[3076] | 1 | /* Extended regular expression matching and search library.
|
---|
| 2 | Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
|
---|
| 3 | This file is part of the GNU C Library.
|
---|
| 4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
|
---|
| 5 |
|
---|
| 6 | The GNU C Library is free software; you can redistribute it and/or
|
---|
| 7 | modify it under the terms of the GNU Lesser General Public
|
---|
| 8 | License as published by the Free Software Foundation; either
|
---|
| 9 | version 2.1 of the License, or (at your option) any later version.
|
---|
| 10 |
|
---|
| 11 | The GNU C Library is distributed in the hope that it will be useful,
|
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
| 14 | Lesser General Public License for more details.
|
---|
| 15 |
|
---|
| 16 | You should have received a copy of the GNU Lesser General Public
|
---|
| 17 | License along with the GNU C Library; if not, write to the Free
|
---|
| 18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
---|
| 19 | 02110-1301 USA. */
|
---|
| 20 |
|
---|
| 21 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
|
---|
| 22 | int n) internal_function;
|
---|
| 23 | static void match_ctx_clean (re_match_context_t *mctx) internal_function;
|
---|
| 24 | static void match_ctx_free (re_match_context_t *cache) internal_function;
|
---|
| 25 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node,
|
---|
| 26 | int str_idx, int from, int to)
|
---|
| 27 | internal_function;
|
---|
| 28 | static int search_cur_bkref_entry (re_match_context_t *mctx, int str_idx)
|
---|
| 29 | internal_function;
|
---|
| 30 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node,
|
---|
| 31 | int str_idx) internal_function;
|
---|
| 32 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
|
---|
| 33 | int node, int str_idx)
|
---|
| 34 | internal_function;
|
---|
| 35 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
|
---|
| 36 | re_dfastate_t **limited_sts, int last_node,
|
---|
| 37 | int last_str_idx)
|
---|
| 38 | internal_function;
|
---|
| 39 | static reg_errcode_t re_search_internal (const regex_t *preg,
|
---|
| 40 | const char *string, int length,
|
---|
| 41 | int start, int range, int stop,
|
---|
| 42 | size_t nmatch, regmatch_t pmatch[],
|
---|
| 43 | int eflags) internal_function;
|
---|
| 44 | static int re_search_2_stub (struct re_pattern_buffer *bufp,
|
---|
| 45 | const char *string1, int length1,
|
---|
| 46 | const char *string2, int length2,
|
---|
| 47 | int start, int range, struct re_registers *regs,
|
---|
| 48 | int stop, int ret_len) internal_function;
|
---|
| 49 | static int re_search_stub (struct re_pattern_buffer *bufp,
|
---|
| 50 | const char *string, int length, int start,
|
---|
| 51 | int range, int stop, struct re_registers *regs,
|
---|
| 52 | int ret_len) internal_function;
|
---|
| 53 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
|
---|
| 54 | int nregs, int regs_allocated) internal_function;
|
---|
| 55 | static inline re_dfastate_t *acquire_init_state_context
|
---|
| 56 | (reg_errcode_t *err, const re_match_context_t *mctx, int idx)
|
---|
| 57 | __attribute ((always_inline)) internal_function;
|
---|
| 58 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx)
|
---|
| 59 | internal_function;
|
---|
| 60 | static int check_matching (re_match_context_t *mctx, int fl_longest_match,
|
---|
| 61 | int *p_match_first)
|
---|
| 62 | internal_function;
|
---|
| 63 | static int check_halt_node_context (const re_dfa_t *dfa, int node,
|
---|
| 64 | unsigned int context) internal_function;
|
---|
| 65 | static int check_halt_state_context (const re_match_context_t *mctx,
|
---|
| 66 | const re_dfastate_t *state, int idx)
|
---|
| 67 | internal_function;
|
---|
| 68 | static void update_regs (re_dfa_t *dfa, regmatch_t *pmatch,
|
---|
| 69 | regmatch_t *prev_idx_match, int cur_node,
|
---|
| 70 | int cur_idx, int nmatch) internal_function;
|
---|
| 71 | static int proceed_next_node (const re_match_context_t *mctx,
|
---|
| 72 | int nregs, regmatch_t *regs,
|
---|
| 73 | int *pidx, int node, re_node_set *eps_via_nodes,
|
---|
| 74 | struct re_fail_stack_t *fs) internal_function;
|
---|
| 75 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
|
---|
| 76 | int str_idx, int dest_node, int nregs,
|
---|
| 77 | regmatch_t *regs,
|
---|
