string, length, start, length - start,
|
---|
239 | length, 0, NULL, eflags);
|
---|
240 | else
|
---|
241 | err = re_search_internal (preg, string, length, start, length - start,
|
---|
242 | length, nmatch, pmatch, eflags);
|
---|
243 | return err != REG_NOERROR;
|
---|
244 | }
|
---|
245 |
|
---|
246 | #ifdef _LIBC
|
---|
247 | # include <shlib-compat.h>
|
---|
248 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4);
|
---|
249 |
|
---|
250 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4)
|
---|
251 | __typeof__ (__regexec) __compat_regexec;
|
---|
252 |
|
---|
253 | int
|
---|
254 | attribute_compat_text_section
|
---|
255 | __compat_regexec (const regex_t *__restrict preg,
|
---|
256 | const char *__restrict string, size_t nmatch,
|
---|
257 | regmatch_t pmatch[], int eflags)
|
---|
258 | {
|
---|
259 | return regexec (preg, string, nmatch, pmatch,
|
---|
260 | eflags & (REG_NOTBOL | REG_NOTEOL));
|
---|
261 | }
|
---|
262 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0);
|
---|
263 | # endif
|
---|
264 | #endif
|
---|
265 |
|
---|
266 | /* Entry points for GNU code. */
|
---|
267 |
|
---|
268 | /* re_match, re_search, re_match_2, re_search_2
|
---|
269 |
|
---|
270 | The former two functions operate on STRING with length LENGTH,
|
---|
271 | while the later two operate on concatenation of STRING1 and STRING2
|
---|
272 | with lengths LENGTH1 and LENGTH2, respectively.
|
---|
273 |
|
---|
274 | re_match() matches the compiled pattern in BUFP against the string,
|
---|
275 | starting at index START.
|
---|
276 |
|
---|
277 | re_search() first tries matching at index START, then it tries to match
|
---|
278 | starting from index START + 1, and so on. The last start position tried
|
---|
279 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same
|
---|
280 | way as re_match().)
|
---|
281 |
|
---|
282 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding
|
---|
283 | the first STOP characters of the concatenation of the strings should be
|
---|
284 | concerned.
|
---|
285 |
|
---|
286 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
|
---|
287 | and all groups is stroed in REGS. (For the "_2" variants, the offsets are
|
---|
288 | computed relative to the concatenation, not relative to the individual
|
---|
289 | strings.)
|
---|
290 |
|
---|
291 | On success, re_match* functions return the length of the match, re_search*
|
---|
292 | return the position of the start of the match. Return value -1 means no
|
---|
293 | match was found and -2 indicates an internal error. */
|
---|
294 |
|
---|
295 | int
|
---|
296 | re_match (bufp, string, length, start, regs)
|
---|
297 | struct re_pattern_buffer *bufp;
|
---|
298 | const char *string;
|
---|
299 | int length, start;
|
---|
300 | struct re_registers *regs;
|
---|
301 | {
|
---|
302 | return re_search_stub (bufp, string, length, start, 0, length, regs, 1);
|
---|
303 | }
|
---|
304 | #ifdef _LIBC
|
---|
305 | weak_alias (__re_match, re_match)
|
---|
306 | #endif
|
---|
307 |
|
---|
308 | int
|
---|
309 | re_search (bufp, string, length, start, range, regs)
|
---|
310 | struct re_pattern_buffer *bufp;
|
---|
311 | const char *string;
|
---|
312 | int length, start, range;
|
---|
313 | struct re_registers *regs;
|
---|
314 | {
|
---|
315 | return re_search_stub (bufp, string, length, start, range, length, regs, 0);
|
---|
316 | }
|
---|
317 | #ifdef _LIBC
|
---|
318 | weak_alias (__re_search, re_search)
|
---|
319 | #endif
|
---|
320 |
|
---|
321 | int
|
---|
322 | re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop)
|
---|
323 | struct re_pattern_buffer *bufp;
|
---|
324 | const char *string1, *string2;
|
---|
325 | int length1, length2, start, stop;
|
---|
326 | struct re_registers *regs;
|
---|
327 | {
|
---|
328 | return re_search_2_stub (bufp, string1, length1, string2, length2,
|
---|
329 | start, 0, regs, stop, 1);
|
---|
330 | }
|
---|
331 | #ifdef _LIBC
|
---|
332 | weak_alias (__re_match_2, re_match_2)
|
---|
333 | #endif
|
---|
334 |
|
---|
335 | int
|
---|
336 | re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop)
|
---|
337 | struct re_pattern_buffer *bufp;
|
---|
338 | const char *string1, *string2;
|
---|
339 | int length1, length2, start, range, stop;
|
---|
340 | struct re_registers *regs;
|
---|
341 | {
|
---|
342 | return re_search_2_stub (bufp, string1, length1, string2, length2,
|
---|
343 | start, range, regs, stop, 0);
|
---|
344 | }
|
---|
345 | #ifdef _LIBC
|
---|
346 | weak_alias (__re_search_2, re_search_2)
|
---|
347 | #endif
|
---|
348 |
|
---|
349 | static int
|
---|
350 | re_search_2_stub (bufp, string1, length1, string2, length2, start, range, regs,
|
---|
351 | stop, ret_len)
|
---|
352 | struct re_pattern_buffer *bufp;
|
---|
353 | const char *string1, *string2;
|
---|
354 | int length1, length2, start, range, stop, ret_len;
|
---|
355 | struct re_registers *regs;
|
---|
356 | {
|
---|
357 | const char *str;
|
---|
358 | int rval;
|
---|
359 | int len = length1 + length2;
|
---|
360 | int free_str = 0;
|
---|
361 |
|
---|
362 | if (BE (length1 < 0 || length2 < 0 || stop < 0, 0))
|
---|
363 | return -2;
|
---|
364 |
|
---|
365 | /* Concatenate the strings. */
|
---|
366 | if (length2 > 0)
|
---|
367 | if (length1 > 0)
|
---|
368 | {
|
---|
369 | char *s = re_malloc (char, len);
|
---|
370 |
|
---|
371 | if (BE (s == NULL, 0))
|
---|
372 | return -2;
|
---|
373 | memcpy (s, string1, length1);
|
---|
374 | memcpy (s + length1, string2, length2);
|
---|
375 | str = s;
|
---|
376 | free_str = 1;
|
---|
377 | }
|
---|
378 | else
|
---|
379 | str = string2;
|
---|
380 | else
|
---|
381 | str = string1;
|
---|
382 |
|
---|
383 | rval = re_search_stub (bufp, str, len, start, range, stop, regs,
|
---|
384 | ret_len);
|
---|
385 | if (free_str)
|
---|
386 | re_free ((char *) str);
|
---|
387 | return rval;
|
---|
388 | }
|
---|
389 |
|
---|
390 | /* The parameters have the same meaning as those of re_search.
|
---|
391 | Additional parameters:
|
---|
392 | If RET_LEN is nonzero the length of the match is returned (re_match style);
|
---|
393 | otherwise the position of the match is returned. */
|
---|
394 |
|
---|
395 | static int
|
---|
396 | re_search_stub (bufp, string, length, start, range, stop, regs, ret_len)
|
---|
397 | struct re_pattern_buffer *bufp;
|
---|
398 | const char *string;
|
---|
399 | int length, start, range, stop, ret_len;
|
---|
400 | struct re_registers *regs;
|
---|
401 | {
|
---|
402 | reg_errcode_t result;
|
---|
403 | regmatch_t *pmatch;
|
---|
404 | int nregs, rval;
|
---|
405 | int eflags = 0;
|
---|
406 |
|
---|
407 | /* Check for out-of-range. */
|
---|
408 | if (BE (start < 0 || start > length, 0))
|
---|
409 | return -1;
|
---|
410 | if (BE (start + range > length, 0))
|
---|
411 | range = length - start;
|
---|
412 | else if (BE (start + range < 0, 0))
|
---|
413 | range = -start;
|
---|
414 |
|
---|
415 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
|
---|
416 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
|
---|
417 |
|
---|
418 | /* Compile fastmap if we haven't yet. */
|
---|
419 | if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate)
|
---|
420 | re_compile_fastmap (bufp);
|
---|
421 |
|
---|
422 | if (BE (bufp->no_sub, 0))
|
---|
423 | regs = NULL;
|
---|
424 |
|
---|
425 | /* We need at least 1 register. */
|
---|
426 | if (regs == NULL)
|
---|
427 | nregs = 1;
|
---|
428 | else if (BE (bufp->regs_allocated == REGS_FIXED &&
|
---|
429 | regs->num_regs < bufp->re_nsub + 1, 0))
|
---|
430 | {
|
---|
431 | nregs = regs->num_regs;
|
---|
432 | if (BE (nregs < 1, 0))
|
---|
433 | {
|
---|
434 | /* Nothing can be copied to regs. */
|
---|
435 | regs = NULL;
|
---|
436 | nregs = 1;
|
---|
437 | }
|
---|
438 | }
|
---|
439 | else
|
---|
440 | nregs = bufp->re_nsub + 1;
|
---|
441 | pmatch = re_malloc (regmatch_t, nregs);
|
---|
442 | if (BE (pmatch == NULL, 0))
|
---|
443 | return -2;
|
---|
444 |
|
---|
445 | result = re_search_internal (bufp, string, length, start, range, stop,
|
---|
446 | nregs, pmatch, eflags);
|
---|
447 |
|
---|
448 | rval = 0;
|
---|
449 |
|
---|
450 | /* I hope we needn't fill ther regs with -1's when no match was found. */
|
---|
451 | if (result != REG_NOERROR)
|
---|
452 | rval = -1;
|
---|
453 | else if (regs != NULL)
|
---|
454 | {
|
---|
455 | /* If caller wants register contents data back, copy them. */
|
---|
456 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
|
---|
457 | bufp->regs_allocated);
|
---|
458 | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
|
---|
459 | rval = -2;
|
---|
460 | }
|
---|
461 |
|
---|
462 | if (BE (rval == 0, 1))
|
---|
463 | {
|
---|
464 | if (ret_len)
|
---|
465 | {
|
---|
466 | assert (pmatch[0].rm_so == start);
|
---|
467 | rval = pmatch[0].rm_eo - start;
|
---|
468 | }
|
---|
469 | else
|
---|
470 | rval = pmatch[0].rm_so;
|
---|
471 | }
|
---|
472 | re_free (pmatch);
|
---|
473 | return rval;
|
---|
474 | }
|
---|
475 |
|
---|
476 | static unsigned
|
---|
477 | re_copy_regs (regs, pmatch, nregs, regs_allocated)
|
---|
478 | struct re_registers *regs;
|
---|
479 | regmatch_t *pmatch;
|
---|
480 | int nregs, regs_allocated;
|
---|
481 | {
|
---|
482 | int rval = REGS_REALLOCATE;
|
---|
483 | int i;
|
---|
484 | int need_regs = nregs + 1;
|
---|
485 | /* We need one extra element beyond `num_regs' for the `-1' marker GNU code
|
---|
486 | uses. */
|
---|
487 |
|
---|
488 | /* Have the register data arrays been allocated? */
|
---|
489 | if (regs_allocated == REGS_UNALLOCATED)
|
---|
490 | { /* No. So allocate them with malloc. */
|
---|
491 | regs->start = re_malloc (regoff_t, need_regs);
|
---|
492 | regs->end = re_malloc (regoff_t, need_regs);
|
---|
493 | if (BE (regs->start == NULL, 0) || BE (regs->end == NULL, 0))
|
---|
494 | return REGS_UNALLOCATED;
|
---|
495 | regs->num_regs = need_regs;
|
---|
496 | }
|
---|
497 | else if (regs_allocated == REGS_REALLOCATE)
|
---|
498 | { /* Yes. If we need more elements than were already
|
---|
499 | allocated, reallocate them. If we need fewer, just
|
---|
500 | leave it alone. */
|
---|
501 | if (BE (need_regs > regs->num_regs, 0))
|
---|
502 | {
|
---|
503 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs);
|
---|
504 | regoff_t *new_end = re_realloc (regs->end, regoff_t, need_regs);
|
---|
505 | if (BE (new_start == NULL, 0) || BE (new_end == NULL, 0))
|
---|
506 | return REGS_UNALLOCATED;
|
---|
507 | regs->start = new_start;
|
---|
508 | regs->end = new_end;
|
---|
509 | regs->num_regs = need_regs;
|
---|
510 | }
|
---|
511 | }
|
---|
512 | else
|
---|
513 | {
|
---|
514 | assert (regs_allocated == REGS_FIXED);
|
---|
515 | /* This function may not be called with REGS_FIXED and nregs too big. */
|
---|
516 | assert (regs->num_regs >= nregs);
|
---|
517 | rval = REGS_FIXED;
|
---|
518 | }
|
---|
519 |
|
---|
520 | /* Copy the regs. */
|
---|
521 | for (i = 0; i < nregs; ++i)
|
---|
522 | {
|
---|
523 | regs->start[i] = pmatch[i].rm_so;
|
---|
524 | regs->end[i] = pmatch[i].rm_eo;
|
---|
525 | }
|
---|
526 | for ( ; i < regs->num_regs; ++i)
|
---|
527 | regs->start[i] = regs->end[i] = -1;
|
---|
528 |
|
---|
529 | return rval;
|
---|
530 | }
|
---|
531 |
|
---|
532 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
---|
533 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
---|
534 | this memory for recording register information. STARTS and ENDS
|
---|
535 | must be allocated using the malloc library routine, and must each
|
---|
536 | be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
---|
537 |
|
---|
538 | If NUM_REGS == 0, then subsequent matches should allocate their own
|
---|
539 | register data.
|
---|
540 |
|
---|
541 | Unless this function is called, the first search or match using
|
---|
542 | PATTERN_BUFFER will allocate its own register data, without
|
---|
543 | freeing the old data. */
|
---|
544 |
|
---|
545 | void
|
---|
546 | re_set_registers (bufp, regs, num_regs, starts, ends)
|
---|
547 | struct re_pattern_buffer *bufp;
|
---|
548 | struct re_registers *regs;
|
---|
549 | unsigned num_regs;
|
---|
550 | regoff_t *starts, *ends;
|
---|
551 | {
|
---|
552 | if (num_regs)
|
---|
553 | {
|
---|
554 | bufp->regs_allocated = REGS_REALLOCATE;
|
---|
555 | regs->num_regs = num_regs;
|
---|
556 | regs->start = starts;
|
---|
557 | regs->end = ends;
|
---|
558 | }
|
---|
559 | else
|
---|
560 | {
|
---|
561 | bufp->regs_allocated = REGS_UNALLOCATED;
|
---|
562 | regs->num_regs = 0;
|
---|
563 | regs->start = regs->end = (regoff_t *) 0;
|
---|
564 | }
|
---|
565 | }
|
---|
566 | #ifdef _LIBC
|
---|
567 | weak_alias (__re_set_registers, re_set_registers)
|
---|
568 | #endif
|
---|
569 | |
---|
570 |
|
---|
571 | /* Entry points compatible with 4.2 BSD regex library. We don't define
|
---|
572 | them unless specifically requested. */
|
---|
573 |
|
---|
574 | #if defined _REGEX_RE_COMP || defined _LIBC
|
---|
575 | int
|
---|
576 | # ifdef _LIBC
|
---|
577 | weak_function
|
---|
578 | # endif
|
---|
579 | re_exec (s)
|
---|
580 | const char *s;
|
---|
581 | {
|
---|
582 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
|
---|
583 | }
|
---|
584 | #endif /* _REGEX_RE_COMP */
|
---|
585 | |
---|
586 |
|
---|
587 | /* Internal entry point. */
|
---|
588 |
|
---|
589 | /* Searches for a compiled pattern PREG in the string STRING, whose
|
---|
590 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same
|
---|
591 | mingings with regexec. START, and RANGE have the same meanings
|
---|
592 | with re_search.
|
---|
593 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
|
---|
594 | otherwise return the error code.
|
---|
595 | Note: We assume front end functions already check ranges.
|
---|
596 | (START + RANGE >= 0 && START + RANGE <= LENGTH) */
|
---|
597 |
|
---|
598 | static reg_errcode_t
|
---|
599 | re_search_internal (preg, string, length, start, range, stop, nmatch, pmatch,
|
---|
600 | eflags)
|
---|
601 | const regex_t *preg;
|
---|
602 | const char *string;
|
---|
603 | int length, start, range, stop, eflags;
|
---|
604 | size_t nmatch;
|
---|
605 | regmatch_t pmatch[];
|
---|
606 | {
|
---|
607 | reg_errcode_t err;
|
---|
608 | re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
|
---|
609 | int left_lim, right_lim, incr;
|
---|
610 | int fl_longest_match, match_first, match_kind, match_last = -1;
|
---|
611 | int extra_nmatch;
|
---|
612 | int sb, ch;
|
---|
613 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
|
---|
614 | re_match_context_t mctx = { .dfa = dfa };
|
---|
615 | #else
|
---|
616 | re_match_context_t mctx;
|
---|
617 | #endif
|
---|
618 | char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate
|
---|
619 | && range && !preg->can_be_null) ? preg->fastmap : NULL;
|
---|
620 | unsigned RE_TRANSLATE_TYPE t = (unsigned RE_TRANSLATE_TYPE) preg->translate;
|
---|
621 |
|
---|
622 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L))
|
---|
623 | memset (&mctx, '\0', sizeof (re_match_context_t));
|
---|
624 | mctx.dfa = dfa;
|
---|
625 | #endif
|
---|
626 |
|
---|
627 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0;
|
---|
628 | nmatch -= extra_nmatch;
|
---|
629 |
|
---|
630 | /* Check if the DFA haven't been compiled. */
|
---|
631 | if (BE (preg->used == 0 || dfa->init_state == NULL
|
---|
632 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
|
---|
633 | || dfa->init_state_begbuf == NULL, 0))
|
---|
634 | return REG_NOMATCH;
|
---|
635 |
|
---|
636 | #ifdef DEBUG
|
---|
637 | /* We assume front-end functions already check them. */
|
---|
638 | assert (start + range >= 0 && start + range <= length);
|
---|
639 | #endif
|
---|
640 |
|
---|
641 | /* If initial states with non-begbuf contexts have no elements,
|
---|
642 | the regex must be anchored. If preg->newline_anchor is set,
|
---|
643 | we'll never use init_state_nl, so do not check it. */
|
---|
644 | if (dfa->init_state->nodes.nelem == 0
|
---|
645 | && dfa->init_state_word->nodes.nelem == 0
|
---|
646 | && (dfa->init_state_nl->nodes.nelem == 0
|
---|
647 | || !preg->newline_anchor))
|
---|
648 | {
|
---|
649 | if (start != 0 && start + range != 0)
|
---|
650 | return REG_NOMATCH;
|
---|
651 | start = range = 0;
|
---|
652 | }
|
---|
653 |
|
---|
654 | /* We must check the longest matching, if nmatch > 0. */
|
---|
655 | fl_longest_match = (nmatch != 0 || dfa->nbackref);
|
---|
656 |
|
---|
657 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1,
|
---|
658 | preg->translate, preg->syntax & RE_ICASE, dfa);
|
---|
659 | if (BE (err != REG_NOERROR, 0))
|
---|
660 | goto free_return;
|
---|
661 | mctx.input.stop = stop;
|
---|
662 | mctx.input.raw_stop = stop;
|
---|
663 | mctx.input.newline_anchor = preg->newline_anchor;
|
---|
664 |
|
---|
665 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
|
---|
666 | if (BE (err != REG_NOERROR, 0))
|
---|
667 | goto free_return;
|
---|
668 |
|
---|
669 | /* We will log all the DFA states through which the dfa pass,
|
---|
670 | if nmatch > 1, or this dfa has "multibyte node", which is a
|
---|
671 | back-reference or a node which can accept multibyte character or
|
---|
672 | multi character collating element. */
|
---|
673 | if (nmatch > 1 || dfa->has_mb_node)
|
---|
674 | {
|
---|
675 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1);
|
---|
676 | if (BE (mctx.state_log == NULL, 0))
|
---|
677 | {
|
---|
678 | err = REG_ESPACE;
|
---|
679 | goto free_return;
|
---|
680 | }
|
---|
681 | }
|
---|
682 | else
|
---|
683 | mctx.state_log = NULL;
|
---|
684 |
|
---|
685 | match_first = start;
|
---|
686 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
|
---|
687 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF;
|
---|
688 |
|
---|
689 | /* Check incrementally whether of not the input string match. */
|
---|
690 | incr = (range < 0) ? -1 : 1;
|
---|
691 | left_lim = (range < 0) ? start + range : start;
|
---|
692 | right_lim = (range < 0) ? start : start + range;
|
---|
693 | sb = dfa->mb_cur_max == 1;
|
---|
694 | match_kind =
|
---|
695 | (fastmap
|
---|
696 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0)
|
---|
697 | | (range >= 0 ? 2 : 0)
|
---|
698 | | (t != NULL ? 1 : 0))
|
---|
699 | : 8);
|
---|
700 |
|
---|
701 | for (;; match_first += incr)
|
---|
702 | {
|
---|
703 | err = REG_NOMATCH;
|
---|
704 | if (match_first < left_lim || right_lim < match_first)
|
---|
705 | goto free_return;
|
---|
706 |
|
---|
707 | /* Advance as rapidly as possible through the string, until we
|
---|
708 | find a plausible place to start matching. This may be done
|
---|
709 | with varying efficiency, so there are various possibilities:
|
---|
710 | only the most common of them are specialized, in order to
|
---|
711 | save on code size. We use a switch statement for speed. */
|
---|
712 | switch (match_kind)
|
---|
713 | {
|
---|
714 | case 8:
|
---|
715 | /* No fastmap. */
|
---|
716 | break;
|
---|
717 |
|
---|
718 | case 7:
|
---|
719 | /* Fastmap with single-byte translation, match forward. */
|
---|
720 | while (BE (match_first < right_lim, 1)
|
---|
721 | && !fastmap[t[(unsigned char) string[match_first]]])
|
---|
722 | ++match_first;
|
---|
723 | goto forward_match_found_start_or_reached_end;
|
---|
724 |
|
---|
725 | case 6:
|
---|
726 | /* Fastmap without translation, match forward. */
|
---|
727 | while (BE (match_first < right_lim, 1)
|
---|
728 | && !fastmap[(unsigned char) string[match_first]])
|
---|
729 | ++match_first;
|
---|
730 |
|
---|
731 | forward_match_found_start_or_reached_end:
|
---|
732 | if (BE (match_first == right_lim, 0))
|
---|
733 | {
|
---|
734 | ch = match_first >= length
|
---|
735 | ? 0 : (unsigned char) string[match_first];
|
---|
736 | if (!fastmap[t ? t[ch] : ch])
|
---|
737 | goto free_return;
|
---|
738 | }
|
---|
739 | break;
|
---|
740 |
|
---|
741 | case 4:
|
---|
742 | case 5:
|
---|
743 | /* Fastmap without multi-byte translation, match backwards. */
|
---|
744 | while (match_first >= left_lim)
|
---|
745 | {
|
---|
746 | ch = match_first >= length
|
---|
747 | ? 0 : (unsigned char) string[match_first];
|
---|
748 | if (fastmap[t ? t[ch] : ch])
|
---|
749 | break;
|
---|
750 | --match_first;
|
---|
751 | }
|
---|
752 | if (match_first < left_lim)
|
---|
753 | goto free_return;
|
---|
754 | break;
|
---|
755 |
|
---|
756 | default:
|
---|
757 | /* In this case, we can't determine easily the current byte,
|
---|
758 | since it might be a component byte of a multibyte
|
---|
759 | character. Then we use the constructed buffer instead. */
|
---|
760 | for (;;)
|
---|
761 | {
|
---|
762 | /* If MATCH_FIRST is out of the valid range, reconstruct the
|
---|
763 | buffers. */
|
---|
764 | unsigned int offset = match_first - mctx.input.raw_mbs_idx;
|
---|
765 | if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0))
|
---|
766 | {
|
---|
767 | err = re_string_reconstruct (&mctx.input, match_first,
|
---|
768 | eflags);
|
---|
769 | if (BE (err != REG_NOERROR, 0))
|
---|
770 | goto free_return;
|
---|
771 |
|
---|
772 | offset = match_first - mctx.input.raw_mbs_idx;
|
---|
773 | }
|
---|
774 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'.
|
---|
775 | Note that MATCH_FIRST must not be smaller than 0. */
|
---|
776 | ch = (match_first >= length
|
---|
777 | ? 0 : re_string_byte_at (&mctx.input, offset));
|
---|
778 | if (fastmap[ch])
|
---|
779 | break;
|
---|
780 | match_first += incr;
|
---|
781 | if (match_first < left_lim || match_first > right_lim)
|
---|
782 | {
|
---|
783 | err = REG_NOMATCH;
|
---|
784 | goto free_return;
|
---|
785 | }
|
---|
786 | }
|
---|
787 | break;
|
---|
788 | }
|
---|
789 |
|
---|
790 | /* Reconstruct the buffers so that the matcher can assume that
|
---|
791 | the matching starts from the beginning of the buffer. */
|
---|
792 | err = re_string_reconstruct (&mctx.input, match_first, eflags);
|
---|
793 | if (BE (err != REG_NOERROR, 0))
|
---|
794 | goto free_return;
|
---|
795 |
|
---|
796 | #ifdef RE_ENABLE_I18N
|
---|
797 | /* Don't consider this char as a possible match start if it part,
|
---|
798 | yet isn't the head, of a multibyte character. */
|
---|
799 | if (!sb && !re_string_first_byte (&mctx.input, 0))
|
---|
800 | continue;
|
---|
801 | #endif
|
---|
802 |
|
---|
803 | /* It seems to be appropriate one, then use the matcher. */
|
---|
804 | /* We assume that the matching starts from 0. */
|
---|
805 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
|
---|
806 | match_last = check_matching (&mctx, fl_longest_match,
|
---|
807 | range >= 0 ? &match_first : NULL);
|
---|
808 | if (match_last != -1)
|
---|
809 | {
|
---|
810 | if (BE (match_last == -2, 0))
|
---|
811 | {
|
---|
812 | err = REG_ESPACE;
|
---|
813 | goto free_return;
|
---|
814 | }
|
---|
815 | else
|
---|
816 | {
|
---|
817 | mctx.match_last = match_last;
|
---|
818 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
|
---|
819 | {
|
---|
820 | re_dfastate_t *pstate = mctx.state_log[match_last];
|
---|
821 | mctx.last_node = check_halt_state_context (&mctx, pstate,
|
---|
822 | match_last);
|
---|
823 | }
|
---|
824 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
|
---|
825 | || dfa->nbackref)
|
---|
826 | {
|
---|
827 | err = prune_impossible_nodes (&mctx);
|
---|
828 | if (err == REG_NOERROR)
|
---|
829 | break;
|
---|
830 | if (BE (err != REG_NOMATCH, 0))
|
---|
831 | goto free_return;
|
---|
832 | match_last = -1;
|
---|
833 | }
|
---|
834 | else
|
---|
835 | break; /* We found a match. */
|
---|
836 | }
|
---|
837 | }
|
---|
838 |
|
---|
839 | match_ctx_clean (&mctx);
|
---|
840 | }
|
---|
841 |
|
---|
842 | #ifdef DEBUG
|
---|
843 | assert (match_last != -1);
|
---|
844 | assert (err == REG_NOERROR);
|
---|
845 | #endif
|
---|
846 |
|
---|
847 | /* Set pmatch[] if we need. */
|
---|
848 | if (nmatch > 0)
|
---|
849 | {
|
---|
850 | int reg_idx;
|
---|
851 |
|
---|
852 | /* Initialize registers. */
|
---|
853 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx)
|
---|
854 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
|
---|
855 |
|
---|
856 | /* Set the points where matching start/end. */
|
---|
857 | pmatch[0].rm_so = 0;
|
---|
858 | pmatch[0].rm_eo = mctx.match_last;
|
---|
859 |
|
---|
860 | if (!preg->no_sub && nmatch > 1)
|
---|
861 | {
|
---|
862 | err = set_regs (preg, &mctx, nmatch, pmatch,
|
---|
863 | dfa->has_plural_match && dfa->nbackref > 0);
|
---|
864 | if (BE (err != REG_NOERROR, 0))
|
---|
865 | goto free_return;
|
---|
866 | }
|
---|
867 |
|
---|
868 | /* At last, add the offset to the each registers, since we slided
|
---|
869 | the buffers so that we could assume that the matching starts
|
---|
870 | from 0. */
|
---|
871 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
|
---|
872 | if (pmatch[reg_idx].rm_so != -1)
|
---|
873 | {
|
---|
874 | #ifdef RE_ENABLE_I18N
|
---|
875 | if (BE (mctx.input.offsets_needed != 0, 0))
|
---|
876 | {
|
---|
877 | if (pmatch[reg_idx].rm_so == mctx.input.valid_len)
|
---|
878 | pmatch[reg_idx].rm_so += mctx.input.valid_raw_len - mctx.input.valid_len;
|
---|
879 | else
|
---|
880 | pmatch[reg_idx].rm_so = mctx.input.offsets[pmatch[reg_idx].rm_so];
|
---|
881 | if (pmatch[reg_idx].rm_eo == mctx.input.valid_len)
|
---|
882 | pmatch[reg_idx].rm_eo += mctx.input.valid_raw_len - mctx.input.valid_len;
|
---|
883 | else
|
---|
884 | pmatch[reg_idx].rm_eo = mctx.input.offsets[pmatch[reg_idx].rm_eo];
|
---|
885 | }
|
---|
886 | #else
|
---|
887 | assert (mctx.input.offsets_needed == 0);
|
---|
888 | #endif
|
---|
889 | pmatch[reg_idx].rm_so += match_first;
|
---|
890 | pmatch[reg_idx].rm_eo += match_first;
|
---|
891 | }
|
---|
892 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx)
|
---|
893 | {
|
---|
894 | pmatch[nmatch + reg_idx].rm_so = -1;
|
---|
895 | pmatch[nmatch + reg_idx].rm_eo = -1;
|
---|
896 | }
|
---|
897 |
|
---|
898 | if (dfa->subexp_map)
|
---|
899 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++)
|
---|
900 | if (dfa->subexp_map[reg_idx] != reg_idx)
|
---|
901 | {
|
---|
902 | pmatch[reg_idx + 1].rm_so
|
---|
903 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so;
|
---|
904 | pmatch[reg_idx + 1].rm_eo
|
---|
905 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo;
|
---|
906 | }
|
---|
907 | }
|
---|
908 |
|
---|
909 | free_return:
|
---|
910 | re_free (mctx.state_log);
|
---|
911 | if (dfa->nbackref)
|
---|
912 | match_ctx_free (&mctx);
|
---|
913 | re_string_destruct (&mctx.input);
|
---|
914 | return err;
|
---|
915 | }
|
---|
916 |
|
---|
917 | static reg_errcode_t
|
---|
918 | prune_impossible_nodes (mctx)
|
---|
919 | re_match_context_t *mctx;
|
---|
920 | {
|
---|
921 | re_dfa_t *const dfa = mctx->dfa;
|
---|
922 | int halt_node, match_last;
|
---|
923 | reg_errcode_t ret;
|
---|
924 | re_dfastate_t **sifted_states;
|
---|
925 | re_dfastate_t **lim_states = NULL;
|
---|
926 | re_sift_context_t sctx;
|
---|
927 | #ifdef DEBUG
|
---|
928 | assert (mctx->state_log != NULL);
|
---|
929 | #endif
|
---|
930 | match_last = mctx->match_last;
|
---|
931 | halt_node = mctx->last_node;
|
---|
932 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
|
---|
933 | if (BE (sifted_states == NULL, 0))
|
---|
934 | {
|
---|
935 | ret = REG_ESPACE;
|
---|
936 | goto free_return;
|
---|
937 | }
|
---|
938 | if (dfa->nbackref)
|
---|
939 | {
|
---|
940 | lim_states = re_malloc (re_dfastate_t *, match_last + 1);
|
---|
941 | if (BE (lim_states == NULL, 0))
|
---|
942 | {
|
---|
943 | ret = REG_ESPACE;
|
---|
944 | goto free_return;
|
---|
945 | }
|
---|
946 | while (1)
|
---|
947 | {
|
---|
948 | memset (lim_states, '\0',
|
---|
949 | sizeof (re_dfastate_t *) * (match_last + 1));
|
---|
950 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
|
---|
951 | match_last);
|
---|
952 | ret = sift_states_backward (mctx, &sctx);
|
---|
953 | re_node_set_free (&sctx.limits);
|
---|
954 | if (BE (ret != REG_NOERROR, 0))
|
---|
955 | goto free_return;
|
---|
956 | if (sifted_states[0] != NULL || lim_states[0] != NULL)
|
---|
957 | break;
|
---|
958 | do
|
---|
959 | {
|
---|
960 | --match_last;
|
---|
961 | if (match_last < 0)
|
---|
962 | {
|
---|
963 | ret = REG_NOMATCH;
|
---|
964 | goto free_return;
|
---|
965 | }
|
---|
966 | } while (mctx->state_log[match_last] == NULL
|
---|
967 | || !mctx->state_log[match_last]->halt);
|
---|
968 | halt_node = check_halt_state_context (mctx,
|
---|
969 | mctx->state_log[match_last],
|
---|
970 | match_last);
|
---|
971 | }
|
---|
972 | ret = merge_state_array (dfa, sifted_states, lim_states,
|
---|
973 | match_last + 1);
|
---|
974 | re_free (lim_states);
|
---|
975 | lim_states = NULL;
|
---|
976 | if (BE (ret != REG_NOERROR, 0))
|
---|
977 | goto free_return;
|
---|
978 | }
|
---|
979 | else
|
---|
980 | {
|
---|
981 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last);
|
---|
982 | ret = sift_states_backward (mctx, &sctx);
|
---|
983 | re_node_set_free (&sctx.limits);
|
---|
984 | if (BE (ret != REG_NOERROR, 0))
|
---|
985 | goto free_return;
|
---|
986 | }
|
---|
987 | re_free (mctx->state_log);
|
---|
988 | mctx->state_log = sifted_states;
|
---|
989 | sifted_states = NULL;
|
---|
990 | mctx->last_node = halt_node;
|
---|
991 | mctx->match_last = match_last;
|
---|
992 | ret = REG_NOERROR;
|
---|
993 | free_return:
|
---|
994 | re_free (sifted_states);
|
---|
995 | re_free (lim_states);
|
---|
996 | return ret;
|
---|
997 | }
|
---|
998 |
|
---|
999 | /* Acquire an initial state and return it.
|
---|
1000 | We must select appropriate initial state depending on the context,
|
---|
1001 | since initial states may have constraints like "\<", "^", etc.. */
|
---|
1002 |
|
---|
1003 | static inline re_dfastate_t *
|
---|
1004 | acquire_init_state_context (err, mctx, idx)
|
---|
1005 | reg_errcode_t *err;
|
---|
1006 | const re_match_context_t *mctx;
|
---|
1007 | int idx;
|
---|
1008 | {
|
---|
1009 | re_dfa_t *const dfa = mctx->dfa;
|
---|
1010 | if (dfa->init_state->has_constraint)
|
---|
1011 | {
|
---|
1012 | unsigned int context;
|
---|
1013 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags);
|
---|
1014 | if (IS_WORD_CONTEXT (context))
|
---|
1015 | return dfa->init_state_word;
|
---|
1016 | else if (IS_ORDINARY_CONTEXT (context))
|
---|
1017 | return dfa->init_state;
|
---|
1018 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
|
---|
1019 | return dfa->init_state_begbuf;
|
---|
1020 | else if (IS_NEWLINE_CONTEXT (context))
|
---|
1021 | return dfa->init_state_nl;
|
---|
1022 | else if (IS_BEGBUF_CONTEXT (context))
|
---|
1023 | {
|
---|
1024 | /* It is relatively rare case, then calculate on demand. */
|
---|
1025 | return re_acquire_state_context (err, dfa,
|
---|
1026 | dfa->init_state->entrance_nodes,
|
---|
1027 | context);
|
---|
1028 | }
|
---|
1029 | else
|
---|
1030 | /* Must not happen? */
|
---|
1031 | return dfa->init_state;
|
---|
1032 | }
|
---|
1033 | else
|
---|
1034 | return dfa->init_state;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | /* Check whether the regular expression match input string INPUT or not,
|
---|
1038 | and return the index where the matching end, return -1 if not match,
|
---|
1039 | or return -2 in case of an error.
|
---|
1040 | FL_LONGEST_MATCH means we want the POSIX longest matching.
|
---|
1041 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the
|
---|
1042 | next place where we may want to try matching.
|
---|
1043 | Note that the matcher assume that the maching starts from the current
|
---|
1044 | index of the buffer. */
|
---|
1045 |
|
---|
1046 | static int
|
---|
1047 | check_matching (mctx, fl_longest_match, p_match_first)
|
---|
1048 | re_match_context_t *mctx;
|
---|
1049 | int fl_longest_match;
|
---|
1050 | int *p_match_first;
|
---|
1051 | {
|
---|
1052 | re_dfa_t *const dfa = mctx->dfa;
|
---|
1053 | reg_errcode_t err;
|
---|
1054 | int match = 0;
|
---|
1055 | int match_last = -1;
|
---|
1056 | int cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
1057 | re_dfastate_t *cur_state;
|
---|
1058 | int at_init_state = p_match_first != NULL;
|
---|
1059 | int next_start_idx = cur_str_idx;
|
---|
1060 |
|
---|
1061 | err = REG_NOERROR;
|
---|
1062 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx);
|
---|
1063 | /* An initial state must not be NULL (invalid). */
|
---|
1064 | if (BE (cur_state == NULL, 0))
|
---|
1065 | {
|
---|
1066 | assert (err == REG_ESPACE);
|
---|
1067 | return -2;
|
---|
1068 | }
|
---|
1069 |
|
---|
1070 | if (mctx->state_log != NULL)
|
---|
1071 | {
|
---|
1072 | mctx->state_log[cur_str_idx] = cur_state;
|
---|
1073 |
|
---|
1074 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them
|
---|
1075 | later. E.g. Processing back references. */
|
---|
1076 | if (BE (dfa->nbackref, 0))
|
---|
1077 | {
|
---|
1078 | at_init_state = 0;
|
---|
1079 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0);
|
---|
1080 | if (BE (err != REG_NOERROR, 0))
|
---|
1081 | return err;
|
---|
1082 |
|
---|
1083 | if (cur_state->has_backref)
|
---|
1084 | {
|
---|
1085 | err = transit_state_bkref (mctx, &cur_state->nodes);
|
---|
1086 | if (BE (err != REG_NOERROR, 0))
|
---|
1087 | return err;
|
---|
1088 | }
|
---|
1089 | }
|
---|
1090 | }
|
---|
1091 |
|
---|
1092 | /* If the RE accepts NULL string. */
|
---|
1093 | if (BE (cur_state->halt, 0))
|
---|
1094 | {
|
---|
1095 | if (!cur_state->has_constraint
|
---|
1096 | || check_halt_state_context (mctx, cur_state, cur_str_idx))
|
---|
1097 | {
|
---|
1098 | if (!fl_longest_match)
|
---|
1099 | return cur_str_idx;
|
---|
1100 | else
|
---|
1101 | {
|
---|
1102 | match_last = cur_str_idx;
|
---|
1103 | match = 1;
|
---|
1104 | }
|
---|
1105 | }
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | while (!re_string_eoi (&mctx->input))
|
---|
1109 | {
|
---|
1110 | re_dfastate_t *old_state = cur_state;
|
---|
1111 | int next_char_idx = re_string_cur_idx (&mctx->input) + 1;
|
---|
1112 |
|
---|
1113 | if (BE (next_char_idx >= mctx->input.bufs_len, 0)
|
---|
1114 | || (BE (next_char_idx >= mctx->input.valid_len, 0)
|
---|
1115 | && mctx->input.valid_len < mctx->input.len))
|
---|
1116 | {
|
---|
1117 | err = extend_buffers (mctx);
|
---|
1118 | if (BE (err != REG_NOERROR, 0))
|
---|
1119 | {
|
---|
1120 | assert (err == REG_ESPACE);
|
---|
1121 | return -2;
|
---|
1122 | }
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 | cur_state = transit_state (&err, mctx, cur_state);
|
---|
1126 | if (mctx->state_log != NULL)
|
---|
1127 | cur_state = merge_state_with_log (&err, mctx, cur_state);
|
---|
1128 |
|
---|
1129 | if (cur_state == NULL)
|
---|
1130 | {
|
---|
1131 | /* Reached the invalid state or an error. Try to recover a valid
|
---|
1132 | state using the state log, if available and if we have not
|
---|
1133 | already found a valid (even if not the longest) match. */
|
---|
1134 | if (BE (err != REG_NOERROR, 0))
|
---|
1135 | return -2;
|
---|
1136 |
|
---|
1137 | if (mctx->state_log == NULL
|
---|
1138 | || (match && !fl_longest_match)
|
---|
1139 | || (cur_state = find_recover_state (&err, mctx)) == NULL)
|
---|
1140 | break;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | if (BE (at_init_state, 0))
|
---|
1144 | {
|
---|
1145 | if (old_state == cur_state)
|
---|
1146 | next_start_idx = next_char_idx;
|
---|
1147 | else
|
---|
1148 | at_init_state = 0;
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 | if (cur_state->halt)
|
---|
1152 | {
|
---|
1153 | /* Reached a halt state.
|
---|
1154 | Check the halt state can satisfy the current context. */
|
---|
1155 | if (!cur_state->has_constraint
|
---|
1156 | || check_halt_state_context (mctx, cur_state,
|
---|
1157 | re_string_cur_idx (&mctx->input)))
|
---|
1158 | {
|
---|
1159 | /* We found an appropriate halt state. */
|
---|
1160 | match_last = re_string_cur_idx (&mctx->input);
|
---|
1161 | match = 1;
|
---|
1162 |
|
---|
1163 | /* We found a match, do not modify match_first below. */
|
---|
1164 | p_match_first = NULL;
|
---|
1165 | if (!fl_longest_match)
|
---|
1166 | break;
|
---|
1167 | }
|
---|
1168 | }
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | if (p_match_first)
|
---|
1172 | *p_match_first += next_start_idx;
|
---|
1173 |
|
---|
1174 | return match_last;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | /* Check NODE match the current context. */
|
---|
1178 |
|
---|
1179 | static int check_halt_node_context (dfa, node, context)
|
---|
1180 | const re_dfa_t *dfa;
|
---|
1181 | int node;
|
---|
1182 | unsigned int context;
|
---|
1183 | {
|
---|
1184 | re_token_type_t type = dfa->nodes[node].type;
|
---|
1185 | unsigned int constraint = dfa->nodes[node].constraint;
|
---|
1186 | if (type != END_OF_RE)
|
---|
1187 | return 0;
|
---|
1188 | if (!constraint)
|
---|
1189 | return 1;
|
---|
1190 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
|
---|
1191 | return 0;
|
---|
1192 | return 1;
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 | /* Check the halt state STATE match the current context.
|
---|
1196 | Return 0 if not match, if the node, STATE has, is a halt node and
|
---|
1197 | match the context, return the node. */
|
---|
1198 |
|
---|
1199 | static int
|
---|
1200 | check_halt_state_context (mctx, state, idx)
|
---|
1201 | const re_match_context_t *mctx;
|
---|
1202 | const re_dfastate_t *state;
|
---|
1203 | int idx;
|
---|
1204 | {
|
---|
1205 | int i;
|
---|
1206 | unsigned int context;
|
---|
1207 | #ifdef DEBUG
|
---|
1208 | assert (state->halt);
|
---|
1209 | #endif
|
---|
1210 | context = re_string_context_at (&mctx->input, idx, mctx->eflags);
|
---|
1211 | for (i = 0; i < state->nodes.nelem; ++i)
|
---|
1212 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context))
|
---|
1213 | return state->nodes.elems[i];
|
---|
1214 | return 0;
|
---|
1215 | }
|
---|
1216 |
|
---|
1217 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
|
---|
1218 | corresponding to the DFA).
|
---|
1219 | Return the destination node, and update EPS_VIA_NODES, return -1 in case
|
---|
1220 | of errors. */
|
---|
1221 |
|
---|
1222 | static int
|
---|
1223 | proceed_next_node (mctx, nregs, regs, pidx, node, eps_via_nodes, fs)
|
---|
1224 | const re_match_context_t *mctx;
|
---|
1225 | regmatch_t *regs;
|
---|
1226 | int nregs, *pidx, node;
|
---|
1227 | re_node_set *eps_via_nodes;
|
---|
1228 | struct re_fail_stack_t *fs;
|
---|
1229 | {
|
---|
1230 | re_dfa_t *const dfa = mctx->dfa;
|
---|
1231 | int i, err, dest_node;
|
---|
1232 | dest_node = -1;
|
---|
1233 | if (IS_EPSILON_NODE (dfa->nodes[node].type))
|
---|
1234 | {
|
---|
1235 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
|
---|
1236 | re_node_set *edests = &dfa->edests[node];
|
---|
1237 | int dest_node;
|
---|
1238 | err = re_node_set_insert (eps_via_nodes, node);
|
---|
1239 | if (BE (err < 0, 0))
|
---|
1240 | return -2;
|
---|
1241 | /* Pick up a valid destination, or return -1 if none is found. */
|
---|
1242 | for (dest_node = -1, i = 0; i < edests->nelem; ++i)
|
---|
1243 | {
|
---|
1244 | int candidate = edests->elems[i];
|
---|
1245 | if (!re_node_set_contains (cur_nodes, candidate))
|
---|
1246 | continue;
|
---|
1247 | if (dest_node == -1)
|
---|
1248 | dest_node = candidate;
|
---|
1249 |
|
---|
1250 | else
|
---|
1251 | {
|
---|
1252 | /* In order to avoid infinite loop like "(a*)*", return the second
|
---|
1253 | epsilon-transition if the first was already considered. */
|
---|
1254 | if (re_node_set_contains (eps_via_nodes, dest_node))
|
---|
1255 | return candidate;
|
---|
1256 |
|
---|
1257 | /* Otherwise, push the second epsilon-transition on the fail stack. */
|
---|
1258 | else if (fs != NULL
|
---|
1259 | && push_fail_stack (fs, *pidx, candidate, nregs, regs,
|
---|
1260 | eps_via_nodes) != REG_NOERROR)
|
---|
1261 | return -2;
|
---|
1262 |
|
---|
1263 | /* We know we are going to exit. */
|
---|
1264 | break;
|
---|
1265 | }
|
---|
1266 | }
|
---|
1267 | return dest_node;
|
---|
1268 | }
|
---|
1269 | else
|
---|
1270 | {
|
---|
1271 | int naccepted = 0;
|
---|
1272 | re_token_type_t type = dfa->nodes[node].type;
|
---|
1273 |
|
---|
1274 | #ifdef RE_ENABLE_I18N
|
---|
1275 | if (dfa->nodes[node].accept_mb)
|
---|
1276 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx);
|
---|
1277 | else
|
---|
1278 | #endif /* RE_ENABLE_I18N */
|
---|
1279 | if (type == OP_BACK_REF)
|
---|
1280 | {
|
---|
1281 | int subexp_idx = dfa->nodes[node].opr.idx + 1;
|
---|
1282 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
|
---|
1283 | if (fs != NULL)
|
---|
1284 | {
|
---|
1285 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
|
---|
1286 | return -1;
|
---|
1287 | else if (naccepted)
|
---|
1288 | {
|
---|
1289 | char *buf = (char *) re_string_get_buffer (&mctx->input);
|
---|
1290 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
|
---|
1291 | naccepted) != 0)
|
---|
1292 | return -1;
|
---|
1293 | }
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 | if (naccepted == 0)
|
---|
1297 | {
|
---|
1298 | err = re_node_set_insert (eps_via_nodes, node);
|
---|
1299 | if (BE (err < 0, 0))
|
---|
1300 | return -2;
|
---|
1301 | dest_node = dfa->edests[node].elems[0];
|
---|
1302 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
|
---|
1303 | dest_node))
|
---|
1304 | return dest_node;
|
---|
1305 | }
|
---|
1306 | }
|
---|
1307 |
|
---|
1308 | if (naccepted != 0
|
---|
1309 | || check_node_accept (mctx, dfa->nodes + node, *pidx))
|
---|
1310 | {
|
---|
1311 | dest_node = dfa->nexts[node];
|
---|
1312 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
|
---|
1313 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
|
---|
1314 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
|
---|
1315 | dest_node)))
|
---|
1316 | return -1;
|
---|
1317 | re_node_set_empty (eps_via_nodes);
|
---|
1318 | return dest_node;
|
---|
1319 | }
|
---|
1320 | }
|
---|
1321 | return -1;
|
---|
1322 | }
|
---|
1323 |
|
---|
1324 | static reg_errcode_t
|
---|
1325 | push_fail_stack (fs, str_idx, dest_node, nregs, regs, eps_via_nodes)
|
---|
1326 | struct re_fail_stack_t *fs;
|
---|
1327 | int str_idx, dest_node, nregs;
|
---|
1328 | regmatch_t *regs;
|
---|
1329 | re_node_set *eps_via_nodes;
|
---|
1330 | {
|
---|
1331 | reg_errcode_t err;
|
---|
1332 | int num = fs->num++;
|
---|
1333 | if (fs->num == fs->alloc)
|
---|
1334 | {
|
---|
1335 | struct re_fail_stack_ent_t *new_array;
|
---|
1336 | new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
|
---|
1337 | * fs->alloc * 2));
|
---|
1338 | if (new_array == NULL)
|
---|
1339 | return REG_ESPACE;
|
---|
1340 | fs->alloc *= 2;
|
---|
1341 | fs->stack = new_array;
|
---|
1342 | }
|
---|
1343 | fs->stack[num].idx = str_idx;
|
---|
1344 | fs->stack[num].node = dest_node;
|
---|
1345 | fs->stack[num].regs = re_malloc (regmatch_t, nregs);
|
---|
1346 | if (fs->stack[num].regs == NULL)
|
---|
1347 | return REG_ESPACE;
|
---|
1348 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
|
---|
1349 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
|
---|
1350 | return err;
|
---|
1351 | }
|
---|
1352 |
|
---|
1353 | static int
|
---|
1354 | pop_fail_stack (fs, pidx, nregs, regs, eps_via_nodes)
|
---|
1355 | struct re_fail_stack_t *fs;
|
---|
1356 | int *pidx, nregs;
|
---|
1357 | regmatch_t *regs;
|
---|
1358 | re_node_set *eps_via_nodes;
|
---|
1359 | {
|
---|
1360 | int num = --fs->num;
|
---|
1361 | assert (num >= 0);
|
---|
1362 | *pidx = fs->stack[num].idx;
|
---|
1363 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
|
---|
1364 | re_node_set_free (eps_via_nodes);
|
---|
1365 | re_free (fs->stack[num].regs);
|
---|
1366 | *eps_via_nodes = fs->stack[num].eps_via_nodes;
|
---|
1367 | return fs->stack[num].node;
|
---|
1368 | }
|
---|
1369 |
|
---|
1370 | /* Set the positions where the subexpressions are starts/ends to registers
|
---|
1371 | PMATCH.
|
---|
1372 | Note: We assume that pmatch[0] is already set, and
|
---|
1373 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */
|
---|
1374 |
|
---|
1375 | static reg_errcode_t
|
---|
1376 | set_regs (preg, mctx, nmatch, pmatch, fl_backtrack)
|
---|
1377 | const regex_t *preg;
|
---|
1378 | const re_match_context_t *mctx;
|
---|
1379 | size_t nmatch;
|
---|
1380 | regmatch_t *pmatch;
|
---|
1381 | int fl_backtrack;
|
---|
1382 | {
|
---|
1383 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
---|
1384 | int idx, cur_node;
|
---|
1385 | re_node_set eps_via_nodes;
|
---|
1386 | struct re_fail_stack_t *fs;
|
---|
1387 | struct re_fail_stack_t fs_body = { 0, 2, NULL };
|
---|
1388 | regmatch_t *prev_idx_match;
|
---|
1389 |
|
---|
1390 | #ifdef DEBUG
|
---|
1391 | assert (nmatch > 1);
|
---|
1392 | assert (mctx->state_log != NULL);
|
---|
1393 | #endif
|
---|
1394 | if (fl_backtrack)
|
---|
1395 | {
|
---|
1396 | fs = &fs_body;
|
---|
1397 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
|
---|
1398 | if (fs->stack == NULL)
|
---|
1399 | return REG_ESPACE;
|
---|
1400 | }
|
---|
1401 | else
|
---|
1402 | fs = NULL;
|
---|
1403 |
|
---|
1404 | cur_node = dfa->init_node;
|
---|
1405 | re_node_set_init_empty (&eps_via_nodes);
|
---|
1406 |
|
---|
1407 | prev_idx_match = re_malloc (regmatch_t, nmatch);
|
---|
1408 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
|
---|
1409 |
|
---|
1410 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
|
---|
1411 | {
|
---|
1412 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch);
|
---|
1413 |
|
---|
1414 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
|
---|
1415 | {
|
---|
1416 | int reg_idx;
|
---|
1417 | if (fs)
|
---|
1418 | {
|
---|
1419 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
|
---|
1420 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
|
---|
1421 | break;
|
---|
1422 | if (reg_idx == nmatch)
|
---|
1423 | {
|
---|
1424 | re_node_set_free (&eps_via_nodes);
|
---|
1425 | re_free (prev_idx_match);
|
---|
1426 | return free_fail_stack_return (fs);
|
---|
1427 | }
|
---|
1428 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
|
---|
1429 | &eps_via_nodes);
|
---|
1430 | }
|
---|
1431 | else
|
---|
1432 | {
|
---|
1433 | re_node_set_free (&eps_via_nodes);
|
---|
1434 | re_free (prev_idx_match);
|
---|
1435 | return REG_NOERROR;
|
---|
1436 | }
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | /* Proceed to next node. */
|
---|
1440 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node,
|
---|
1441 | &eps_via_nodes, fs);
|
---|
1442 |
|
---|
1443 | if (BE (cur_node < 0, 0))
|
---|
1444 | {
|
---|
1445 | if (BE (cur_node == -2, 0))
|
---|
1446 | {
|
---|
1447 | re_node_set_free (&eps_via_nodes);
|
---|
1448 | free_fail_stack_return (fs);
|
---|
1449 | re_free (prev_idx_match);
|
---|
1450 | return REG_ESPACE;
|
---|
1451 | }
|
---|
1452 | if (fs)
|
---|
1453 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
|
---|
1454 | &eps_via_nodes);
|
---|
1455 | else
|
---|
1456 | {
|
---|
1457 | re_node_set_free (&eps_via_nodes);
|
---|
1458 | re_free (prev_idx_match);
|
---|
1459 | return REG_NOMATCH;
|
---|
1460 | }
|
---|
1461 | }
|
---|
1462 | }
|
---|
1463 | re_node_set_free (&eps_via_nodes);
|
---|
1464 | re_free (prev_idx_match);
|
---|
1465 | return free_fail_stack_return (fs);
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 | static reg_errcode_t
|
---|
1469 | free_fail_stack_return (fs)
|
---|
1470 | struct re_fail_stack_t *fs;
|
---|
1471 | {
|
---|
1472 | if (fs)
|
---|
1473 | {
|
---|
1474 | int fs_idx;
|
---|
1475 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
|
---|
1476 | {
|
---|
1477 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
|
---|
1478 | re_free (fs->stack[fs_idx].regs);
|
---|
1479 | }
|
---|
1480 | re_free (fs->stack);
|
---|
1481 | }
|
---|
1482 | return REG_NOERROR;
|
---|
1483 | }
|
---|
1484 |
|
---|
1485 | static void
|
---|
1486 | update_regs (dfa, pmatch, prev_idx_match, cur_node, cur_idx, nmatch)
|
---|
1487 | re_dfa_t *dfa;
|
---|
1488 | regmatch_t *pmatch, *prev_idx_match;
|
---|
1489 | int cur_node, cur_idx, nmatch;
|
---|
1490 | {
|
---|
1491 | int type = dfa->nodes[cur_node].type;
|
---|
1492 | if (type == OP_OPEN_SUBEXP)
|
---|
1493 | {
|
---|
1494 | int reg_num = dfa->nodes[cur_node].opr.idx + 1;
|
---|
1495 |
|
---|
1496 | /* We are at the first node of this sub expression. */
|
---|
1497 | if (reg_num < nmatch)
|
---|
1498 | {
|
---|
1499 | pmatch[reg_num].rm_so = cur_idx;
|
---|
1500 | pmatch[reg_num].rm_eo = -1;
|
---|
1501 | }
|
---|
1502 | }
|
---|
1503 | else if (type == OP_CLOSE_SUBEXP)
|
---|
1504 | {
|
---|
1505 | int reg_num = dfa->nodes[cur_node].opr.idx + 1;
|
---|
1506 | if (reg_num < nmatch)
|
---|
1507 | {
|
---|
1508 | /* We are at the last node of this sub expression. */
|
---|
1509 | if (pmatch[reg_num].rm_so < cur_idx)
|
---|
1510 | {
|
---|
1511 | pmatch[reg_num].rm_eo = cur_idx;
|
---|
1512 | /* This is a non-empty match or we are not inside an optional
|
---|
1513 | subexpression. Accept this right away. */
|
---|
1514 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
|
---|
1515 | }
|
---|
1516 | else
|
---|
1517 | {
|
---|
1518 | if (dfa->nodes[cur_node].opt_subexp
|
---|
1519 | && prev_idx_match[reg_num].rm_so != -1)
|
---|
1520 | /* We transited through an empty match for an optional
|
---|
1521 | subexpression, like (a?)*, and this is not the subexp's
|
---|
1522 | first match. Copy back the old content of the registers
|
---|
1523 | so that matches of an inner subexpression are undone as
|
---|
1524 | well, like in ((a?))*. */
|
---|
1525 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch);
|
---|
1526 | else
|
---|
1527 | /* We completed a subexpression, but it may be part of
|
---|
1528 | an optional one, so do not update PREV_IDX_MATCH. */
|
---|
1529 | pmatch[reg_num].rm_eo = cur_idx;
|
---|
1530 | }
|
---|
1531 | }
|
---|
1532 | }
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
|
---|
1536 | and sift the nodes in each states according to the following rules.
|
---|
1537 | Updated state_log will be wrote to STATE_LOG.
|
---|
1538 |
|
---|
1539 | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
|
---|
1540 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log):
|
---|
1541 | If `a' isn't the LAST_NODE and `a' can't epsilon transit to
|
---|
1542 | the LAST_NODE, we throw away the node `a'.
|
---|
1543 | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
|
---|
1544 | string `s' and transit to `b':
|
---|
1545 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
|
---|
1546 | away the node `a'.
|
---|
1547 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
|
---|
1548 | thrown away, we throw away the node `a'.
|
---|
1549 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b':
|
---|
1550 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
|
---|
1551 | node `a'.
|
---|
1552 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away,
|
---|
1553 | we throw away the node `a'. */
|
---|
1554 |
|
---|
1555 | #define STATE_NODE_CONTAINS(state,node) \
|
---|
1556 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node))
|
---|
1557 |
|
---|
1558 | static reg_errcode_t
|
---|
1559 | sift_states_backward (mctx, sctx)
|
---|
1560 | re_match_context_t *mctx;
|
---|
1561 | re_sift_context_t *sctx;
|
---|
1562 | {
|
---|
1563 | reg_errcode_t err;
|
---|
1564 | int null_cnt = 0;
|
---|
1565 | int str_idx = sctx->last_str_idx;
|
---|
1566 | re_node_set cur_dest;
|
---|
1567 |
|
---|
1568 | #ifdef DEBUG
|
---|
1569 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
|
---|
1570 | #endif
|
---|
1571 |
|
---|
1572 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon
|
---|
1573 | transit to the last_node and the last_node itself. */
|
---|
1574 | err = re_node_set_init_1 (&cur_dest, sctx->last_node);
|
---|
1575 | if (BE (err != REG_NOERROR, 0))
|
---|
1576 | return err;
|
---|
1577 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
|
---|
1578 | if (BE (err != REG_NOERROR, 0))
|
---|
1579 | goto free_return;
|
---|
1580 |
|
---|
1581 | /* Then check each states in the state_log. */
|
---|
1582 | while (str_idx > 0)
|
---|
1583 | {
|
---|
1584 | /* Update counters. */
|
---|
1585 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
|
---|
1586 | if (null_cnt > mctx->max_mb_elem_len)
|
---|
1587 | {
|
---|
1588 | memset (sctx->sifted_states, '\0',
|
---|
1589 | sizeof (re_dfastate_t *) * str_idx);
|
---|
1590 | re_node_set_free (&cur_dest);
|
---|
1591 | return REG_NOERROR;
|
---|
1592 | }
|
---|
1593 | re_node_set_empty (&cur_dest);
|
---|
1594 | --str_idx;
|
---|
1595 |
|
---|
1596 | if (mctx->state_log[str_idx])
|
---|
1597 | {
|
---|
1598 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest);
|
---|
1599 | if (BE (err != REG_NOERROR, 0))
|
---|
1600 | goto free_return;
|
---|
1601 | }
|
---|
1602 |
|
---|
1603 | /* Add all the nodes which satisfy the following conditions:
|
---|
1604 | - It can epsilon transit to a node in CUR_DEST.
|
---|
1605 | - It is in CUR_SRC.
|
---|
1606 | And update state_log. */
|
---|
1607 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
|
---|
1608 | if (BE (err != REG_NOERROR, 0))
|
---|
1609 | goto free_return;
|
---|
1610 | }
|
---|
1611 | err = REG_NOERROR;
|
---|
1612 | free_return:
|
---|
1613 | re_node_set_free (&cur_dest);
|
---|
1614 | return err;
|
---|
1615 | }
|
---|
1616 |
|
---|
1617 | static reg_errcode_t
|
---|
1618 | build_sifted_states (mctx, sctx, str_idx, cur_dest)
|
---|
1619 | re_match_context_t *mctx;
|
---|
1620 | re_sift_context_t *sctx;
|
---|
1621 | int str_idx;
|
---|
1622 | re_node_set *cur_dest;
|
---|
1623 | {
|
---|
1624 | re_dfa_t *const dfa = mctx->dfa;
|
---|
1625 | re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes;
|
---|
1626 | int i;
|
---|
1627 |
|
---|
1628 | /* Then build the next sifted state.
|
---|
1629 | We build the next sifted state on `cur_dest', and update
|
---|
1630 | `sifted_states[str_idx]' with `cur_dest'.
|
---|
1631 | Note:
|
---|
1632 | `cur_dest' is the sifted state from `state_log[str_idx + 1]'.
|
---|
1633 | `cur_src' points the node_set of the old `state_log[str_idx]'
|
---|
1634 | (with the epsilon nodes pre-filtered out). */
|
---|
1635 | for (i = 0; i < cur_src->nelem; i++)
|
---|
1636 | {
|
---|
1637 | int prev_node = cur_src->elems[i];
|
---|
1638 | int naccepted = 0;
|
---|
1639 | int ret;
|
---|
1640 |
|
---|
1641 | #ifdef DEBUG
|
---|
1642 | re_token_type_t type = dfa->nodes[prev_node].type;
|
---|
1643 | assert (!IS_EPSILON_NODE (type));
|
---|
1644 | #endif
|
---|
1645 | #ifdef RE_ENABLE_I18N
|
---|
1646 | /* If the node may accept `multi byte'. */
|
---|
1647 | if (dfa->nodes[prev_node].accept_mb)
|
---|
1648 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node,
|
---|
1649 | str_idx, sctx->last_str_idx);
|
---|
1650 | #endif /* RE_ENABLE_I18N */
|
---|
1651 |
|
---|
1652 | /* We don't check backreferences here.
|
---|
1653 | See update_cur_sifted_state(). */
|
---|
1654 | if (!naccepted
|
---|
1655 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx)
|
---|
1656 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
|
---|
1657 | dfa->nexts[prev_node]))
|
---|
1658 | naccepted = 1;
|
---|
1659 |
|
---|
1660 | if (naccepted == 0)
|
---|
1661 | continue;
|
---|
1662 |
|
---|
1663 | if (sctx->limits.nelem)
|
---|
1664 | {
|
---|
1665 | int to_idx = str_idx + naccepted;
|
---|
1666 | if (check_dst_limits (mctx, &sctx->limits,
|
---|
1667 | dfa->nexts[prev_node], to_idx,
|
---|
1668 | prev_node, str_idx))
|
---|
1669 | continue;
|
---|
1670 | }
|
---|
1671 | ret = re_node_set_insert (cur_dest, prev_node);
|
---|
1672 | if (BE (ret == -1, 0))
|
---|
1673 | return REG_ESPACE;
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | return REG_NOERROR;
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 | /* Helper functions. */
|
---|
1680 |
|
---|
1681 | static reg_errcode_t
|
---|
1682 | clean_state_log_if_needed (mctx, next_state_log_idx)
|
---|
1683 | re_match_context_t *mctx;
|
---|
1684 | int next_state_log_idx;
|
---|
1685 | {
|
---|
1686 | int top = mctx->state_log_top;
|
---|
1687 |
|
---|
1688 | if (next_state_log_idx >= mctx->input.bufs_len
|
---|
1689 | || (next_state_log_idx >= mctx->input.valid_len
|
---|
1690 | && mctx->input.valid_len < mctx->input.len))
|
---|
1691 | {
|
---|
1692 | reg_errcode_t err;
|
---|
1693 | err = extend_buffers (mctx);
|
---|
1694 | if (BE (err != REG_NOERROR, 0))
|
---|
1695 | return err;
|
---|
1696 | }
|
---|
1697 |
|
---|
1698 | if (top < next_state_log_idx)
|
---|
1699 | {
|
---|
1700 | memset (mctx->state_log + top + 1, '\0',
|
---|
1701 | sizeof (re_dfastate_t *) * (next_state_log_idx - top));
|
---|
1702 | mctx->state_log_top = next_state_log_idx;
|
---|
1703 | }
|
---|
1704 | return REG_NOERROR;
|
---|
1705 | }
|
---|
1706 |
|
---|
1707 | static reg_errcode_t
|
---|
1708 | merge_state_array (dfa, dst, src, num)
|
---|
1709 | re_dfa_t *dfa;
|
---|
1710 | re_dfastate_t **dst;
|
---|
1711 | re_dfastate_t **src;
|
---|
1712 | int num;
|
---|
1713 | {
|
---|
1714 | int st_idx;
|
---|
1715 | reg_errcode_t err;
|
---|
1716 | for (st_idx = 0; st_idx < num; ++st_idx)
|
---|
1717 | {
|
---|
1718 | if (dst[st_idx] == NULL)
|
---|
1719 | dst[st_idx] = src[st_idx];
|
---|
1720 | else if (src[st_idx] != NULL)
|
---|
1721 | {
|
---|
1722 | re_node_set merged_set;
|
---|
1723 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
|
---|
1724 | &src[st_idx]->nodes);
|
---|
1725 | if (BE (err != REG_NOERROR, 0))
|
---|
1726 | return err;
|
---|
1727 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
|
---|
1728 | re_node_set_free (&merged_set);
|
---|
1729 | if (BE (err != REG_NOERROR, 0))
|
---|
1730 | return err;
|
---|
1731 | }
|
---|
1732 | }
|
---|
1733 | return REG_NOERROR;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 | static reg_errcode_t
|
---|
1737 | update_cur_sifted_state (mctx, sctx, str_idx, dest_nodes)
|
---|
1738 | re_match_context_t *mctx;
|
---|
1739 | re_sift_context_t *sctx;
|
---|
1740 | int str_idx;
|
---|
1741 | re_node_set *dest_nodes;
|
---|
1742 | {
|
---|
1743 | re_dfa_t *const dfa = mctx->dfa;
|
---|
1744 | reg_errcode_t err;
|
---|
1745 | const re_node_set *candidates;
|
---|
1746 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL
|
---|
1747 | : &mctx->state_log[str_idx]->nodes);
|
---|
1748 |
|
---|
1749 | if (dest_nodes->nelem == 0)
|
---|
1750 | sctx->sifted_states[str_idx] = NULL;
|
---|
1751 | else
|
---|
1752 | {
|
---|
1753 | if (candidates)
|
---|
1754 | {
|
---|
1755 | /* At first, add the nodes which can epsilon transit to a node in
|
---|
1756 | DEST_NODE. */
|
---|
1757 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
|
---|
1758 | if (BE (err != REG_NOERROR, 0))
|
---|
1759 | return err;
|
---|
1760 |
|
---|
1761 | /* Then, check the limitations in the current sift_context. */
|
---|
1762 | if (sctx->limits.nelem)
|
---|
1763 | {
|
---|
1764 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
|
---|
1765 | mctx->bkref_ents, str_idx);
|
---|
1766 | if (BE (err != REG_NOERROR, 0))
|
---|
1767 | return err;
|
---|
1768 | }
|
---|
1769 | }
|
---|
1770 |
|
---|
1771 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
|
---|
1772 | if (BE (err != REG_NOERROR, 0))
|
---|
1773 | return err;
|
---|
1774 | }
|
---|
1775 |
|
---|
1776 | if (candidates && mctx->state_log[str_idx]->has_backref)
|
---|
1777 | {
|
---|
1778 | err = sift_states_bkref (mctx, sctx, str_idx, candidates);
|
---|
1779 | if (BE (err != REG_NOERROR, 0))
|
---|
1780 | return err;
|
---|
1781 | }
|
---|
1782 | return REG_NOERROR;
|
---|
1783 | }
|
---|
1784 |
|
---|
1785 | static reg_errcode_t
|
---|
1786 | add_epsilon_src_nodes (dfa, dest_nodes, candidates)
|
---|
1787 | re_dfa_t *dfa;
|
---|
1788 | re_node_set *dest_nodes;
|
---|
1789 | const re_node_set *candidates;
|
---|
1790 | {
|
---|
1791 | reg_errcode_t err = REG_NOERROR;
|
---|
1792 | int i;
|
---|
1793 |
|
---|
1794 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes);
|
---|
1795 | if (BE (err != REG_NOERROR, 0))
|
---|
1796 | return err;
|
---|
1797 |
|
---|
1798 | if (!state->inveclosure.alloc)
|
---|
1799 | {
|
---|
1800 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem);
|
---|
1801 | if (BE (err != REG_NOERROR, 0))
|
---|
1802 | return REG_ESPACE;
|
---|
1803 | for (i = 0; i < dest_nodes->nelem; i++)
|
---|
1804 | re_node_set_merge (&state->inveclosure,
|
---|
1805 | dfa->inveclosures + dest_nodes->elems[i]);
|
---|
1806 | }
|
---|
1807 | return re_node_set_add_intersect (dest_nodes, candidates,
|
---|
1808 | &state->inveclosure);
|
---|
1809 | }
|
---|
1810 |
|
---|
1811 | static reg_errcode_t
|
---|
1812 | sub_epsilon_src_nodes (dfa, node, dest_nodes, candidates)
|
---|
1813 | re_dfa_t *dfa;
|
---|
1814 | int node;
|
---|
1815 | re_node_set *dest_nodes;
|
---|
1816 | const re_node_set *candidates;
|
---|
1817 | {
|
---|
1818 | int ecl_idx;
|
---|
1819 | reg_errcode_t err;
|
---|
1820 | re_node_set *inv_eclosure = dfa->inveclosures + node;
|
---|
1821 | re_node_set except_nodes;
|
---|
1822 | re_node_set_init_empty (&except_nodes);
|
---|
1823 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
|
---|
1824 | {
|
---|
1825 | int cur_node = inv_eclosure->elems[ecl_idx];
|
---|
1826 | if (cur_node == node)
|
---|
1827 | continue;
|
---|
1828 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
|
---|
1829 | {
|
---|
1830 | int edst1 = dfa->edests[cur_node].elems[0];
|
---|
1831 | int edst2 = ((dfa->edests[cur_node].nelem > 1)
|
---|
1832 | ? dfa->edests[cur_node].elems[1] : -1);
|
---|
1833 | if ((!re_node_set_contains (inv_eclosure, edst1)
|
---|
1834 | && re_node_set_contains (dest_nodes, edst1))
|
---|
1835 | || (edst2 > 0
|
---|
1836 | && !re_node_set_contains (inv_eclosure, edst2)
|
---|
1837 | && re_node_set_contains (dest_nodes, edst2)))
|
---|
1838 | {
|
---|
1839 | err = re_node_set_add_intersect (&except_nodes, candidates,
|
---|
1840 | dfa->inveclosures + cur_node);
|
---|
1841 | if (BE (err != REG_NOERROR, 0))
|
---|
1842 | {
|
---|
1843 | re_node_set_free (&except_nodes);
|
---|
1844 | return err;
|
---|
1845 | }
|
---|
1846 | }
|
---|
1847 | }
|
---|
1848 | }
|
---|
1849 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
|
---|
1850 | {
|
---|
1851 | int cur_node = inv_eclosure->elems[ecl_idx];
|
---|
1852 | if (!re_node_set_contains (&except_nodes, cur_node))
|
---|
1853 | {
|
---|
1854 | int idx = re_node_set_contains (dest_nodes, cur_node) - 1;
|
---|
1855 | re_node_set_remove_at (dest_nodes, idx);
|
---|
1856 | }
|
---|
1857 | }
|
---|
1858 | re_node_set_free (&except_nodes);
|
---|
1859 | return REG_NOERROR;
|
---|
1860 | }
|
---|
1861 |
|
---|
1862 | static int
|
---|
1863 | check_dst_limits (mctx, limits, dst_node, dst_idx, src_node, src_idx)
|
---|
1864 | re_match_context_t *mctx;
|
---|
1865 | re_node_set *limits;
|
---|
1866 | int dst_node, dst_idx, src_node, src_idx;
|
---|
1867 | {
|
---|
1868 | re_dfa_t *const dfa = mctx->dfa;
|
---|
1869 | int lim_idx, src_pos, dst_pos;
|
---|
1870 |
|
---|
1871 | int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx);
|
---|
1872 | int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx);
|
---|
1873 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
|
---|
1874 | {
|
---|
1875 | int subexp_idx;
|
---|
1876 | struct re_backref_cache_entry *ent;
|
---|
1877 | ent = mctx->bkref_ents + limits->elems[lim_idx];
|
---|
1878 | subexp_idx = dfa->nodes[ent->node].opr.idx;
|
---|
1879 |
|
---|
1880 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
|
---|
1881 | subexp_idx, dst_node, dst_idx,
|
---|
1882 | dst_bkref_idx);
|
---|
1883 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
|
---|
1884 | subexp_idx, src_node, src_idx,
|
---|
1885 | src_bkref_idx);
|
---|
1886 |
|
---|
1887 | /* In case of:
|
---|
1888 | <src> <dst> ( <subexp> )
|
---|
1889 | ( <subexp> ) <src> <dst>
|
---|
1890 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */
|
---|
1891 | if (src_pos == dst_pos)
|
---|
1892 | continue; /* This is unrelated limitation. */
|
---|
1893 | else
|
---|
1894 | return 1;
|
---|
1895 | }
|
---|
1896 | return 0;
|
---|
1897 | }
|
---|
1898 |
|
---|
1899 | static int
|
---|
1900 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, from_node, bkref_idx)
|
---|
1901 | re_match_context_t *mctx;
|
---|
1902 | int boundaries, subexp_idx, from_node, bkref_idx;
|
---|
1903 | {
|
---|
1904 | re_dfa_t *const dfa = mctx->dfa;
|
---|
1905 | re_node_set *eclosures = dfa->eclosures + from_node;
|
---|
1906 | int node_idx;
|
---|
1907 |
|
---|
1908 | /* Else, we are on the boundary: examine the nodes on the epsilon
|
---|
1909 | closure. */
|
---|
1910 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
|
---|
1911 | {
|
---|
1912 | int node = eclosures->elems[node_idx];
|
---|
1913 | switch (dfa->nodes[node].type)
|
---|
1914 | {
|
---|
1915 | case OP_BACK_REF:
|
---|
1916 | if (bkref_idx != -1)
|
---|
1917 | {
|
---|
1918 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx;
|
---|
1919 | do
|
---|
1920 | {
|
---|
1921 | int dst, cpos;
|
---|
1922 |
|
---|
1923 | if (ent->node != node)
|
---|
1924 | continue;
|
---|
1925 |
|
---|
1926 | if (subexp_idx <= 8 * sizeof (ent->eps_reachable_subexps_map)
|
---|
1927 | && !(ent->eps_reachable_subexps_map & (1 << subexp_idx)))
|
---|
1928 | continue;
|
---|
1929 |
|
---|
1930 | /* Recurse trying to reach the OP_OPEN_SUBEXP and
|
---|
1931 | OP_CLOSE_SUBEXP cases below. But, if the
|
---|
1932 | destination node is the same node as the source
|
---|
1933 | node, don't recurse because it would cause an
|
---|
1934 | infinite loop: a regex that exhibits this behavior
|
---|
1935 | is ()\1*\1* */
|
---|
1936 | dst = dfa->edests[node].elems[0];
|
---|
1937 | if (dst == from_node)
|
---|
1938 | {
|
---|
1939 | if (boundaries & 1)
|
---|
1940 | return -1;
|
---|
1941 | else /* if (boundaries & 2) */
|
---|
1942 | return 0;
|
---|
1943 | }
|
---|
1944 |
|
---|
1945 | cpos =
|
---|
1946 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
|
---|
1947 | dst, bkref_idx);
|
---|
1948 | if (cpos == -1 /* && (boundaries & 1) */)
|
---|
1949 | return -1;
|
---|
1950 | if (cpos == 0 && (boundaries & 2))
|
---|
1951 | return 0;
|
---|
1952 |
|
---|
1953 | ent->eps_reachable_subexps_map &= ~(1 << subexp_idx);
|
---|
1954 | }
|
---|
1955 | while (ent++->more);
|
---|
1956 | }
|
---|
1957 | break;
|
---|
1958 |
|
---|
1959 | case OP_OPEN_SUBEXP:
|
---|
1960 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
1961 | return -1;
|
---|
1962 | break;
|
---|
1963 |
|
---|
1964 | case OP_CLOSE_SUBEXP:
|
---|
1965 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
1966 | return 0;
|
---|
1967 | break;
|
---|
1968 |
|
---|
1969 | default:
|
---|
1970 | break;
|
---|
1971 | }
|
---|
1972 | }
|
---|
1973 |
|
---|
1974 | return (boundaries & 2) ? 1 : 0;
|
---|
1975 | }
|
---|
1976 |
|
---|
1977 | static int
|
---|
1978 | check_dst_limits_calc_pos (mctx, limit, subexp_idx, from_node, str_idx, bkref_idx)
|
---|
1979 | re_match_context_t *mctx;
|
---|
1980 | int limit, subexp_idx, from_node, str_idx, bkref_idx;
|
---|
1981 | {
|
---|
1982 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
|
---|
1983 | int boundaries;
|
---|
1984 |
|
---|
1985 | /* If we are outside the range of the subexpression, return -1 or 1. */
|
---|
1986 | if (str_idx < lim->subexp_from)
|
---|
1987 | return -1;
|
---|
1988 |
|
---|
1989 | if (lim->subexp_to < str_idx)
|
---|
1990 | return 1;
|
---|
1991 |
|
---|
1992 | /* If we are within the subexpression, return 0. */
|
---|
1993 | boundaries = (str_idx == lim->subexp_from);
|
---|
1994 | boundaries |= (str_idx == lim->subexp_to) << 1;
|
---|
1995 | if (boundaries == 0)
|
---|
1996 | return 0;
|
---|
1997 |
|
---|
1998 | /* Else, examine epsilon closure. */
|
---|
1999 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
|
---|
2000 | from_node, bkref_idx);
|
---|
2001 | }
|
---|
2002 |
|
---|
2003 | /* Check the limitations of sub expressions LIMITS, and remove the nodes
|
---|
2004 | which are against limitations from DEST_NODES. */
|
---|
2005 |
|
---|
2006 | static reg_errcode_t
|
---|
2007 | check_subexp_limits (dfa, dest_nodes, candidates, limits, bkref_ents, str_idx)
|
---|
2008 | re_dfa_t *dfa;
|
---|
2009 | re_node_set *dest_nodes;
|
---|
2010 | const re_node_set *candidates;
|
---|
2011 | re_node_set *limits;
|
---|
2012 | struct re_backref_cache_entry *bkref_ents;
|
---|
2013 | int str_idx;
|
---|
2014 | {
|
---|
2015 | reg_errcode_t err;
|
---|
2016 | int node_idx, lim_idx;
|
---|
2017 |
|
---|
2018 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
|
---|
2019 | {
|
---|
2020 | int subexp_idx;
|
---|
2021 | struct re_backref_cache_entry *ent;
|
---|
2022 | ent = bkref_ents + limits->elems[lim_idx];
|
---|
2023 |
|
---|
2024 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
|
---|
2025 | continue; /* This is unrelated limitation. */
|
---|
2026 |
|
---|
2027 | subexp_idx = dfa->nodes[ent->node].opr.idx;
|
---|
2028 | if (ent->subexp_to == str_idx)
|
---|
2029 | {
|
---|
2030 | int ops_node = -1;
|
---|
2031 | int cls_node = -1;
|
---|
2032 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
---|
2033 | {
|
---|
2034 | int node = dest_nodes->elems[node_idx];
|
---|
2035 | re_token_type_t type = dfa->nodes[node].type;
|
---|
2036 | if (type == OP_OPEN_SUBEXP
|
---|
2037 | && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
2038 | ops_node = node;
|
---|
2039 | else if (type == OP_CLOSE_SUBEXP
|
---|
2040 | && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
2041 | cls_node = node;
|
---|
2042 | }
|
---|
2043 |
|
---|
2044 | /* Check the limitation of the open subexpression. */
|
---|
2045 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */
|
---|
2046 | if (ops_node >= 0)
|
---|
2047 | {
|
---|
2048 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes,
|
---|
2049 | candidates);
|
---|
2050 | if (BE (err != REG_NOERROR, 0))
|
---|
2051 | return err;
|
---|
2052 | }
|
---|
2053 |
|
---|
2054 | /* Check the limitation of the close subexpression. */
|
---|
2055 | if (cls_node >= 0)
|
---|
2056 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
---|
2057 | {
|
---|
2058 | int node = dest_nodes->elems[node_idx];
|
---|
2059 | if (!re_node_set_contains (dfa->inveclosures + node,
|
---|
2060 | cls_node)
|
---|
2061 | && !re_node_set_contains (dfa->eclosures + node,
|
---|
2062 | cls_node))
|
---|
2063 | {
|
---|
2064 | /* It is against this limitation.
|
---|
2065 | Remove it form the current sifted state. */
|
---|
2066 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
|
---|
2067 | candidates);
|
---|
2068 | if (BE (err != REG_NOERROR, 0))
|
---|
2069 | return err;
|
---|
2070 | --node_idx;
|
---|
2071 | }
|
---|
2072 | }
|
---|
2073 | }
|
---|
2074 | else /* (ent->subexp_to != str_idx) */
|
---|
2075 | {
|
---|
2076 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
---|
2077 | {
|
---|
2078 | int node = dest_nodes->elems[node_idx];
|
---|
2079 | re_token_type_t type = dfa->nodes[node].type;
|
---|
2080 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
|
---|
2081 | {
|
---|
2082 | if (subexp_idx != dfa->nodes[node].opr.idx)
|
---|
2083 | continue;
|
---|
2084 | /* It is against this limitation.
|
---|
2085 | Remove it form the current sifted state. */
|
---|
2086 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
|
---|
2087 | candidates);
|
---|
2088 | if (BE (err != REG_NOERROR, 0))
|
---|
2089 | return err;
|
---|
2090 | }
|
---|
2091 | }
|
---|
2092 | }
|
---|
2093 | }
|
---|
2094 | return REG_NOERROR;
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 | static reg_errcode_t
|
---|
2098 | sift_states_bkref (mctx, sctx, str_idx, candidates)
|
---|
2099 | re_match_context_t *mctx;
|
---|
2100 | re_sift_context_t *sctx;
|
---|
2101 | int str_idx;
|
---|
2102 | const re_node_set *candidates;
|
---|
2103 | {
|
---|
2104 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2105 | reg_errcode_t err;
|
---|
2106 | int node_idx, node;
|
---|
2107 | re_sift_context_t local_sctx;
|
---|
2108 | int first_idx = search_cur_bkref_entry (mctx, str_idx);
|
---|
2109 |
|
---|
2110 | if (first_idx == -1)
|
---|
2111 | return REG_NOERROR;
|
---|
2112 |
|
---|
2113 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */
|
---|
2114 |
|
---|
2115 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
|
---|
2116 | {
|
---|
2117 | int enabled_idx;
|
---|
2118 | re_token_type_t type;
|
---|
2119 | struct re_backref_cache_entry *entry;
|
---|
2120 | node = candidates->elems[node_idx];
|
---|
2121 | type = dfa->nodes[node].type;
|
---|
2122 | /* Avoid infinite loop for the REs like "()\1+". */
|
---|
2123 | if (node == sctx->last_node && str_idx == sctx->last_str_idx)
|
---|
2124 | continue;
|
---|
2125 | if (type != OP_BACK_REF)
|
---|
2126 | continue;
|
---|
2127 |
|
---|
2128 | entry = mctx->bkref_ents + first_idx;
|
---|
2129 | enabled_idx = first_idx;
|
---|
2130 | do
|
---|
2131 | {
|
---|
2132 | int subexp_len, to_idx, dst_node;
|
---|
2133 | re_dfastate_t *cur_state;
|
---|
2134 |
|
---|
2135 | if (entry->node != node)
|
---|
2136 | continue;
|
---|
2137 | subexp_len = entry->subexp_to - entry->subexp_from;
|
---|
2138 | to_idx = str_idx + subexp_len;
|
---|
2139 | dst_node = (subexp_len ? dfa->nexts[node]
|
---|
2140 | : dfa->edests[node].elems[0]);
|
---|
2141 |
|
---|
2142 | if (to_idx > sctx->last_str_idx
|
---|
2143 | || sctx->sifted_states[to_idx] == NULL
|
---|
2144 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node)
|
---|
2145 | || check_dst_limits (mctx, &sctx->limits, node,
|
---|
2146 | str_idx, dst_node, to_idx))
|
---|
2147 | continue;
|
---|
2148 |
|
---|
2149 | if (local_sctx.sifted_states == NULL)
|
---|
2150 | {
|
---|
2151 | local_sctx = *sctx;
|
---|
2152 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits);
|
---|
2153 | if (BE (err != REG_NOERROR, 0))
|
---|
2154 | goto free_return;
|
---|
2155 | }
|
---|
2156 | local_sctx.last_node = node;
|
---|
2157 | local_sctx.last_str_idx = str_idx;
|
---|
2158 | err = re_node_set_insert (&local_sctx.limits, enabled_idx);
|
---|
2159 | if (BE (err < 0, 0))
|
---|
2160 | {
|
---|
2161 | err = REG_ESPACE;
|
---|
2162 | goto free_return;
|
---|
2163 | }
|
---|
2164 | cur_state = local_sctx.sifted_states[str_idx];
|
---|
2165 | err = sift_states_backward (mctx, &local_sctx);
|
---|
2166 | if (BE (err != REG_NOERROR, 0))
|
---|
2167 | goto free_return;
|
---|
2168 | if (sctx->limited_states != NULL)
|
---|
2169 | {
|
---|
2170 | err = merge_state_array (dfa, sctx->limited_states,
|
---|
2171 | local_sctx.sifted_states,
|
---|
2172 | str_idx + 1);
|
---|
2173 | if (BE (err != REG_NOERROR, 0))
|
---|
2174 | goto free_return;
|
---|
2175 | }
|
---|
2176 | local_sctx.sifted_states[str_idx] = cur_state;
|
---|
2177 | re_node_set_remove (&local_sctx.limits, enabled_idx);
|
---|
2178 |
|
---|
2179 | /* mctx->bkref_ents may have changed, reload the pointer. */
|
---|
2180 | entry = mctx->bkref_ents + enabled_idx;
|
---|
2181 | }
|
---|
2182 | while (enabled_idx++, entry++->more);
|
---|
2183 | }
|
---|
2184 | err = REG_NOERROR;
|
---|
2185 | free_return:
|
---|
2186 | if (local_sctx.sifted_states != NULL)
|
---|
2187 | {
|
---|
2188 | re_node_set_free (&local_sctx.limits);
|
---|
2189 | }
|
---|
2190 |
|
---|
2191 | return err;
|
---|
2192 | }
|
---|
2193 |
|
---|
2194 |
|
---|
2195 | #ifdef RE_ENABLE_I18N
|
---|
2196 | static int
|
---|
2197 | sift_states_iter_mb (mctx, sctx, node_idx, str_idx, max_str_idx)
|
---|
2198 | const re_match_context_t *mctx;
|
---|
2199 | re_sift_context_t *sctx;
|
---|
2200 | int node_idx, str_idx, max_str_idx;
|
---|
2201 | {
|
---|
2202 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2203 | int naccepted;
|
---|
2204 | /* Check the node can accept `multi byte'. */
|
---|
2205 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx);
|
---|
2206 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
|
---|
2207 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
|
---|
2208 | dfa->nexts[node_idx]))
|
---|
2209 | /* The node can't accept the `multi byte', or the
|
---|
2210 | destination was already thrown away, then the node
|
---|
2211 | could't accept the current input `multi byte'. */
|
---|
2212 | naccepted = 0;
|
---|
2213 | /* Otherwise, it is sure that the node could accept
|
---|
2214 | `naccepted' bytes input. */
|
---|
2215 | return naccepted;
|
---|
2216 | }
|
---|
2217 | #endif /* RE_ENABLE_I18N */
|
---|
2218 |
|
---|
2219 | |
---|
2220 |
|
---|
2221 | /* Functions for state transition. */
|
---|
2222 |
|
---|
2223 | /* Return the next state to which the current state STATE will transit by
|
---|
2224 | accepting the current input byte, and update STATE_LOG if necessary.
|
---|
2225 | If STATE can accept a multibyte char/collating element/back reference
|
---|
2226 | update the destination of STATE_LOG. */
|
---|
2227 |
|
---|
2228 | static re_dfastate_t *
|
---|
2229 | transit_state (err, mctx, state)
|
---|
2230 | reg_errcode_t *err;
|
---|
2231 | re_match_context_t *mctx;
|
---|
2232 | re_dfastate_t *state;
|
---|
2233 | {
|
---|
2234 | re_dfastate_t **trtable;
|
---|
2235 | unsigned char ch;
|
---|
2236 |
|
---|
2237 | #ifdef RE_ENABLE_I18N
|
---|
2238 | /* If the current state can accept multibyte. */
|
---|
2239 | if (BE (state->accept_mb, 0))
|
---|
2240 | {
|
---|
2241 | *err = transit_state_mb (mctx, state);
|
---|
2242 | if (BE (*err != REG_NOERROR, 0))
|
---|
2243 | return NULL;
|
---|
2244 | }
|
---|
2245 | #endif /* RE_ENABLE_I18N */
|
---|
2246 |
|
---|
2247 | /* Then decide the next state with the single byte. */
|
---|
2248 | #if 0
|
---|
2249 | if (0)
|
---|
2250 | /* don't use transition table */
|
---|
2251 | return transit_state_sb (err, mctx, state);
|
---|
2252 | #endif
|
---|
2253 |
|
---|
2254 | /* Use transition table */
|
---|
2255 | ch = re_string_fetch_byte (&mctx->input);
|
---|
2256 | for (;;)
|
---|
2257 | {
|
---|
2258 | trtable = state->trtable;
|
---|
2259 | if (BE (trtable != NULL, 1))
|
---|
2260 | return trtable[ch];
|
---|
2261 |
|
---|
2262 | trtable = state->word_trtable;
|
---|
2263 | if (BE (trtable != NULL, 1))
|
---|
2264 | {
|
---|
2265 | unsigned int context;
|
---|
2266 | context
|
---|
2267 | = re_string_context_at (&mctx->input,
|
---|
2268 | re_string_cur_idx (&mctx->input) - 1,
|
---|
2269 | mctx->eflags);
|
---|
2270 | if (IS_WORD_CONTEXT (context))
|
---|
2271 | return trtable[ch + SBC_MAX];
|
---|
2272 | else
|
---|
2273 | return trtable[ch];
|
---|
2274 | }
|
---|
2275 |
|
---|
2276 | if (!build_trtable (mctx->dfa, state))
|
---|
2277 | {
|
---|
2278 | *err = REG_ESPACE;
|
---|
2279 | return NULL;
|
---|
2280 | }
|
---|
2281 |
|
---|
2282 | /* Retry, we now have a transition table. */
|
---|
2283 | }
|
---|
2284 | }
|
---|
2285 |
|
---|
2286 | /* Update the state_log if we need */
|
---|
2287 | re_dfastate_t *
|
---|
2288 | merge_state_with_log (err, mctx, next_state)
|
---|
2289 | reg_errcode_t *err;
|
---|
2290 | re_match_context_t *mctx;
|
---|
2291 | re_dfastate_t *next_state;
|
---|
2292 | {
|
---|
2293 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2294 | int cur_idx = re_string_cur_idx (&mctx->input);
|
---|
2295 |
|
---|
2296 | if (cur_idx > mctx->state_log_top)
|
---|
2297 | {
|
---|
2298 | mctx->state_log[cur_idx] = next_state;
|
---|
2299 | mctx->state_log_top = cur_idx;
|
---|
2300 | }
|
---|
2301 | else if (mctx->state_log[cur_idx] == 0)
|
---|
2302 | {
|
---|
2303 | mctx->state_log[cur_idx] = next_state;
|
---|
2304 | }
|
---|
2305 | else
|
---|
2306 | {
|
---|
2307 | re_dfastate_t *pstate;
|
---|
2308 | unsigned int context;
|
---|
2309 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
|
---|
2310 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is
|
---|
2311 | the destination of a multibyte char/collating element/
|
---|
2312 | back reference. Then the next state is the union set of
|
---|
2313 | these destinations and the results of the transition table. */
|
---|
2314 | pstate = mctx->state_log[cur_idx];
|
---|
2315 | log_nodes = pstate->entrance_nodes;
|
---|
2316 | if (next_state != NULL)
|
---|
2317 | {
|
---|
2318 | table_nodes = next_state->entrance_nodes;
|
---|
2319 | *err = re_node_set_init_union (&next_nodes, table_nodes,
|
---|
2320 | log_nodes);
|
---|
2321 | if (BE (*err != REG_NOERROR, 0))
|
---|
2322 | return NULL;
|
---|
2323 | }
|
---|
2324 | else
|
---|
2325 | next_nodes = *log_nodes;
|
---|
2326 | /* Note: We already add the nodes of the initial state,
|
---|
2327 | then we don't need to add them here. */
|
---|
2328 |
|
---|
2329 | context = re_string_context_at (&mctx->input,
|
---|
2330 | re_string_cur_idx (&mctx->input) - 1,
|
---|
2331 | mctx->eflags);
|
---|
2332 | next_state = mctx->state_log[cur_idx]
|
---|
2333 | = re_acquire_state_context (err, dfa, &next_nodes, context);
|
---|
2334 | /* We don't need to check errors here, since the return value of
|
---|
2335 | this function is next_state and ERR is already set. */
|
---|
2336 |
|
---|
2337 | if (table_nodes != NULL)
|
---|
2338 | re_node_set_free (&next_nodes);
|
---|
2339 | }
|
---|
2340 |
|
---|
2341 | if (BE (dfa->nbackref, 0) && next_state != NULL)
|
---|
2342 | {
|
---|
2343 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them
|
---|
2344 | later. We must check them here, since the back references in the
|
---|
2345 | next state might use them. */
|
---|
2346 | *err = check_subexp_matching_top (mctx, &next_state->nodes,
|
---|
2347 | cur_idx);
|
---|
2348 | if (BE (*err != REG_NOERROR, 0))
|
---|
2349 | return NULL;
|
---|
2350 |
|
---|
2351 | /* If the next state has back references. */
|
---|
2352 | if (next_state->has_backref)
|
---|
2353 | {
|
---|
2354 | *err = transit_state_bkref (mctx, &next_state->nodes);
|
---|
2355 | if (BE (*err != REG_NOERROR, 0))
|
---|
2356 | return NULL;
|
---|
2357 | next_state = mctx->state_log[cur_idx];
|
---|
2358 | }
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 | return next_state;
|
---|
2362 | }
|
---|
2363 |
|
---|
2364 | /* Skip bytes in the input that correspond to part of a
|
---|
2365 | multi-byte match, then look in the log for a state
|
---|
2366 | from which to restart matching. */
|
---|
2367 | re_dfastate_t *
|
---|
2368 | find_recover_state (err, mctx)
|
---|
2369 | reg_errcode_t *err;
|
---|
2370 | re_match_context_t *mctx;
|
---|
2371 | {
|
---|
2372 | re_dfastate_t *cur_state = NULL;
|
---|
2373 | do
|
---|
2374 | {
|
---|
2375 | int max = mctx->state_log_top;
|
---|
2376 | int cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
2377 |
|
---|
2378 | do
|
---|
2379 | {
|
---|
2380 | if (++cur_str_idx > max)
|
---|
2381 | return NULL;
|
---|
2382 | re_string_skip_bytes (&mctx->input, 1);
|
---|
2383 | }
|
---|
2384 | while (mctx->state_log[cur_str_idx] == NULL);
|
---|
2385 |
|
---|
2386 | cur_state = merge_state_with_log (err, mctx, NULL);
|
---|
2387 | }
|
---|
2388 | while (err == REG_NOERROR && cur_state == NULL);
|
---|
2389 | return cur_state;
|
---|
2390 | }
|
---|
2391 |
|
---|
2392 | /* Helper functions for transit_state. */
|
---|
2393 |
|
---|
2394 | /* From the node set CUR_NODES, pick up the nodes whose types are
|
---|
2395 | OP_OPEN_SUBEXP and which have corresponding back references in the regular
|
---|
2396 | expression. And register them to use them later for evaluating the
|
---|
2397 | correspoding back references. */
|
---|
2398 |
|
---|
2399 | static reg_errcode_t
|
---|
2400 | check_subexp_matching_top (mctx, cur_nodes, str_idx)
|
---|
2401 | re_match_context_t *mctx;
|
---|
2402 | re_node_set *cur_nodes;
|
---|
2403 | int str_idx;
|
---|
2404 | {
|
---|
2405 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2406 | int node_idx;
|
---|
2407 | reg_errcode_t err;
|
---|
2408 |
|
---|
2409 | /* TODO: This isn't efficient.
|
---|
2410 | Because there might be more than one nodes whose types are
|
---|
2411 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
|
---|
2412 | nodes.
|
---|
2413 | E.g. RE: (a){2} */
|
---|
2414 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
|
---|
2415 | {
|
---|
2416 | int node = cur_nodes->elems[node_idx];
|
---|
2417 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP
|
---|
2418 | && dfa->nodes[node].opr.idx < (8 * sizeof (dfa->used_bkref_map))
|
---|
2419 | && dfa->used_bkref_map & (1 << dfa->nodes[node].opr.idx))
|
---|
2420 | {
|
---|
2421 | err = match_ctx_add_subtop (mctx, node, str_idx);
|
---|
2422 | if (BE (err != REG_NOERROR, 0))
|
---|
2423 | return err;
|
---|
2424 | }
|
---|
2425 | }
|
---|
2426 | return REG_NOERROR;
|
---|
2427 | }
|
---|
2428 |
|
---|
2429 | #if 0
|
---|
2430 | /* Return the next state to which the current state STATE will transit by
|
---|
2431 | accepting the current input byte. */
|
---|
2432 |
|
---|
2433 | static re_dfastate_t *
|
---|
2434 | transit_state_sb (err, mctx, state)
|
---|
2435 | reg_errcode_t *err;
|
---|
2436 | re_match_context_t *mctx;
|
---|
2437 | re_dfastate_t *state;
|
---|
2438 | {
|
---|
2439 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2440 | re_node_set next_nodes;
|
---|
2441 | re_dfastate_t *next_state;
|
---|
2442 | int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
2443 | unsigned int context;
|
---|
2444 |
|
---|
2445 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
|
---|
2446 | if (BE (*err != REG_NOERROR, 0))
|
---|
2447 | return NULL;
|
---|
2448 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
|
---|
2449 | {
|
---|
2450 | int cur_node = state->nodes.elems[node_cnt];
|
---|
2451 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx))
|
---|
2452 | {
|
---|
2453 | *err = re_node_set_merge (&next_nodes,
|
---|
2454 | dfa->eclosures + dfa->nexts[cur_node]);
|
---|
2455 | if (BE (*err != REG_NOERROR, 0))
|
---|
2456 | {
|
---|
2457 | re_node_set_free (&next_nodes);
|
---|
2458 | return NULL;
|
---|
2459 | }
|
---|
2460 | }
|
---|
2461 | }
|
---|
2462 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags);
|
---|
2463 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
|
---|
2464 | /* We don't need to check errors here, since the return value of
|
---|
2465 | this function is next_state and ERR is already set. */
|
---|
2466 |
|
---|
2467 | re_node_set_free (&next_nodes);
|
---|
2468 | re_string_skip_bytes (&mctx->input, 1);
|
---|
2469 | return next_state;
|
---|
2470 | }
|
---|
2471 | #endif
|
---|
2472 |
|
---|
2473 | #ifdef RE_ENABLE_I18N
|
---|
2474 | static reg_errcode_t
|
---|
2475 | transit_state_mb (mctx, pstate)
|
---|
2476 | re_match_context_t *mctx;
|
---|
2477 | re_dfastate_t *pstate;
|
---|
2478 | {
|
---|
2479 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2480 | reg_errcode_t err;
|
---|
2481 | int i;
|
---|
2482 |
|
---|
2483 | for (i = 0; i < pstate->nodes.nelem; ++i)
|
---|
2484 | {
|
---|
2485 | re_node_set dest_nodes, *new_nodes;
|
---|
2486 | int cur_node_idx = pstate->nodes.elems[i];
|
---|
2487 | int naccepted, dest_idx;
|
---|
2488 | unsigned int context;
|
---|
2489 | re_dfastate_t *dest_state;
|
---|
2490 |
|
---|
2491 | if (!dfa->nodes[cur_node_idx].accept_mb)
|
---|
2492 | continue;
|
---|
2493 |
|
---|
2494 | if (dfa->nodes[cur_node_idx].constraint)
|
---|
2495 | {
|
---|
2496 | context = re_string_context_at (&mctx->input,
|
---|
2497 | re_string_cur_idx (&mctx->input),
|
---|
2498 | mctx->eflags);
|
---|
2499 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
|
---|
2500 | context))
|
---|
2501 | continue;
|
---|
2502 | }
|
---|
2503 |
|
---|
2504 | /* How many bytes the node can accept? */
|
---|
2505 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input,
|
---|
2506 | re_string_cur_idx (&mctx->input));
|
---|
2507 | if (naccepted == 0)
|
---|
2508 | continue;
|
---|
2509 |
|
---|
2510 | /* The node can accepts `naccepted' bytes. */
|
---|
2511 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted;
|
---|
2512 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
|
---|
2513 | : mctx->max_mb_elem_len);
|
---|
2514 | err = clean_state_log_if_needed (mctx, dest_idx);
|
---|
2515 | if (BE (err != REG_NOERROR, 0))
|
---|
2516 | return err;
|
---|
2517 | #ifdef DEBUG
|
---|
2518 | assert (dfa->nexts[cur_node_idx] != -1);
|
---|
2519 | #endif
|
---|
2520 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx];
|
---|
2521 |
|
---|
2522 | dest_state = mctx->state_log[dest_idx];
|
---|
2523 | if (dest_state == NULL)
|
---|
2524 | dest_nodes = *new_nodes;
|
---|
2525 | else
|
---|
2526 | {
|
---|
2527 | err = re_node_set_init_union (&dest_nodes,
|
---|
2528 | dest_state->entrance_nodes, new_nodes);
|
---|
2529 | if (BE (err != REG_NOERROR, 0))
|
---|
2530 | return err;
|
---|
2531 | }
|
---|
2532 | context = re_string_context_at (&mctx->input, dest_idx - 1, mctx->eflags);
|
---|
2533 | mctx->state_log[dest_idx]
|
---|
2534 | = re_acquire_state_context (&err, dfa, &dest_nodes, context);
|
---|
2535 | if (dest_state != NULL)
|
---|
2536 | re_node_set_free (&dest_nodes);
|
---|
2537 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
|
---|
2538 | return err;
|
---|
2539 | }
|
---|
2540 | return REG_NOERROR;
|
---|
2541 | }
|
---|
2542 | #endif /* RE_ENABLE_I18N */
|
---|
2543 |
|
---|
2544 | static reg_errcode_t
|
---|
2545 | transit_state_bkref (mctx, nodes)
|
---|
2546 | re_match_context_t *mctx;
|
---|
2547 | const re_node_set *nodes;
|
---|
2548 | {
|
---|
2549 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2550 | reg_errcode_t err;
|
---|
2551 | int i;
|
---|
2552 | int cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
2553 |
|
---|
2554 | for (i = 0; i < nodes->nelem; ++i)
|
---|
2555 | {
|
---|
2556 | int dest_str_idx, prev_nelem, bkc_idx;
|
---|
2557 | int node_idx = nodes->elems[i];
|
---|
2558 | unsigned int context;
|
---|
2559 | const re_token_t *node = dfa->nodes + node_idx;
|
---|
2560 | re_node_set *new_dest_nodes;
|
---|
2561 |
|
---|
2562 | /* Check whether `node' is a backreference or not. */
|
---|
2563 | if (node->type != OP_BACK_REF)
|
---|
2564 | continue;
|
---|
2565 |
|
---|
2566 | if (node->constraint)
|
---|
2567 | {
|
---|
2568 | context = re_string_context_at (&mctx->input, cur_str_idx,
|
---|
2569 | mctx->eflags);
|
---|
2570 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
|
---|
2571 | continue;
|
---|
2572 | }
|
---|
2573 |
|
---|
2574 | /* `node' is a backreference.
|
---|
2575 | Check the substring which the substring matched. */
|
---|
2576 | bkc_idx = mctx->nbkref_ents;
|
---|
2577 | err = get_subexp (mctx, node_idx, cur_str_idx);
|
---|
2578 | if (BE (err != REG_NOERROR, 0))
|
---|
2579 | goto free_return;
|
---|
2580 |
|
---|
2581 | /* And add the epsilon closures (which is `new_dest_nodes') of
|
---|
2582 | the backreference to appropriate state_log. */
|
---|
2583 | #ifdef DEBUG
|
---|
2584 | assert (dfa->nexts[node_idx] != -1);
|
---|
2585 | #endif
|
---|
2586 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
|
---|
2587 | {
|
---|
2588 | int subexp_len;
|
---|
2589 | re_dfastate_t *dest_state;
|
---|
2590 | struct re_backref_cache_entry *bkref_ent;
|
---|
2591 | bkref_ent = mctx->bkref_ents + bkc_idx;
|
---|
2592 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
|
---|
2593 | continue;
|
---|
2594 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
|
---|
2595 | new_dest_nodes = (subexp_len == 0
|
---|
2596 | ? dfa->eclosures + dfa->edests[node_idx].elems[0]
|
---|
2597 | : dfa->eclosures + dfa->nexts[node_idx]);
|
---|
2598 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
|
---|
2599 | - bkref_ent->subexp_from);
|
---|
2600 | context = re_string_context_at (&mctx->input, dest_str_idx - 1,
|
---|
2601 | mctx->eflags);
|
---|
2602 | dest_state = mctx->state_log[dest_str_idx];
|
---|
2603 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
|
---|
2604 | : mctx->state_log[cur_str_idx]->nodes.nelem);
|
---|
2605 | /* Add `new_dest_node' to state_log. */
|
---|
2606 | if (dest_state == NULL)
|
---|
2607 | {
|
---|
2608 | mctx->state_log[dest_str_idx]
|
---|
2609 | = re_acquire_state_context (&err, dfa, new_dest_nodes,
|
---|
2610 | context);
|
---|
2611 | if (BE (mctx->state_log[dest_str_idx] == NULL
|
---|
2612 | && err != REG_NOERROR, 0))
|
---|
2613 | goto free_return;
|
---|
2614 | }
|
---|
2615 | else
|
---|
2616 | {
|
---|
2617 | re_node_set dest_nodes;
|
---|
2618 | err = re_node_set_init_union (&dest_nodes,
|
---|
2619 | dest_state->entrance_nodes,
|
---|
2620 | new_dest_nodes);
|
---|
2621 | if (BE (err != REG_NOERROR, 0))
|
---|
2622 | {
|
---|
2623 | re_node_set_free (&dest_nodes);
|
---|
2624 | goto free_return;
|
---|
2625 | }
|
---|
2626 | mctx->state_log[dest_str_idx]
|
---|
2627 | = re_acquire_state_context (&err, dfa, &dest_nodes, context);
|
---|
2628 | re_node_set_free (&dest_nodes);
|
---|
2629 | if (BE (mctx->state_log[dest_str_idx] == NULL
|
---|
2630 | && err != REG_NOERROR, 0))
|
---|
2631 | goto free_return;
|
---|
2632 | }
|
---|
2633 | /* We need to check recursively if the backreference can epsilon
|
---|
2634 | transit. */
|
---|
2635 | if (subexp_len == 0
|
---|
2636 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
|
---|
2637 | {
|
---|
2638 | err = check_subexp_matching_top (mctx, new_dest_nodes,
|
---|
2639 | cur_str_idx);
|
---|
2640 | if (BE (err != REG_NOERROR, 0))
|
---|
2641 | goto free_return;
|
---|
2642 | err = transit_state_bkref (mctx, new_dest_nodes);
|
---|
2643 | if (BE (err != REG_NOERROR, 0))
|
---|
2644 | goto free_return;
|
---|
2645 | }
|
---|
2646 | }
|
---|
2647 | }
|
---|
2648 | err = REG_NOERROR;
|
---|
2649 | free_return:
|
---|
2650 | return err;
|
---|
2651 | }
|
---|
2652 |
|
---|
2653 | /* Enumerate all the candidates which the backreference BKREF_NODE can match
|
---|
2654 | at BKREF_STR_IDX, and register them by match_ctx_add_entry().
|
---|
2655 | Note that we might collect inappropriate candidates here.
|
---|
2656 | However, the cost of checking them strictly here is too high, then we
|
---|
2657 | delay these checking for prune_impossible_nodes(). */
|
---|
2658 |
|
---|
2659 | static reg_errcode_t
|
---|
2660 | get_subexp (mctx, bkref_node, bkref_str_idx)
|
---|
2661 | re_match_context_t *mctx;
|
---|
2662 | int bkref_node, bkref_str_idx;
|
---|
2663 | {
|
---|
2664 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2665 | int subexp_num, sub_top_idx;
|
---|
2666 | const char *buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
2667 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */
|
---|
2668 | int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
|
---|
2669 | if (cache_idx != -1)
|
---|
2670 | {
|
---|
2671 | const struct re_backref_cache_entry *entry = mctx->bkref_ents + cache_idx;
|
---|
2672 | do
|
---|
2673 | if (entry->node == bkref_node)
|
---|
2674 | return REG_NOERROR; /* We already checked it. */
|
---|
2675 | while (entry++->more);
|
---|
2676 | }
|
---|
2677 |
|
---|
2678 | subexp_num = dfa->nodes[bkref_node].opr.idx;
|
---|
2679 |
|
---|
2680 | /* For each sub expression */
|
---|
2681 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
|
---|
2682 | {
|
---|
2683 | reg_errcode_t err;
|
---|
2684 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
|
---|
2685 | re_sub_match_last_t *sub_last;
|
---|
2686 | int sub_last_idx, sl_str, bkref_str_off;
|
---|
2687 |
|
---|
2688 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
|
---|
2689 | continue; /* It isn't related. */
|
---|
2690 |
|
---|
2691 | sl_str = sub_top->str_idx;
|
---|
2692 | bkref_str_off = bkref_str_idx;
|
---|
2693 | /* At first, check the last node of sub expressions we already
|
---|
2694 | evaluated. */
|
---|
2695 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
|
---|
2696 | {
|
---|
2697 | int sl_str_diff;
|
---|
2698 | sub_last = sub_top->lasts[sub_last_idx];
|
---|
2699 | sl_str_diff = sub_last->str_idx - sl_str;
|
---|
2700 | /* The matched string by the sub expression match with the substring
|
---|
2701 | at the back reference? */
|
---|
2702 | if (sl_str_diff > 0)
|
---|
2703 | {
|
---|
2704 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0))
|
---|
2705 | {
|
---|
2706 | /* Not enough chars for a successful match. */
|
---|
2707 | if (bkref_str_off + sl_str_diff > mctx->input.len)
|
---|
2708 | break;
|
---|
2709 |
|
---|
2710 | err = clean_state_log_if_needed (mctx,
|
---|
2711 | bkref_str_off
|
---|
2712 | + sl_str_diff);
|
---|
2713 | if (BE (err != REG_NOERROR, 0))
|
---|
2714 | return err;
|
---|
2715 | buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
2716 | }
|
---|
2717 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0)
|
---|
2718 | break; /* We don't need to search this sub expression any more. */
|
---|
2719 | }
|
---|
2720 | bkref_str_off += sl_str_diff;
|
---|
2721 | sl_str += sl_str_diff;
|
---|
2722 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
|
---|
2723 | bkref_str_idx);
|
---|
2724 |
|
---|
2725 | /* Reload buf, since the preceding call might have reallocated
|
---|
2726 | the buffer. */
|
---|
2727 | buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
2728 |
|
---|
2729 | if (err == REG_NOMATCH)
|
---|
2730 | continue;
|
---|
2731 | if (BE (err != REG_NOERROR, 0))
|
---|
2732 | return err;
|
---|
2733 | }
|
---|
2734 |
|
---|
2735 | if (sub_last_idx < sub_top->nlasts)
|
---|
2736 | continue;
|
---|
2737 | if (sub_last_idx > 0)
|
---|
2738 | ++sl_str;
|
---|
2739 | /* Then, search for the other last nodes of the sub expression. */
|
---|
2740 | for (; sl_str <= bkref_str_idx; ++sl_str)
|
---|
2741 | {
|
---|
2742 | int cls_node, sl_str_off;
|
---|
2743 | const re_node_set *nodes;
|
---|
2744 | sl_str_off = sl_str - sub_top->str_idx;
|
---|
2745 | /* The matched string by the sub expression match with the substring
|
---|
2746 | at the back reference? */
|
---|
2747 | if (sl_str_off > 0)
|
---|
2748 | {
|
---|
2749 | if (BE (bkref_str_off >= mctx->input.valid_len, 0))
|
---|
2750 | {
|
---|
2751 | /* If we are at the end of the input, we cannot match. */
|
---|
2752 | if (bkref_str_off >= mctx->input.len)
|
---|
2753 | break;
|
---|
2754 |
|
---|
2755 | err = extend_buffers (mctx);
|
---|
2756 | if (BE (err != REG_NOERROR, 0))
|
---|
2757 | return err;
|
---|
2758 |
|
---|
2759 | buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
2760 | }
|
---|
2761 | if (buf [bkref_str_off++] != buf[sl_str - 1])
|
---|
2762 | break; /* We don't need to search this sub expression
|
---|
2763 | any more. */
|
---|
2764 | }
|
---|
2765 | if (mctx->state_log[sl_str] == NULL)
|
---|
2766 | continue;
|
---|
2767 | /* Does this state have a ')' of the sub expression? */
|
---|
2768 | nodes = &mctx->state_log[sl_str]->nodes;
|
---|
2769 | cls_node = find_subexp_node (dfa, nodes, subexp_num, OP_CLOSE_SUBEXP);
|
---|
2770 | if (cls_node == -1)
|
---|
2771 | continue; /* No. */
|
---|
2772 | if (sub_top->path == NULL)
|
---|
2773 | {
|
---|
2774 | sub_top->path = calloc (sizeof (state_array_t),
|
---|
2775 | sl_str - sub_top->str_idx + 1);
|
---|
2776 | if (sub_top->path == NULL)
|
---|
2777 | return REG_ESPACE;
|
---|
2778 | }
|
---|
2779 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
|
---|
2780 | in the current context? */
|
---|
2781 | err = check_arrival (mctx, sub_top->path, sub_top->node,
|
---|
2782 | sub_top->str_idx, cls_node, sl_str, OP_CLOSE_SUBEXP);
|
---|
2783 | if (err == REG_NOMATCH)
|
---|
2784 | continue;
|
---|
2785 | if (BE (err != REG_NOERROR, 0))
|
---|
2786 | return err;
|
---|
2787 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
|
---|
2788 | if (BE (sub_last == NULL, 0))
|
---|
2789 | return REG_ESPACE;
|
---|
2790 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
|
---|
2791 | bkref_str_idx);
|
---|
2792 | if (err == REG_NOMATCH)
|
---|
2793 | continue;
|
---|
2794 | }
|
---|
2795 | }
|
---|
2796 | return REG_NOERROR;
|
---|
2797 | }
|
---|
2798 |
|
---|
2799 | /* Helper functions for get_subexp(). */
|
---|
2800 |
|
---|
2801 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
|
---|
2802 | If it can arrive, register the sub expression expressed with SUB_TOP
|
---|
2803 | and SUB_LAST. */
|
---|
2804 |
|
---|
2805 | static reg_errcode_t
|
---|
2806 | get_subexp_sub (mctx, sub_top, sub_last, bkref_node, bkref_str)
|
---|
2807 | re_match_context_t *mctx;
|
---|
2808 | const re_sub_match_top_t *sub_top;
|
---|
2809 | re_sub_match_last_t *sub_last;
|
---|
2810 | int bkref_node, bkref_str;
|
---|
2811 | {
|
---|
2812 | reg_errcode_t err;
|
---|
2813 | int to_idx;
|
---|
2814 | /* Can the subexpression arrive the back reference? */
|
---|
2815 | err = check_arrival (mctx, &sub_last->path, sub_last->node,
|
---|
2816 | sub_last->str_idx, bkref_node, bkref_str, OP_OPEN_SUBEXP);
|
---|
2817 | if (err != REG_NOERROR)
|
---|
2818 | return err;
|
---|
2819 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
|
---|
2820 | sub_last->str_idx);
|
---|
2821 | if (BE (err != REG_NOERROR, 0))
|
---|
2822 | return err;
|
---|
2823 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
|
---|
2824 | return clean_state_log_if_needed (mctx, to_idx);
|
---|
2825 | }
|
---|
2826 |
|
---|
2827 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
|
---|
2828 | Search '(' if FL_OPEN, or search ')' otherwise.
|
---|
2829 | TODO: This function isn't efficient...
|
---|
2830 | Because there might be more than one nodes whose types are
|
---|
2831 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
|
---|
2832 | nodes.
|
---|
2833 | E.g. RE: (a){2} */
|
---|
2834 |
|
---|
2835 | static int
|
---|
2836 | find_subexp_node (dfa, nodes, subexp_idx, type)
|
---|
2837 | const re_dfa_t *dfa;
|
---|
2838 | const re_node_set *nodes;
|
---|
2839 | int subexp_idx, type;
|
---|
2840 | {
|
---|
2841 | int cls_idx;
|
---|
2842 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
|
---|
2843 | {
|
---|
2844 | int cls_node = nodes->elems[cls_idx];
|
---|
2845 | const re_token_t *node = dfa->nodes + cls_node;
|
---|
2846 | if (node->type == type
|
---|
2847 | && node->opr.idx == subexp_idx)
|
---|
2848 | return cls_node;
|
---|
2849 | }
|
---|
2850 | return -1;
|
---|
2851 | }
|
---|
2852 |
|
---|
2853 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node
|
---|
2854 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be
|
---|
2855 | heavily reused.
|
---|
2856 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */
|
---|
2857 |
|
---|
2858 | static reg_errcode_t
|
---|
2859 | check_arrival (mctx, path, top_node, top_str, last_node, last_str,
|
---|
2860 | type)
|
---|
2861 | re_match_context_t *mctx;
|
---|
2862 | state_array_t *path;
|
---|
2863 | int top_node, top_str, last_node, last_str, type;
|
---|
2864 | {
|
---|
2865 | re_dfa_t *const dfa = mctx->dfa;
|
---|
2866 | reg_errcode_t err;
|
---|
2867 | int subexp_num, backup_cur_idx, str_idx, null_cnt;
|
---|
2868 | re_dfastate_t *cur_state = NULL;
|
---|
2869 | re_node_set *cur_nodes, next_nodes;
|
---|
2870 | re_dfastate_t **backup_state_log;
|
---|
2871 | unsigned int context;
|
---|
2872 |
|
---|
2873 | subexp_num = dfa->nodes[top_node].opr.idx;
|
---|
2874 | /* Extend the buffer if we need. */
|
---|
2875 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0))
|
---|
2876 | {
|
---|
2877 | re_dfastate_t **new_array;
|
---|
2878 | int old_alloc = path->alloc;
|
---|
2879 | path->alloc += last_str + mctx->max_mb_elem_len + 1;
|
---|
2880 | new_array = re_realloc (path->array, re_dfastate_t *, path->alloc);
|
---|
2881 | if (new_array == NULL)
|
---|
2882 | {
|
---|
2883 | path->alloc = old_alloc;
|
---|
2884 | return REG_ESPACE;
|
---|
2885 | }
|
---|
2886 | path->array = new_array;
|
---|
2887 | memset (new_array + old_alloc, '\0',
|
---|
2888 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
|
---|
2889 | }
|
---|
2890 |
|
---|
2891 | str_idx = path->next_idx == 0 ? top_str : path->next_idx;
|
---|
2892 |
|
---|
2893 | /* Temporary modify MCTX. */
|
---|
2894 | backup_state_log = mctx->state_log;
|
---|
2895 | backup_cur_idx = mctx->input.cur_idx;
|
---|
2896 | mctx->state_log = path->array;
|
---|
2897 | mctx->input.cur_idx = str_idx;
|
---|
2898 |
|
---|
2899 | /* Setup initial node set. */
|
---|
2900 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
|
---|
2901 | if (str_idx == top_str)
|
---|
2902 | {
|
---|
2903 | err = re_node_set_init_1 (&next_nodes, top_node);
|
---|
2904 | if (BE (err != REG_NOERROR, 0))
|
---|
2905 | return err;
|
---|
2906 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
|
---|
2907 | if (BE (err != REG_NOERROR, 0))
|
---|
2908 | {
|
---|
2909 | re_node_set_free (&next_nodes);
|
---|
2910 | return err;
|
---|
2911 | }
|
---|
2912 | }
|
---|
2913 | else
|
---|
2914 | {
|
---|
2915 | cur_state = mctx->state_log[str_idx];
|
---|
2916 | if (cur_state && cur_state->has_backref)
|
---|
2917 | {
|
---|
2918 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
|
---|
2919 | if (BE ( err != REG_NOERROR, 0))
|
---|
2920 | return err;
|
---|
2921 | }
|
---|
2922 | else
|
---|
2923 | re_node_set_init_empty (&next_nodes);
|
---|
2924 | }
|
---|
2925 | if (str_idx == top_str || (cur_state && cur_state->has_backref))
|
---|
2926 | {
|
---|
2927 | if (next_nodes.nelem)
|
---|
2928 | {
|
---|
2929 | err = expand_bkref_cache (mctx, &next_nodes, str_idx,
|
---|
2930 | subexp_num, type);
|
---|
2931 | if (BE ( err != REG_NOERROR, 0))
|
---|
2932 | {
|
---|
2933 | re_node_set_free (&next_nodes);
|
---|
2934 | return err;
|
---|
2935 | }
|
---|
2936 | }
|
---|
2937 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
|
---|
2938 | if (BE (cur_state == NULL && err != REG_NOERROR, 0))
|
---|
2939 | {
|
---|
2940 | re_node_set_free (&next_nodes);
|
---|
2941 | return err;
|
---|
2942 | }
|
---|
2943 | mctx->state_log[str_idx] = cur_state;
|
---|
2944 | }
|
---|
2945 |
|
---|
2946 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
|
---|
2947 | {
|
---|
2948 | re_node_set_empty (&next_nodes);
|
---|
2949 | if (mctx->state_log[str_idx + 1])
|
---|
2950 | {
|
---|
2951 | err = re_node_set_merge (&next_nodes,
|
---|
2952 | &mctx->state_log[str_idx + 1]->nodes);
|
---|
2953 | if (BE (err != REG_NOERROR, 0))
|
---|
2954 | {
|
---|
2955 | re_node_set_free (&next_nodes);
|
---|
2956 | return err;
|
---|
2957 | }
|
---|
2958 | }
|
---|
2959 | if (cur_state)
|
---|
2960 | {
|
---|
2961 | err = check_arrival_add_next_nodes (mctx, str_idx,
|
---|
2962 | &cur_state->non_eps_nodes, &next_nodes);
|
---|
2963 | if (BE (err != REG_NOERROR, 0))
|
---|
2964 | {
|
---|
2965 | re_node_set_free (&next_nodes);
|
---|
2966 | return err;
|
---|
2967 | }
|
---|
2968 | }
|
---|
2969 | ++str_idx;
|
---|
2970 | if (next_nodes.nelem)
|
---|
2971 | {
|
---|
2972 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
|
---|
2973 | if (BE (err != REG_NOERROR, 0))
|
---|
2974 | {
|
---|
2975 | re_node_set_free (&next_nodes);
|
---|
2976 | return err;
|
---|
2977 | }
|
---|
2978 | err = expand_bkref_cache (mctx, &next_nodes, str_idx,
|
---|
2979 | subexp_num, type);
|
---|
2980 | if (BE ( err != REG_NOERROR, 0))
|
---|
2981 | {
|
---|
2982 | re_node_set_free (&next_nodes);
|
---|
2983 | return err;
|
---|
2984 | }
|
---|
2985 | }
|
---|
2986 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
|
---|
2987 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
|
---|
2988 | if (BE (cur_state == NULL && err != REG_NOERROR, 0))
|
---|
2989 | {
|
---|
2990 | re_node_set_free (&next_nodes);
|
---|
2991 | return err;
|
---|
2992 | }
|
---|
2993 | mctx->state_log[str_idx] = cur_state;
|
---|
2994 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
|
---|
2995 | }
|
---|
2996 | re_node_set_free (&next_nodes);
|
---|
2997 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
|
---|
2998 | : &mctx->state_log[last_str]->nodes);
|
---|
2999 | path->next_idx = str_idx;
|
---|
3000 |
|
---|
3001 | /* Fix MCTX. */
|
---|
3002 | mctx->state_log = backup_state_log;
|
---|
3003 | mctx->input.cur_idx = backup_cur_idx;
|
---|
3004 |
|
---|
3005 | /* Then check the current node set has the node LAST_NODE. */
|
---|
3006 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node))
|
---|
3007 | return REG_NOERROR;
|
---|
3008 |
|
---|
3009 | return REG_NOMATCH;
|
---|
3010 | }
|
---|
3011 |
|
---|
3012 | /* Helper functions for check_arrival. */
|
---|
3013 |
|
---|
3014 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
|
---|
3015 | to NEXT_NODES.
|
---|
3016 | TODO: This function is similar to the functions transit_state*(),
|
---|
3017 | however this function has many additional works.
|
---|
3018 | Can't we unify them? */
|
---|
3019 |
|
---|
3020 | static reg_errcode_t
|
---|
3021 | check_arrival_add_next_nodes (mctx, str_idx, cur_nodes, next_nodes)
|
---|
3022 | re_match_context_t *mctx;
|
---|
3023 | int str_idx;
|
---|
3024 | re_node_set *cur_nodes, *next_nodes;
|
---|
3025 | {
|
---|
3026 | re_dfa_t *const dfa = mctx->dfa;
|
---|
3027 | int result;
|
---|
3028 | int cur_idx;
|
---|
3029 | re_node_set union_set;
|
---|
3030 | re_node_set_init_empty (&union_set);
|
---|
3031 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
|
---|
3032 | {
|
---|
3033 | int naccepted = 0;
|
---|
3034 | int cur_node = cur_nodes->elems[cur_idx];
|
---|
3035 | #ifdef DEBUG
|
---|
3036 | re_token_type_t type = dfa->nodes[cur_node].type;
|
---|
3037 | assert (!IS_EPSILON_NODE (type));
|
---|
3038 | #endif
|
---|
3039 | #ifdef RE_ENABLE_I18N
|
---|
3040 | /* If the node may accept `multi byte'. */
|
---|
3041 | if (dfa->nodes[cur_node].accept_mb)
|
---|
3042 | {
|
---|
3043 | reg_errcode_t err;
|
---|
3044 |
|
---|
3045 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input,
|
---|
3046 | str_idx);
|
---|
3047 | if (naccepted > 1)
|
---|
3048 | {
|
---|
3049 | re_dfastate_t *dest_state;
|
---|
3050 | int next_node = dfa->nexts[cur_node];
|
---|
3051 | int next_idx = str_idx + naccepted;
|
---|
3052 | dest_state = mctx->state_log[next_idx];
|
---|
3053 | re_node_set_empty (&union_set);
|
---|
3054 | if (dest_state)
|
---|
3055 | {
|
---|
3056 | err = re_node_set_merge (&union_set, &dest_state->nodes);
|
---|
3057 | if (BE (err != REG_NOERROR, 0))
|
---|
3058 | {
|
---|
3059 | re_node_set_free (&union_set);
|
---|
3060 | return err;
|
---|
3061 | }
|
---|
3062 | }
|
---|
3063 | result = re_node_set_insert (&union_set, next_node);
|
---|
3064 | if (BE (result < 0, 0))
|
---|
3065 | {
|
---|
3066 | re_node_set_free (&union_set);
|
---|
3067 | return REG_ESPACE;
|
---|
3068 | }
|
---|
3069 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
|
---|
3070 | &union_set);
|
---|
3071 | if (BE (mctx->state_log[next_idx] == NULL
|
---|
3072 | && err != REG_NOERROR, 0))
|
---|
3073 | {
|
---|
3074 | re_node_set_free (&union_set);
|
---|
3075 | return err;
|
---|
3076 | }
|
---|
3077 | }
|
---|
3078 | }
|
---|
3079 | #endif /* RE_ENABLE_I18N */
|
---|
3080 | if (naccepted
|
---|
3081 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx))
|
---|
3082 | {
|
---|
3083 | result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
|
---|
3084 | if (BE (result < 0, 0))
|
---|
3085 | {
|
---|
3086 | re_node_set_free (&union_set);
|
---|
3087 | return REG_ESPACE;
|
---|
3088 | }
|
---|
3089 | }
|
---|
3090 | }
|
---|
3091 | re_node_set_free (&union_set);
|
---|
3092 | return REG_NOERROR;
|
---|
3093 | }
|
---|
3094 |
|
---|
3095 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to
|
---|
3096 | CUR_NODES, however exclude the nodes which are:
|
---|
3097 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
|
---|
3098 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
|
---|
3099 | */
|
---|
3100 |
|
---|
3101 | static reg_errcode_t
|
---|
3102 | check_arrival_expand_ecl (dfa, cur_nodes, ex_subexp, type)
|
---|
3103 | re_dfa_t *dfa;
|
---|
3104 | re_node_set *cur_nodes;
|
---|
3105 | int ex_subexp, type;
|
---|
3106 | {
|
---|
3107 | reg_errcode_t err;
|
---|
3108 | int idx, outside_node;
|
---|
3109 | re_node_set new_nodes;
|
---|
3110 | #ifdef DEBUG
|
---|
3111 | assert (cur_nodes->nelem);
|
---|
3112 | #endif
|
---|
3113 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
|
---|
3114 | if (BE (err != REG_NOERROR, 0))
|
---|
3115 | return err;
|
---|
3116 | /* Create a new node set NEW_NODES with the nodes which are epsilon
|
---|
3117 | closures of the node in CUR_NODES. */
|
---|
3118 |
|
---|
3119 | for (idx = 0; idx < cur_nodes->nelem; ++idx)
|
---|
3120 | {
|
---|
3121 | int cur_node = cur_nodes->elems[idx];
|
---|
3122 | re_node_set *eclosure = dfa->eclosures + cur_node;
|
---|
3123 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type);
|
---|
3124 | if (outside_node == -1)
|
---|
3125 | {
|
---|
3126 | /* There are no problematic nodes, just merge them. */
|
---|
3127 | err = re_node_set_merge (&new_nodes, eclosure);
|
---|
3128 | if (BE (err != REG_NOERROR, 0))
|
---|
3129 | {
|
---|
3130 | re_node_set_free (&new_nodes);
|
---|
3131 | return err;
|
---|
3132 | }
|
---|
3133 | }
|
---|
3134 | else
|
---|
3135 | {
|
---|
3136 | /* There are problematic nodes, re-calculate incrementally. */
|
---|
3137 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
|
---|
3138 | ex_subexp, type);
|
---|
3139 | if (BE (err != REG_NOERROR, 0))
|
---|
3140 | {
|
---|
3141 | re_node_set_free (&new_nodes);
|
---|
3142 | return err;
|
---|
3143 | }
|
---|
3144 | }
|
---|
3145 | }
|
---|
3146 | re_node_set_free (cur_nodes);
|
---|
3147 | *cur_nodes = new_nodes;
|
---|
3148 | return REG_NOERROR;
|
---|
3149 | }
|
---|
3150 |
|
---|
3151 | /* Helper function for check_arrival_expand_ecl.
|
---|
3152 | Check incrementally the epsilon closure of TARGET, and if it isn't
|
---|
3153 | problematic append it to DST_NODES. */
|
---|
3154 |
|
---|
3155 | static reg_errcode_t
|
---|
3156 | check_arrival_expand_ecl_sub (dfa, dst_nodes, target, ex_subexp, type)
|
---|
3157 | re_dfa_t *dfa;
|
---|
3158 | int target, ex_subexp, type;
|
---|
3159 | re_node_set *dst_nodes;
|
---|
3160 | {
|
---|
3161 | int cur_node;
|
---|
3162 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
|
---|
3163 | {
|
---|
3164 | int err;
|
---|
3165 |
|
---|
3166 | if (dfa->nodes[cur_node].type == type
|
---|
3167 | && dfa->nodes[cur_node].opr.idx == ex_subexp)
|
---|
3168 | {
|
---|
3169 | if (type == OP_CLOSE_SUBEXP)
|
---|
3170 | {
|
---|
3171 | err = re_node_set_insert (dst_nodes, cur_node);
|
---|
3172 | if (BE (err == -1, 0))
|
---|
3173 | return REG_ESPACE;
|
---|
3174 | }
|
---|
3175 | break;
|
---|
3176 | }
|
---|
3177 | err = re_node_set_insert (dst_nodes, cur_node);
|
---|
3178 | if (BE (err == -1, 0))
|
---|
3179 | return REG_ESPACE;
|
---|
3180 | if (dfa->edests[cur_node].nelem == 0)
|
---|
3181 | break;
|
---|
3182 | if (dfa->edests[cur_node].nelem == 2)
|
---|
3183 | {
|
---|
3184 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
|
---|
3185 | dfa->edests[cur_node].elems[1],
|
---|
3186 | ex_subexp, type);
|
---|
3187 | if (BE (err != REG_NOERROR, 0))
|
---|
3188 | return err;
|
---|
3189 | }
|
---|
3190 | cur_node = dfa->edests[cur_node].elems[0];
|
---|
3191 | }
|
---|
3192 | return REG_NOERROR;
|
---|
3193 | }
|
---|
3194 |
|
---|
3195 |
|
---|
3196 | /* For all the back references in the current state, calculate the
|
---|
3197 | destination of the back references by the appropriate entry
|
---|
3198 | in MCTX->BKREF_ENTS. */
|
---|
3199 |
|
---|
3200 | static reg_errcode_t
|
---|
3201 | expand_bkref_cache (mctx, cur_nodes, cur_str, subexp_num,
|
---|
3202 | type)
|
---|
3203 | re_match_context_t *mctx;
|
---|
3204 | int cur_str, subexp_num, type;
|
---|
3205 | re_node_set *cur_nodes;
|
---|
3206 | {
|
---|
3207 | re_dfa_t *const dfa = mctx->dfa;
|
---|
3208 | reg_errcode_t err;
|
---|
3209 | int cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
|
---|
3210 | struct re_backref_cache_entry *ent;
|
---|
3211 |
|
---|
3212 | if (cache_idx_start == -1)
|
---|
3213 | return REG_NOERROR;
|
---|
3214 |
|
---|
3215 | restart:
|
---|
3216 | ent = mctx->bkref_ents + cache_idx_start;
|
---|
3217 | do
|
---|
3218 | {
|
---|
3219 | int to_idx, next_node;
|
---|
3220 |
|
---|
3221 | /* Is this entry ENT is appropriate? */
|
---|
3222 | if (!re_node_set_contains (cur_nodes, ent->node))
|
---|
3223 | continue; /* No. */
|
---|
3224 |
|
---|
3225 | to_idx = cur_str + ent->subexp_to - ent->subexp_from;
|
---|
3226 | /* Calculate the destination of the back reference, and append it
|
---|
3227 | to MCTX->STATE_LOG. */
|
---|
3228 | if (to_idx == cur_str)
|
---|
3229 | {
|
---|
3230 | /* The backreference did epsilon transit, we must re-check all the
|
---|
3231 | node in the current state. */
|
---|
3232 | re_node_set new_dests;
|
---|
3233 | reg_errcode_t err2, err3;
|
---|
3234 | next_node = dfa->edests[ent->node].elems[0];
|
---|
3235 | if (re_node_set_contains (cur_nodes, next_node))
|
---|
3236 | continue;
|
---|
3237 | err = re_node_set_init_1 (&new_dests, next_node);
|
---|
3238 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type);
|
---|
3239 | err3 = re_node_set_merge (cur_nodes, &new_dests);
|
---|
3240 | re_node_set_free (&new_dests);
|
---|
3241 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR
|
---|
3242 | || err3 != REG_NOERROR, 0))
|
---|
3243 | {
|
---|
3244 | err = (err != REG_NOERROR ? err
|
---|
3245 | : (err2 != REG_NOERROR ? err2 : err3));
|
---|
3246 | return err;
|
---|
3247 | }
|
---|
3248 | /* TODO: It is still inefficient... */
|
---|
3249 | goto restart;
|
---|
3250 | }
|
---|
3251 | else
|
---|
3252 | {
|
---|
3253 | re_node_set union_set;
|
---|
3254 | next_node = dfa->nexts[ent->node];
|
---|
3255 | if (mctx->state_log[to_idx])
|
---|
3256 | {
|
---|
3257 | int ret;
|
---|
3258 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
|
---|
3259 | next_node))
|
---|
3260 | continue;
|
---|
3261 | err = re_node_set_init_copy (&union_set,
|
---|
3262 | &mctx->state_log[to_idx]->nodes);
|
---|
3263 | ret = re_node_set_insert (&union_set, next_node);
|
---|
3264 | if (BE (err != REG_NOERROR || ret < 0, 0))
|
---|
3265 | {
|
---|
3266 | re_node_set_free (&union_set);
|
---|
3267 | err = err != REG_NOERROR ? err : REG_ESPACE;
|
---|
3268 | return err;
|
---|
3269 | }
|
---|
3270 | }
|
---|
3271 | else
|
---|
3272 | {
|
---|
3273 | err = re_node_set_init_1 (&union_set, next_node);
|
---|
3274 | if (BE (err != REG_NOERROR, 0))
|
---|
3275 | return err;
|
---|
3276 | }
|
---|
3277 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
|
---|
3278 | re_node_set_free (&union_set);
|
---|
3279 | if (BE (mctx->state_log[to_idx] == NULL
|
---|
3280 | && err != REG_NOERROR, 0))
|
---|
3281 | return err;
|
---|
3282 | }
|
---|
3283 | }
|
---|
3284 | while (ent++->more);
|
---|
3285 | return REG_NOERROR;
|
---|
3286 | }
|
---|
3287 |
|
---|
3288 | /* Build transition table for the state.
|
---|
3289 | Return 1 if succeeded, otherwise return NULL. */
|
---|
3290 |
|
---|
3291 | static int
|
---|
3292 | build_trtable (dfa, state)
|
---|
3293 | re_dfa_t *dfa;
|
---|
3294 | re_dfastate_t *state;
|
---|
3295 | {
|
---|
3296 | reg_errcode_t err;
|
---|
3297 | int i, j, ch, need_word_trtable = 0;
|
---|
3298 | unsigned int elem, mask;
|
---|
3299 | int dests_node_malloced = 0, dest_states_malloced = 0;
|
---|
3300 | int ndests; /* Number of the destination states from `state'. */
|
---|
3301 | re_dfastate_t **trtable;
|
---|
3302 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
|
---|
3303 | re_node_set follows, *dests_node;
|
---|
3304 | bitset *dests_ch;
|
---|
3305 | bitset acceptable;
|
---|
3306 |
|
---|
3307 | /* We build DFA states which corresponds to the destination nodes
|
---|
3308 | from `state'. `dests_node[i]' represents the nodes which i-th
|
---|
3309 | destination state contains, and `dests_ch[i]' represents the
|
---|
3310 | characters which i-th destination state accepts. */
|
---|
3311 | #ifdef _LIBC
|
---|
3312 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX))
|
---|
3313 | dests_node = (re_node_set *)
|
---|
3314 | alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX);
|
---|
3315 | else
|
---|
3316 | #endif
|
---|
3317 | {
|
---|
3318 | dests_node = (re_node_set *)
|
---|
3319 | malloc ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX);
|
---|
3320 | if (BE (dests_node == NULL, 0))
|
---|
3321 | return 0;
|
---|
3322 | dests_node_malloced = 1;
|
---|
3323 | }
|
---|
3324 | dests_ch = (bitset *) (dests_node + SBC_MAX);
|
---|
3325 |
|
---|
3326 | /* Initialize transiton table. */
|
---|
3327 | state->word_trtable = state->trtable = NULL;
|
---|
3328 |
|
---|
3329 | /* At first, group all nodes belonging to `state' into several
|
---|
3330 | destinations. */
|
---|
3331 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch);
|
---|
3332 | if (BE (ndests <= 0, 0))
|
---|
3333 | {
|
---|
3334 | if (dests_node_malloced)
|
---|
3335 | free (dests_node);
|
---|
3336 | /* Return 0 in case of an error, 1 otherwise. */
|
---|
3337 | if (ndests == 0)
|
---|
3338 | {
|
---|
3339 | state->trtable = (re_dfastate_t **)
|
---|
3340 | calloc (sizeof (re_dfastate_t *), SBC_MAX);
|
---|
3341 | return 1;
|
---|
3342 | }
|
---|
3343 | return 0;
|
---|
3344 | }
|
---|
3345 |
|
---|
3346 | err = re_node_set_alloc (&follows, ndests + 1);
|
---|
3347 | if (BE (err != REG_NOERROR, 0))
|
---|
3348 | goto out_free;
|
---|
3349 |
|
---|
3350 | #ifdef _LIBC
|
---|
3351 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX
|
---|
3352 | + ndests * 3 * sizeof (re_dfastate_t *)))
|
---|
3353 | dest_states = (re_dfastate_t **)
|
---|
3354 | alloca (ndests * 3 * sizeof (re_dfastate_t *));
|
---|
3355 | else
|
---|
3356 | #endif
|
---|
3357 | {
|
---|
3358 | dest_states = (re_dfastate_t **)
|
---|
3359 | malloc (ndests * 3 * sizeof (re_dfastate_t *));
|
---|
3360 | if (BE (dest_states == NULL, 0))
|
---|
3361 | {
|
---|
3362 | out_free:
|
---|
3363 | if (dest_states_malloced)
|
---|
3364 | free (dest_states);
|
---|
3365 | re_node_set_free (&follows);
|
---|
3366 | for (i = 0; i < ndests; ++i)
|
---|
3367 | re_node_set_free (dests_node + i);
|
---|
3368 | if (dests_node_malloced)
|
---|
3369 | free (dests_node);
|
---|
3370 | return 0;
|
---|
3371 | }
|
---|
3372 | dest_states_malloced = 1;
|
---|
3373 | }
|
---|
3374 | dest_states_word = dest_states + ndests;
|
---|
3375 | dest_states_nl = dest_states_word + ndests;
|
---|
3376 | bitset_empty (acceptable);
|
---|
3377 |
|
---|
3378 | /* Then build the states for all destinations. */
|
---|
3379 | for (i = 0; i < ndests; ++i)
|
---|
3380 | {
|
---|
3381 | int next_node;
|
---|
3382 | re_node_set_empty (&follows);
|
---|
3383 | /* Merge the follows of this destination states. */
|
---|
3384 | for (j = 0; j < dests_node[i].nelem; ++j)
|
---|
3385 | {
|
---|
3386 | next_node = dfa->nexts[dests_node[i].elems[j]];
|
---|
3387 | if (next_node != -1)
|
---|
3388 | {
|
---|
3389 | err = re_node_set_merge (&follows, dfa->eclosures + next_node);
|
---|
3390 | if (BE (err != REG_NOERROR, 0))
|
---|
3391 | goto out_free;
|
---|
3392 | }
|
---|
3393 | }
|
---|
3394 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
|
---|
3395 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
|
---|
3396 | goto out_free;
|
---|
3397 | /* If the new state has context constraint,
|
---|
3398 | build appropriate states for these contexts. */
|
---|
3399 | if (dest_states[i]->has_constraint)
|
---|
3400 | {
|
---|
3401 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
|
---|
3402 | CONTEXT_WORD);
|
---|
3403 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
|
---|
3404 | goto out_free;
|
---|
3405 |
|
---|
3406 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1)
|
---|
3407 | need_word_trtable = 1;
|
---|
3408 |
|
---|
3409 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
|
---|
3410 | CONTEXT_NEWLINE);
|
---|
3411 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
|
---|
3412 | goto out_free;
|
---|
3413 | }
|
---|
3414 | else
|
---|
3415 | {
|
---|
3416 | dest_states_word[i] = dest_states[i];
|
---|
3417 | dest_states_nl[i] = dest_states[i];
|
---|
3418 | }
|
---|
3419 | bitset_merge (acceptable, dests_ch[i]);
|
---|
3420 | }
|
---|
3421 |
|
---|
3422 | if (!BE (need_word_trtable, 0))
|
---|
3423 | {
|
---|
3424 | /* We don't care about whether the following character is a word
|
---|
3425 | character, or we are in a single-byte character set so we can
|
---|
3426 | discern by looking at the character code: allocate a
|
---|
3427 | 256-entry transition table. */
|
---|
3428 | trtable = state->trtable =
|
---|
3429 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
|
---|
3430 | if (BE (trtable == NULL, 0))
|
---|
3431 | goto out_free;
|
---|
3432 |
|
---|
3433 | /* For all characters ch...: */
|
---|
3434 | for (i = 0; i < BITSET_UINTS; ++i)
|
---|
3435 | for (ch = i * UINT_BITS, elem = acceptable[i], mask = 1;
|
---|
3436 | elem;
|
---|
3437 | mask <<= 1, elem >>= 1, ++ch)
|
---|
3438 | if (BE (elem & 1, 0))
|
---|
3439 | {
|
---|
3440 | /* There must be exactly one destination which accepts
|
---|
3441 | character ch. See group_nodes_into_DFAstates. */
|
---|
3442 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
|
---|
3443 | ;
|
---|
3444 |
|
---|
3445 | /* j-th destination accepts the word character ch. */
|
---|
3446 | if (dfa->word_char[i] & mask)
|
---|
3447 | trtable[ch] = dest_states_word[j];
|
---|
3448 | else
|
---|
3449 | trtable[ch] = dest_states[j];
|
---|
3450 | }
|
---|
3451 | }
|
---|
3452 | else
|
---|
3453 | {
|
---|
3454 | /* We care about whether the following character is a word
|
---|
3455 | character, and we are in a multi-byte character set: discern
|
---|
3456 | by looking at the character code: build two 256-entry
|
---|
3457 | transition tables, one starting at trtable[0] and one
|
---|
3458 | starting at trtable[SBC_MAX]. */
|
---|
3459 | trtable = state->word_trtable =
|
---|
3460 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX);
|
---|
3461 | if (BE (trtable == NULL, 0))
|
---|
3462 | goto out_free;
|
---|
3463 |
|
---|
3464 | /* For all characters ch...: */
|
---|
3465 | for (i = 0; i < BITSET_UINTS; ++i)
|
---|
3466 | for (ch = i * UINT_BITS, elem = acceptable[i], mask = 1;
|
---|
3467 | elem;
|
---|
3468 | mask <<= 1, elem >>= 1, ++ch)
|
---|
3469 | if (BE (elem & 1, 0))
|
---|
3470 | {
|
---|
3471 | /* There must be exactly one destination which accepts
|
---|
3472 | character ch. See group_nodes_into_DFAstates. */
|
---|
3473 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
|
---|
3474 | ;
|
---|
3475 |
|
---|
3476 | /* j-th destination accepts the word character ch. */
|
---|
3477 | trtable[ch] = dest_states[j];
|
---|
3478 | trtable[ch + SBC_MAX] = dest_states_word[j];
|
---|
3479 | }
|
---|
3480 | }
|
---|
3481 |
|
---|
3482 | /* new line */
|
---|
3483 | if (bitset_contain (acceptable, NEWLINE_CHAR))
|
---|
3484 | {
|
---|
3485 | /* The current state accepts newline character. */
|
---|
3486 | for (j = 0; j < ndests; ++j)
|
---|
3487 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR))
|
---|
3488 | {
|
---|
3489 | /* k-th destination accepts newline character. */
|
---|
3490 | trtable[NEWLINE_CHAR] = dest_states_nl[j];
|
---|
3491 | if (need_word_trtable)
|
---|
3492 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j];
|
---|
3493 | /* There must be only one destination which accepts
|
---|
3494 | newline. See group_nodes_into_DFAstates. */
|
---|
3495 | break;
|
---|
3496 | }
|
---|
3497 | }
|
---|
3498 |
|
---|
3499 | if (dest_states_malloced)
|
---|
3500 | free (dest_states);
|
---|
3501 |
|
---|
3502 | re_node_set_free (&follows);
|
---|
3503 | for (i = 0; i < ndests; ++i)
|
---|
3504 | re_node_set_free (dests_node + i);
|
---|
3505 |
|
---|
3506 | if (dests_node_malloced)
|
---|
3507 | free (dests_node);
|
---|
3508 |
|
---|
3509 | return 1;
|
---|
3510 | }
|
---|
3511 |
|
---|
3512 | /* Group all nodes belonging to STATE into several destinations.
|
---|
3513 | Then for all destinations, set the nodes belonging to the destination
|
---|
3514 | to DESTS_NODE[i] and set the characters accepted by the destination
|
---|
3515 | to DEST_CH[i]. This function return the number of destinations. */
|
---|
3516 |
|
---|
3517 | static int
|
---|
3518 | group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch)
|
---|
3519 | re_dfa_t *dfa;
|
---|
3520 | const re_dfastate_t *state;
|
---|
3521 | re_node_set *dests_node;
|
---|
3522 | bitset *dests_ch;
|
---|
3523 | {
|
---|
3524 | reg_errcode_t err;
|
---|
3525 | int result;
|
---|
3526 | int i, j, k;
|
---|
3527 | int ndests; /* Number of the destinations from `state'. */
|
---|
3528 | bitset accepts; /* Characters a node can accept. */
|
---|
3529 | const re_node_set *cur_nodes = &state->nodes;
|
---|
3530 | bitset_empty (accepts);
|
---|
3531 | ndests = 0;
|
---|
3532 |
|
---|
3533 | /* For all the nodes belonging to `state', */
|
---|
3534 | for (i = 0; i < cur_nodes->nelem; ++i)
|
---|
3535 | {
|
---|
3536 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
|
---|
3537 | re_token_type_t type = node->type;
|
---|
3538 | unsigned int constraint = node->constraint;
|
---|
3539 |
|
---|
3540 | /* Enumerate all single byte character this node can accept. */
|
---|
3541 | if (type == CHARACTER)
|
---|
3542 | bitset_set (accepts, node->opr.c);
|
---|
3543 | else if (type == SIMPLE_BRACKET)
|
---|
3544 | {
|
---|
3545 | bitset_merge (accepts, node->opr.sbcset);
|
---|
3546 | }
|
---|
3547 | else if (type == OP_PERIOD)
|
---|
3548 | {
|
---|
3549 | #ifdef RE_ENABLE_I18N
|
---|
3550 | if (dfa->mb_cur_max > 1)
|
---|
3551 | bitset_merge (accepts, dfa->sb_char);
|
---|
3552 | else
|
---|
3553 | #endif
|
---|
3554 | bitset_set_all (accepts);
|
---|
3555 | if (!(dfa->syntax & RE_DOT_NEWLINE))
|
---|
3556 | bitset_clear (accepts, '\n');
|
---|
3557 | if (dfa->syntax & RE_DOT_NOT_NULL)
|
---|
3558 | bitset_clear (accepts, '\0');
|
---|
3559 | }
|
---|
3560 | #ifdef RE_ENABLE_I18N
|
---|
3561 | else if (type == OP_UTF8_PERIOD)
|
---|
3562 | {
|
---|
3563 | memset (accepts, 255, sizeof (unsigned int) * BITSET_UINTS / 2);
|
---|
3564 | if (!(dfa->syntax & RE_DOT_NEWLINE))
|
---|
3565 | bitset_clear (accepts, '\n');
|
---|
3566 | if (dfa->syntax & RE_DOT_NOT_NULL)
|
---|
3567 | bitset_clear (accepts, '\0');
|
---|
3568 | }
|
---|
3569 | #endif
|
---|
3570 | else
|
---|
3571 | continue;
|
---|
3572 |
|
---|
3573 | /* Check the `accepts' and sift the characters which are not
|
---|
3574 | match it the context. */
|
---|
3575 | if (constraint)
|
---|
3576 | {
|
---|
3577 | if (constraint & NEXT_NEWLINE_CONSTRAINT)
|
---|
3578 | {
|
---|
3579 | int accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
|
---|
3580 | bitset_empty (accepts);
|
---|
3581 | if (accepts_newline)
|
---|
3582 | bitset_set (accepts, NEWLINE_CHAR);
|
---|
3583 | else
|
---|
3584 | continue;
|
---|
3585 | }
|
---|
3586 | if (constraint & NEXT_ENDBUF_CONSTRAINT)
|
---|
3587 | {
|
---|
3588 | bitset_empty (accepts);
|
---|
3589 | continue;
|
---|
3590 | }
|
---|
3591 |
|
---|
3592 | if (constraint & NEXT_WORD_CONSTRAINT)
|
---|
3593 | {
|
---|
3594 | unsigned int any_set = 0;
|
---|
3595 | if (type == CHARACTER && !node->word_char)
|
---|
3596 | {
|
---|
3597 | bitset_empty (accepts);
|
---|
3598 | continue;
|
---|
3599 | }
|
---|
3600 | #ifdef RE_ENABLE_I18N
|
---|
3601 | if (dfa->mb_cur_max > 1)
|
---|
3602 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
3603 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j]));
|
---|
3604 | else
|
---|
3605 | #endif
|
---|
3606 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
3607 | any_set |= (accepts[j] &= dfa->word_char[j]);
|
---|
3608 | if (!any_set)
|
---|
3609 | continue;
|
---|
3610 | }
|
---|
3611 | if (constraint & NEXT_NOTWORD_CONSTRAINT)
|
---|
3612 | {
|
---|
3613 | unsigned int any_set = 0;
|
---|
3614 | if (type == CHARACTER && node->word_char)
|
---|
3615 | {
|
---|
3616 | bitset_empty (accepts);
|
---|
3617 | continue;
|
---|
3618 | }
|
---|
3619 | #ifdef RE_ENABLE_I18N
|
---|
3620 | if (dfa->mb_cur_max > 1)
|
---|
3621 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
3622 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j]));
|
---|
3623 | else
|
---|
3624 | #endif
|
---|
3625 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
3626 | any_set |= (accepts[j] &= ~dfa->word_char[j]);
|
---|
3627 | if (!any_set)
|
---|
3628 | continue;
|
---|
3629 | }
|
---|
3630 | }
|
---|
3631 |
|
---|
3632 | /* Then divide `accepts' into DFA states, or create a new
|
---|
3633 | state. Above, we make sure that accepts is not empty. */
|
---|
3634 | for (j = 0; j < ndests; ++j)
|
---|
3635 | {
|
---|
3636 | bitset intersec; /* Intersection sets, see below. */
|
---|
3637 | bitset remains;
|
---|
3638 | /* Flags, see below. */
|
---|
3639 | int has_intersec, not_subset, not_consumed;
|
---|
3640 |
|
---|
3641 | /* Optimization, skip if this state doesn't accept the character. */
|
---|
3642 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
|
---|
3643 | continue;
|
---|
3644 |
|
---|
3645 | /* Enumerate the intersection set of this state and `accepts'. */
|
---|
3646 | has_intersec = 0;
|
---|
3647 | for (k = 0; k < BITSET_UINTS; ++k)
|
---|
3648 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
|
---|
3649 | /* And skip if the intersection set is empty. */
|
---|
3650 | if (!has_intersec)
|
---|
3651 | continue;
|
---|
3652 |
|
---|
3653 | /* Then check if this state is a subset of `accepts'. */
|
---|
3654 | not_subset = not_consumed = 0;
|
---|
3655 | for (k = 0; k < BITSET_UINTS; ++k)
|
---|
3656 | {
|
---|
3657 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
|
---|
3658 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
|
---|
3659 | }
|
---|
3660 |
|
---|
3661 | /* If this state isn't a subset of `accepts', create a
|
---|
3662 | new group state, which has the `remains'. */
|
---|
3663 | if (not_subset)
|
---|
3664 | {
|
---|
3665 | bitset_copy (dests_ch[ndests], remains);
|
---|
3666 | bitset_copy (dests_ch[j], intersec);
|
---|
3667 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
|
---|
3668 | if (BE (err != REG_NOERROR, 0))
|
---|
3669 | goto error_return;
|
---|
3670 | ++ndests;
|
---|
3671 | }
|
---|
3672 |
|
---|
3673 | /* Put the position in the current group. */
|
---|
3674 | result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
|
---|
3675 | if (BE (result < 0, 0))
|
---|
3676 | goto error_return;
|
---|
3677 |
|
---|
3678 | /* If all characters are consumed, go to next node. */
|
---|
3679 | if (!not_consumed)
|
---|
3680 | break;
|
---|
3681 | }
|
---|
3682 | /* Some characters remain, create a new group. */
|
---|
3683 | if (j == ndests)
|
---|
3684 | {
|
---|
3685 | bitset_copy (dests_ch[ndests], accepts);
|
---|
3686 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
|
---|
3687 | if (BE (err != REG_NOERROR, 0))
|
---|
3688 | goto error_return;
|
---|
3689 | ++ndests;
|
---|
3690 | bitset_empty (accepts);
|
---|
3691 | }
|
---|
3692 | }
|
---|
3693 | return ndests;
|
---|
3694 | error_return:
|
---|
3695 | for (j = 0; j < ndests; ++j)
|
---|
3696 | re_node_set_free (dests_node + j);
|
---|
3697 | return -1;
|
---|
3698 | }
|
---|
3699 |
|
---|
3700 | #ifdef RE_ENABLE_I18N
|
---|
3701 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
|
---|
3702 | Return the number of the bytes the node accepts.
|
---|
3703 | STR_IDX is the current index of the input string.
|
---|
3704 |
|
---|
3705 | This function handles the nodes which can accept one character, or
|
---|
3706 | one collating element like '.', '[a-z]', opposite to the other nodes
|
---|
3707 | can only accept one byte. */
|
---|
3708 |
|
---|
3709 | static int
|
---|
3710 | check_node_accept_bytes (dfa, node_idx, input, str_idx)
|
---|
3711 | re_dfa_t *dfa;
|
---|
3712 | int node_idx, str_idx;
|
---|
3713 | const re_string_t *input;
|
---|
3714 | {
|
---|
3715 | const re_token_t *node = dfa->nodes + node_idx;
|
---|
3716 | int char_len, elem_len;
|
---|
3717 | int i;
|
---|
3718 |
|
---|
3719 | if (BE (node->type == OP_UTF8_PERIOD, 0))
|
---|
3720 | {
|
---|
3721 | unsigned char c = re_string_byte_at (input, str_idx), d;
|
---|
3722 | if (BE (c < 0xc2, 1))
|
---|
3723 | return 0;
|
---|
3724 |
|
---|
3725 | if (str_idx + 2 > input->len)
|
---|
3726 | return 0;
|
---|
3727 |
|
---|
3728 | d = re_string_byte_at (input, str_idx + 1);
|
---|
3729 | if (c < 0xe0)
|
---|
3730 | return (d < 0x80 || d > 0xbf) ? 0 : 2;
|
---|
3731 | else if (c < 0xf0)
|
---|
3732 | {
|
---|
3733 | char_len = 3;
|
---|
3734 | if (c == 0xe0 && d < 0xa0)
|
---|
3735 | return 0;
|
---|
3736 | }
|
---|
3737 | else if (c < 0xf8)
|
---|
3738 | {
|
---|
3739 | char_len = 4;
|
---|
3740 | if (c == 0xf0 && d < 0x90)
|
---|
3741 | return 0;
|
---|
3742 | }
|
---|
3743 | else if (c < 0xfc)
|
---|
3744 | {
|
---|
3745 | char_len = 5;
|
---|
3746 | if (c == 0xf8 && d < 0x88)
|
---|
3747 | return 0;
|
---|
3748 | }
|
---|
3749 | else if (c < 0xfe)
|
---|
3750 | {
|
---|
3751 | char_len = 6;
|
---|
3752 | if (c == 0xfc && d < 0x84)
|
---|
3753 | return 0;
|
---|
3754 | }
|
---|
3755 | else
|
---|
3756 | return 0;
|
---|
3757 |
|
---|
3758 | if (str_idx + char_len > input->len)
|
---|
3759 | return 0;
|
---|
3760 |
|
---|
3761 | for (i = 1; i < char_len; ++i)
|
---|
3762 | {
|
---|
3763 | d = re_string_byte_at (input, str_idx + i);
|
---|
3764 | if (d < 0x80 || d > 0xbf)
|
---|
3765 | return 0;
|
---|
3766 | }
|
---|
3767 | return char_len;
|
---|
3768 | }
|
---|
3769 |
|
---|
3770 | char_len = re_string_char_size_at (input, str_idx);
|
---|
3771 | if (node->type == OP_PERIOD)
|
---|
3772 | {
|
---|
3773 | if (char_len <= 1)
|
---|
3774 | return 0;
|
---|
3775 | /* FIXME: I don't think this if is needed, as both '\n'
|
---|
3776 | and '\0' are char_len == 1. */
|
---|
3777 | /* '.' accepts any one character except the following two cases. */
|
---|
3778 | if ((!(dfa->syntax & RE_DOT_NEWLINE) &&
|
---|
3779 | re_string_byte_at (input, str_idx) == '\n') ||
|
---|
3780 | ((dfa->syntax & RE_DOT_NOT_NULL) &&
|
---|
3781 | re_string_byte_at (input, str_idx) == '\0'))
|
---|
3782 | return 0;
|
---|
3783 | return char_len;
|
---|
3784 | }
|
---|
3785 |
|
---|
3786 | elem_len = re_string_elem_size_at (input, str_idx);
|
---|
3787 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0)
|
---|
3788 | return 0;
|
---|
3789 |
|
---|
3790 | if (node->type == COMPLEX_BRACKET)
|
---|
3791 | {
|
---|
3792 | const re_charset_t *cset = node->opr.mbcset;
|
---|
3793 | # ifdef _LIBC
|
---|
3794 | const unsigned char *pin = ((char *) re_string_get_buffer (input)
|
---|
3795 | + str_idx);
|
---|
3796 | int j;
|
---|
3797 | uint32_t nrules;
|
---|
3798 | # endif /* _LIBC */
|
---|
3799 | int match_len = 0;
|
---|
3800 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
|
---|
3801 | ? re_string_wchar_at (input, str_idx) : 0);
|
---|
3802 |
|
---|
3803 | /* match with multibyte character? */
|
---|
3804 | for (i = 0; i < cset->nmbchars; ++i)
|
---|
3805 | if (wc == cset->mbchars[i])
|
---|
3806 | {
|
---|
3807 | match_len = char_len;
|
---|
3808 | goto check_node_accept_bytes_match;
|
---|
3809 | }
|
---|
3810 | /* match with character_class? */
|
---|
3811 | for (i = 0; i < cset->nchar_classes; ++i)
|
---|
3812 | {
|
---|
3813 | wctype_t wt = cset->char_classes[i];
|
---|
3814 | if (__iswctype (wc, wt))
|
---|
3815 | {
|
---|
3816 | match_len = char_len;
|
---|
3817 | goto check_node_accept_bytes_match;
|
---|
3818 | }
|
---|
3819 | }
|
---|
3820 |
|
---|
3821 | # ifdef _LIBC
|
---|
3822 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
3823 | if (nrules != 0)
|
---|
3824 | {
|
---|
3825 | unsigned int in_collseq = 0;
|
---|
3826 | const int32_t *table, *indirect;
|
---|
3827 | const unsigned char *weights, *extra;
|
---|
3828 | const char *collseqwc;
|
---|
3829 | int32_t idx;
|
---|
3830 | /* This #include defines a local function! */
|
---|
3831 | # include <locale/weight.h>
|
---|
3832 |
|
---|
3833 | /* match with collating_symbol? */
|
---|
3834 | if (cset->ncoll_syms)
|
---|
3835 | extra = (const unsigned char *)
|
---|
3836 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
---|
3837 | for (i = 0; i < cset->ncoll_syms; ++i)
|
---|
3838 | {
|
---|
3839 | const unsigned char *coll_sym = extra + cset->coll_syms[i];
|
---|
3840 | /* Compare the length of input collating element and
|
---|
3841 | the length of current collating element. */
|
---|
3842 | if (*coll_sym != elem_len)
|
---|
3843 | continue;
|
---|
3844 | /* Compare each bytes. */
|
---|
3845 | for (j = 0; j < *coll_sym; j++)
|
---|
3846 | if (pin[j] != coll_sym[1 + j])
|
---|
3847 | break;
|
---|
3848 | if (j == *coll_sym)
|
---|
3849 | {
|
---|
3850 | /* Match if every bytes is equal. */
|
---|
3851 | match_len = j;
|
---|
3852 | goto check_node_accept_bytes_match;
|
---|
3853 | }
|
---|
3854 | }
|
---|
3855 |
|
---|
3856 | if (cset->nranges)
|
---|
3857 | {
|
---|
3858 | if (elem_len <= char_len)
|
---|
3859 | {
|
---|
3860 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
|
---|
3861 | in_collseq = __collseq_table_lookup (collseqwc, wc);
|
---|
3862 | }
|
---|
3863 | else
|
---|
3864 | in_collseq = find_collation_sequence_value (pin, elem_len);
|
---|
3865 | }
|
---|
3866 | /* match with range expression? */
|
---|
3867 | for (i = 0; i < cset->nranges; ++i)
|
---|
3868 | if (cset->range_starts[i] <= in_collseq
|
---|
3869 | && in_collseq <= cset->range_ends[i])
|
---|
3870 | {
|
---|
3871 | match_len = elem_len;
|
---|
3872 | goto check_node_accept_bytes_match;
|
---|
3873 | }
|
---|
3874 |
|
---|
3875 | /* match with equivalence_class? */
|
---|
3876 | if (cset->nequiv_classes)
|
---|
3877 | {
|
---|
3878 | const unsigned char *cp = pin;
|
---|
3879 | table = (const int32_t *)
|
---|
3880 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
---|
3881 | weights = (const unsigned char *)
|
---|
3882 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
|
---|
3883 | extra = (const unsigned char *)
|
---|
3884 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
|
---|
3885 | indirect = (const int32_t *)
|
---|
3886 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
|
---|
3887 | idx = findidx (&cp);
|
---|
3888 | if (idx > 0)
|
---|
3889 | for (i = 0; i < cset->nequiv_classes; ++i)
|
---|
3890 | {
|
---|
3891 | int32_t equiv_class_idx = cset->equiv_classes[i];
|
---|
3892 | size_t weight_len = weights[idx];
|
---|
3893 | if (weight_len == weights[equiv_class_idx])
|
---|
3894 | {
|
---|
3895 | int cnt = 0;
|
---|
3896 | while (cnt <= weight_len
|
---|
3897 | && (weights[equiv_class_idx + 1 + cnt]
|
---|
3898 | == weights[idx + 1 + cnt]))
|
---|
3899 | ++cnt;
|
---|
3900 | if (cnt > weight_len)
|
---|
3901 | {
|
---|
3902 | match_len = elem_len;
|
---|
3903 | goto check_node_accept_bytes_match;
|
---|
3904 | }
|
---|
3905 | }
|
---|
3906 | }
|
---|
3907 | }
|
---|
3908 | }
|
---|
3909 | else
|
---|
3910 | # endif /* _LIBC */
|
---|
3911 | {
|
---|
3912 | /* match with range expression? */
|
---|
3913 | #if __GNUC__ >= 2
|
---|
3914 | wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
|
---|
3915 | #else
|
---|
3916 | wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
|
---|
3917 | cmp_buf[2] = wc;
|
---|
3918 | #endif
|
---|
3919 | for (i = 0; i < cset->nranges; ++i)
|
---|
3920 | {
|
---|
3921 | cmp_buf[0] = cset->range_starts[i];
|
---|
3922 | cmp_buf[4] = cset->range_ends[i];
|
---|
3923 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
|
---|
3924 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
|
---|
3925 | {
|
---|
3926 | match_len = char_len;
|
---|
3927 | goto check_node_accept_bytes_match;
|
---|
3928 | }
|
---|
3929 | }
|
---|
3930 | }
|
---|
3931 | check_node_accept_bytes_match:
|
---|
3932 | if (!cset->non_match)
|
---|
3933 | return match_len;
|
---|
3934 | else
|
---|
3935 | {
|
---|
3936 | if (match_len > 0)
|
---|
3937 | return 0;
|
---|
3938 | else
|
---|
3939 | return (elem_len > char_len) ? elem_len : char_len;
|
---|
3940 | }
|
---|
3941 | }
|
---|
3942 | return 0;
|
---|
3943 | }
|
---|
3944 |
|
---|
3945 | # ifdef _LIBC
|
---|
3946 | static unsigned int
|
---|
3947 | find_collation_sequence_value (mbs, mbs_len)
|
---|
3948 | const unsigned char *mbs;
|
---|
3949 | size_t mbs_len;
|
---|
3950 | {
|
---|
3951 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
3952 | if (nrules == 0)
|
---|
3953 | {
|
---|
3954 | if (mbs_len == 1)
|
---|
3955 | {
|
---|
3956 | /* No valid character. Match it as a single byte character. */
|
---|
3957 | const unsigned char *collseq = (const unsigned char *)
|
---|
3958 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
|
---|
3959 | return collseq[mbs[0]];
|
---|
3960 | }
|
---|
3961 | return UINT_MAX;
|
---|
3962 | }
|
---|
3963 | else
|
---|
3964 | {
|
---|
3965 | int32_t idx;
|
---|
3966 | const unsigned char *extra = (const unsigned char *)
|
---|
3967 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
---|
3968 | int32_t extrasize = (const unsigned char *)
|
---|
3969 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra;
|
---|
3970 |
|
---|
3971 | for (idx = 0; idx < extrasize;)
|
---|
3972 | {
|
---|
3973 | int mbs_cnt, found = 0;
|
---|
3974 | int32_t elem_mbs_len;
|
---|
3975 | /* Skip the name of collating element name. */
|
---|
3976 | idx = idx + extra[idx] + 1;
|
---|
3977 | elem_mbs_len = extra[idx++];
|
---|
3978 | if (mbs_len == elem_mbs_len)
|
---|
3979 | {
|
---|
3980 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
|
---|
3981 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
|
---|
3982 | break;
|
---|
3983 | if (mbs_cnt == elem_mbs_len)
|
---|
3984 | /* Found the entry. */
|
---|
3985 | found = 1;
|
---|
3986 | }
|
---|
3987 | /* Skip the byte sequence of the collating element. */
|
---|
3988 | idx += elem_mbs_len;
|
---|
3989 | /* Adjust for the alignment. */
|
---|
3990 | idx = (idx + 3) & ~3;
|
---|
3991 | /* Skip the collation sequence value. */
|
---|
3992 | idx += sizeof (uint32_t);
|
---|
3993 | /* Skip the wide char sequence of the collating element. */
|
---|
3994 | idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
|
---|
3995 | /* If we found the entry, return the sequence value. */
|
---|
3996 | if (found)
|
---|
3997 | return *(uint32_t *) (extra + idx);
|
---|
3998 | /* Skip the collation sequence value. */
|
---|
3999 | idx += sizeof (uint32_t);
|
---|
4000 | }
|
---|
4001 | return UINT_MAX;
|
---|
4002 | }
|
---|
4003 | }
|
---|
4004 | # endif /* _LIBC */
|
---|
4005 | #endif /* RE_ENABLE_I18N */
|
---|
4006 |
|
---|
4007 | /* Check whether the node accepts the byte which is IDX-th
|
---|
4008 | byte of the INPUT. */
|
---|
4009 |
|
---|
4010 | static int
|
---|
4011 | check_node_accept (mctx, node, idx)
|
---|
4012 | const re_match_context_t *mctx;
|
---|
4013 | const re_token_t *node;
|
---|
4014 | int idx;
|
---|
4015 | {
|
---|
4016 | unsigned char ch;
|
---|
4017 | ch = re_string_byte_at (&mctx->input, idx);
|
---|
4018 | switch (node->type)
|
---|
4019 | {
|
---|
4020 | case CHARACTER:
|
---|
4021 | if (node->opr.c != ch)
|
---|
4022 | return 0;
|
---|
4023 | break;
|
---|
4024 |
|
---|
4025 | case SIMPLE_BRACKET:
|
---|
4026 | if (!bitset_contain (node->opr.sbcset, ch))
|
---|
4027 | return 0;
|
---|
4028 | break;
|
---|
4029 |
|
---|
4030 | #ifdef RE_ENABLE_I18N
|
---|
4031 | case OP_UTF8_PERIOD:
|
---|
4032 | if (ch >= 0x80)
|
---|
4033 | return 0;
|
---|
4034 | /* FALLTHROUGH */
|
---|
4035 | #endif
|
---|
4036 | case OP_PERIOD:
|
---|
4037 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE))
|
---|
4038 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL)))
|
---|
4039 | return 0;
|
---|
4040 | break;
|
---|
4041 |
|
---|
4042 | default:
|
---|
4043 | return 0;
|
---|
4044 | }
|
---|
4045 |
|
---|
4046 | if (node->constraint)
|
---|
4047 | {
|
---|
4048 | /* The node has constraints. Check whether the current context
|
---|
4049 | satisfies the constraints. */
|
---|
4050 | unsigned int context = re_string_context_at (&mctx->input, idx,
|
---|
4051 | mctx->eflags);
|
---|
4052 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
|
---|
4053 | return 0;
|
---|
4054 | }
|
---|
4055 |
|
---|
4056 | return 1;
|
---|
4057 | }
|
---|
4058 |
|
---|
4059 | /* Extend the buffers, if the buffers have run out. */
|
---|
4060 |
|
---|
4061 | static reg_errcode_t
|
---|
4062 | extend_buffers (mctx)
|
---|
4063 | re_match_context_t *mctx;
|
---|
4064 | {
|
---|
4065 | reg_errcode_t ret;
|
---|
4066 | re_string_t *pstr = &mctx->input;
|
---|
4067 |
|
---|
4068 | /* Double the lengthes of the buffers. */
|
---|
4069 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
|
---|
4070 | if (BE (ret != REG_NOERROR, 0))
|
---|
4071 | return ret;
|
---|
4072 |
|
---|
4073 | if (mctx->state_log != NULL)
|
---|
4074 | {
|
---|
4075 | /* And double the length of state_log. */
|
---|
4076 | /* XXX We have no indication of the size of this buffer. If this
|
---|
4077 | allocation fail we have no indication that the state_log array
|
---|
4078 | does not have the right size. */
|
---|
4079 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *,
|
---|
4080 | pstr->bufs_len + 1);
|
---|
4081 | if (BE (new_array == NULL, 0))
|
---|
4082 | return REG_ESPACE;
|
---|
4083 | mctx->state_log = new_array;
|
---|
4084 | }
|
---|
4085 |
|
---|
4086 | /* Then reconstruct the buffers. */
|
---|
4087 | if (pstr->icase)
|
---|
4088 | {
|
---|
4089 | #ifdef RE_ENABLE_I18N
|
---|
4090 | if (pstr->mb_cur_max > 1)
|
---|
4091 | {
|
---|
4092 | ret = build_wcs_upper_buffer (pstr);
|
---|
4093 | if (BE (ret != REG_NOERROR, 0))
|
---|
4094 | return ret;
|
---|
4095 | }
|
---|
4096 | else
|
---|
4097 | #endif /* RE_ENABLE_I18N */
|
---|
4098 | build_upper_buffer (pstr);
|
---|
4099 | }
|
---|
4100 | else
|
---|
4101 | {
|
---|
4102 | #ifdef RE_ENABLE_I18N
|
---|
4103 | if (pstr->mb_cur_max > 1)
|
---|
4104 | build_wcs_buffer (pstr);
|
---|
4105 | else
|
---|
4106 | #endif /* RE_ENABLE_I18N */
|
---|
4107 | {
|
---|
4108 | if (pstr->trans != NULL)
|
---|
4109 | re_string_translate_buffer (pstr);
|
---|
4110 | }
|
---|
4111 | }
|
---|
4112 | return REG_NOERROR;
|
---|
4113 | }
|
---|
4114 |
|
---|
4115 | |
---|
4116 |
|
---|
4117 | /* Functions for matching context. */
|
---|
4118 |
|
---|
4119 | /* Initialize MCTX. */
|
---|
4120 |
|
---|
4121 | static reg_errcode_t
|
---|
4122 | match_ctx_init (mctx, eflags, n)
|
---|
4123 | re_match_context_t *mctx;
|
---|
4124 | int eflags, n;
|
---|
4125 | {
|
---|
4126 | mctx->eflags = eflags;
|
---|
4127 | mctx->match_last = -1;
|
---|
4128 | if (n > 0)
|
---|
4129 | {
|
---|
4130 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
|
---|
4131 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
|
---|
4132 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
|
---|
4133 | return REG_ESPACE;
|
---|
4134 | }
|
---|
4135 | /* Already zero-ed by the caller.
|
---|
4136 | else
|
---|
4137 | mctx->bkref_ents = NULL;
|
---|
4138 | mctx->nbkref_ents = 0;
|
---|
4139 | mctx->nsub_tops = 0; */
|
---|
4140 | mctx->abkref_ents = n;
|
---|
4141 | mctx->max_mb_elem_len = 1;
|
---|
4142 | mctx->asub_tops = n;
|
---|
4143 | return REG_NOERROR;
|
---|
4144 | }
|
---|
4145 |
|
---|
4146 | /* Clean the entries which depend on the current input in MCTX.
|
---|
4147 | This function must be invoked when the matcher changes the start index
|
---|
4148 | of the input, or changes the input string. */
|
---|
4149 |
|
---|
4150 | static void
|
---|
4151 | match_ctx_clean (mctx)
|
---|
4152 | re_match_context_t *mctx;
|
---|
4153 | {
|
---|
4154 | int st_idx;
|
---|
4155 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
|
---|
4156 | {
|
---|
4157 | int sl_idx;
|
---|
4158 | re_sub_match_top_t *top = mctx->sub_tops[st_idx];
|
---|
4159 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
|
---|
4160 | {
|
---|
4161 | re_sub_match_last_t *last = top->lasts[sl_idx];
|
---|
4162 | re_free (last->path.array);
|
---|
4163 | re_free (last);
|
---|
4164 | }
|
---|
4165 | re_free (top->lasts);
|
---|
4166 | if (top->path)
|
---|
4167 | {
|
---|
4168 | re_free (top->path->array);
|
---|
4169 | re_free (top->path);
|
---|
4170 | }
|
---|
4171 | free (top);
|
---|
4172 | }
|
---|
4173 |
|
---|
4174 | mctx->nsub_tops = 0;
|
---|
4175 | mctx->nbkref_ents = 0;
|
---|
4176 | }
|
---|
4177 |
|
---|
4178 | /* Free all the memory associated with MCTX. */
|
---|
4179 |
|
---|
4180 | static void
|
---|
4181 | match_ctx_free (mctx)
|
---|
4182 | re_match_context_t *mctx;
|
---|
4183 | {
|
---|
4184 | /* First, free all the memory associated with MCTX->SUB_TOPS. */
|
---|
4185 | match_ctx_clean (mctx);
|
---|
4186 | re_free (mctx->sub_tops);
|
---|
4187 | re_free (mctx->bkref_ents);
|
---|
4188 | }
|
---|
4189 |
|
---|
4190 | /* Add a new backreference entry to MCTX.
|
---|
4191 | Note that we assume that caller never call this function with duplicate
|
---|
4192 | entry, and call with STR_IDX which isn't smaller than any existing entry.
|
---|
4193 | */
|
---|
4194 |
|
---|
4195 | static reg_errcode_t
|
---|
4196 | match_ctx_add_entry (mctx, node, str_idx, from, to)
|
---|
4197 | re_match_context_t *mctx;
|
---|
4198 | int node, str_idx, from, to;
|
---|
4199 | {
|
---|
4200 | if (mctx->nbkref_ents >= mctx->abkref_ents)
|
---|
4201 | {
|
---|
4202 | struct re_backref_cache_entry* new_entry;
|
---|
4203 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
|
---|
4204 | mctx->abkref_ents * 2);
|
---|
4205 | if (BE (new_entry == NULL, 0))
|
---|
4206 | {
|
---|
4207 | re_free (mctx->bkref_ents);
|
---|
4208 | return REG_ESPACE;
|
---|
4209 | }
|
---|
4210 | mctx->bkref_ents = new_entry;
|
---|
4211 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
|
---|
4212 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
|
---|
4213 | mctx->abkref_ents *= 2;
|
---|
4214 | }
|
---|
4215 | if (mctx->nbkref_ents > 0
|
---|
4216 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx)
|
---|
4217 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;
|
---|
4218 |
|
---|
4219 | mctx->bkref_ents[mctx->nbkref_ents].node = node;
|
---|
4220 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
|
---|
4221 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
|
---|
4222 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;
|
---|
4223 |
|
---|
4224 | /* This is a cache that saves negative results of check_dst_limits_calc_pos.
|
---|
4225 | If bit N is clear, means that this entry won't epsilon-transition to
|
---|
4226 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If
|
---|
4227 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one
|
---|
4228 | such node.
|
---|
4229 |
|
---|
4230 | A backreference does not epsilon-transition unless it is empty, so set
|
---|
4231 | to all zeros if FROM != TO. */
|
---|
4232 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map
|
---|
4233 | = (from == to ? ~0 : 0);
|
---|
4234 |
|
---|
4235 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0;
|
---|
4236 | if (mctx->max_mb_elem_len < to - from)
|
---|
4237 | mctx->max_mb_elem_len = to - from;
|
---|
4238 | return REG_NOERROR;
|
---|
4239 | }
|
---|
4240 |
|
---|
4241 | /* Search for the first entry which has the same str_idx, or -1 if none is
|
---|
4242 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */
|
---|
4243 |
|
---|
4244 | static int
|
---|
4245 | search_cur_bkref_entry (mctx, str_idx)
|
---|
4246 | re_match_context_t *mctx;
|
---|
4247 | int str_idx;
|
---|
4248 | {
|
---|
4249 | int left, right, mid, last;
|
---|
4250 | last = right = mctx->nbkref_ents;
|
---|
4251 | for (left = 0; left < right;)
|
---|
4252 | {
|
---|
4253 | mid = (left + right) / 2;
|
---|
4254 | if (mctx->bkref_ents[mid].str_idx < str_idx)
|
---|
4255 | left = mid + 1;
|
---|
4256 | else
|
---|
4257 | right = mid;
|
---|
4258 | }
|
---|
4259 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx)
|
---|
4260 | return left;
|
---|
4261 | else
|
---|
4262 | return -1;
|
---|
4263 | }
|
---|
4264 |
|
---|
4265 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
|
---|
4266 | at STR_IDX. */
|
---|
4267 |
|
---|
4268 | static reg_errcode_t
|
---|
4269 | match_ctx_add_subtop (mctx, node, str_idx)
|
---|
4270 | re_match_context_t *mctx;
|
---|
4271 | int node, str_idx;
|
---|
4272 | {
|
---|
4273 | #ifdef DEBUG
|
---|
4274 | assert (mctx->sub_tops != NULL);
|
---|
4275 | assert (mctx->asub_tops > 0);
|
---|
4276 | #endif
|
---|
4277 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0))
|
---|
4278 | {
|
---|
4279 | int new_asub_tops = mctx->asub_tops * 2;
|
---|
4280 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops,
|
---|
4281 | re_sub_match_top_t *,
|
---|
4282 | new_asub_tops);
|
---|
4283 | if (BE (new_array == NULL, 0))
|
---|
4284 | return REG_ESPACE;
|
---|
4285 | mctx->sub_tops = new_array;
|
---|
4286 | mctx->asub_tops = new_asub_tops;
|
---|
4287 | }
|
---|
4288 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
|
---|
4289 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0))
|
---|
4290 | return REG_ESPACE;
|
---|
4291 | mctx->sub_tops[mctx->nsub_tops]->node = node;
|
---|
4292 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
|
---|
4293 | return REG_NOERROR;
|
---|
4294 | }
|
---|
4295 |
|
---|
4296 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
|
---|
4297 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */
|
---|
4298 |
|
---|
4299 | static re_sub_match_last_t *
|
---|
4300 | match_ctx_add_sublast (subtop, node, str_idx)
|
---|
4301 | re_sub_match_top_t *subtop;
|
---|
4302 | int node, str_idx;
|
---|
4303 | {
|
---|
4304 | re_sub_match_last_t *new_entry;
|
---|
4305 | if (BE (subtop->nlasts == subtop->alasts, 0))
|
---|
4306 | {
|
---|
4307 | int new_alasts = 2 * subtop->alasts + 1;
|
---|
4308 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts,
|
---|
4309 | re_sub_match_last_t *,
|
---|
4310 | new_alasts);
|
---|
4311 | if (BE (new_array == NULL, 0))
|
---|
4312 | return NULL;
|
---|
4313 | subtop->lasts = new_array;
|
---|
4314 | subtop->alasts = new_alasts;
|
---|
4315 | }
|
---|
4316 | new_entry = calloc (1, sizeof (re_sub_match_last_t));
|
---|
4317 | if (BE (new_entry != NULL, 1))
|
---|
4318 | {
|
---|
4319 | subtop->lasts[subtop->nlasts] = new_entry;
|
---|
4320 | new_entry->node = node;
|
---|
4321 | new_entry->str_idx = str_idx;
|
---|
4322 | ++subtop->nlasts;
|
---|
4323 | }
|
---|
4324 | return new_entry;
|
---|
4325 | }
|
---|
4326 |
|
---|
4327 | static void
|
---|
4328 | sift_ctx_init (sctx, sifted_sts, limited_sts, last_node, last_str_idx)
|
---|
4329 | re_sift_context_t *sctx;
|
---|
4330 | re_dfastate_t **sifted_sts, **limited_sts;
|
---|
4331 | int last_node, last_str_idx;
|
---|
4332 | {
|
---|
4333 | sctx->sifted_states = sifted_sts;
|
---|
4334 | sctx->limited_states = limited_sts;
|
---|
4335 | sctx->last_node = last_node;
|
---|
4336 | sctx->last_str_idx = last_str_idx;
|
---|
4337 | re_node_set_init_empty (&sctx->limits);
|
---|
4338 | }
|
---|