| 78 | re_node_set *eps_via_nodes) internal_function;
|
---|
| 79 | static int pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs,
|
---|
| 80 | regmatch_t *regs, re_node_set *eps_via_nodes) internal_function;
|
---|
| 81 | static reg_errcode_t set_regs (const regex_t *preg,
|
---|
| 82 | const re_match_context_t *mctx,
|
---|
| 83 | size_t nmatch, regmatch_t *pmatch,
|
---|
| 84 | int fl_backtrack) internal_function;
|
---|
| 85 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) internal_function;
|
---|
| 86 |
|
---|
| 87 | #ifdef RE_ENABLE_I18N
|
---|
| 88 | static int sift_states_iter_mb (const re_match_context_t *mctx,
|
---|
| 89 | re_sift_context_t *sctx,
|
---|
| 90 | int node_idx, int str_idx, int max_str_idx) internal_function;
|
---|
| 91 | #endif /* RE_ENABLE_I18N */
|
---|
| 92 | static reg_errcode_t sift_states_backward (re_match_context_t *mctx,
|
---|
| 93 | re_sift_context_t *sctx) internal_function;
|
---|
| 94 | static reg_errcode_t build_sifted_states (re_match_context_t *mctx,
|
---|
| 95 | re_sift_context_t *sctx, int str_idx,
|
---|
| 96 | re_node_set *cur_dest) internal_function;
|
---|
| 97 | static reg_errcode_t update_cur_sifted_state (re_match_context_t *mctx,
|
---|
| 98 | re_sift_context_t *sctx,
|
---|
| 99 | int str_idx,
|
---|
| 100 | re_node_set *dest_nodes) internal_function;
|
---|
| 101 | static reg_errcode_t add_epsilon_src_nodes (re_dfa_t *dfa,
|
---|
| 102 | re_node_set *dest_nodes,
|
---|
| 103 | const re_node_set *candidates) internal_function;
|
---|
| 104 | static reg_errcode_t sub_epsilon_src_nodes (re_dfa_t *dfa, int node,
|
---|
| 105 | re_node_set *dest_nodes,
|
---|
| 106 | const re_node_set *and_nodes) internal_function;
|
---|
| 107 | static int check_dst_limits (re_match_context_t *mctx, re_node_set *limits,
|
---|
| 108 | int dst_node, int dst_idx, int src_node,
|
---|
| 109 | int src_idx) internal_function;
|
---|
| 110 | static int check_dst_limits_calc_pos_1 (re_match_context_t *mctx,
|
---|
| 111 | int boundaries, int subexp_idx,
|
---|
| 112 | int from_node, int bkref_idx) internal_function;
|
---|
| 113 | static int check_dst_limits_calc_pos (re_match_context_t *mctx,
|
---|
| 114 | int limit, int subexp_idx,
|
---|
| 115 | int node, int str_idx,
|
---|
| 116 | int bkref_idx) internal_function;
|
---|
| 117 | static reg_errcode_t check_subexp_limits (re_dfa_t *dfa,
|
---|
| 118 | re_node_set *dest_nodes,
|
---|
| 119 | const re_node_set *candidates,
|
---|
| 120 | re_node_set *limits,
|
---|
| 121 | struct re_backref_cache_entry *bkref_ents,
|
---|
| 122 | int str_idx) internal_function;
|
---|
| 123 | static reg_errcode_t sift_states_bkref (re_match_context_t *mctx,
|
---|
| 124 | re_sift_context_t *sctx,
|
---|
| 125 | int str_idx, const re_node_set *candidates) internal_function;
|
---|
| 126 | static reg_errcode_t clean_state_log_if_needed (re_match_context_t *mctx,
|
---|
| 127 | int next_state_log_idx) internal_function;
|
---|
| 128 | static reg_errcode_t merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst,
|
---|
| 129 | re_dfastate_t **src, int num) internal_function;
|
---|
| 130 | static re_dfastate_t *find_recover_state (reg_errcode_t *err,
|
---|
| 131 | re_match_context_t *mctx) internal_function;
|
---|
| 132 | static re_dfastate_t *transit_state (reg_errcode_t *err,
|
---|
| 133 | re_match_context_t *mctx,
|
---|
| 134 | re_dfastate_t *state) internal_function;
|
---|
| 135 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err,
|
---|
| 136 | re_match_context_t *mctx,
|
---|
| 137 | re_dfastate_t *next_state) internal_function;
|
---|
| 138 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx,
|
---|
| 139 | re_node_set *cur_nodes,
|
---|
| 140 | int str_idx) internal_function;
|
---|
| 141 | #if 0
|
---|
| 142 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err,
|
---|
| 143 | re_match_context_t *mctx,
|
---|
| 144 | re_dfastate_t *pstate) internal_function;
|
---|
| 145 | #endif
|
---|
| 146 | #ifdef RE_ENABLE_I18N
|
---|
| 147 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx,
|
---|
| 148 | re_dfastate_t *pstate) internal_function;
|
---|
| 149 | #endif /* RE_ENABLE_I18N */
|
---|
| 150 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx,
|
---|
| 151 | const re_node_set *nodes) internal_function;
|
---|
| 152 | static reg_errcode_t get_subexp (re_match_context_t *mctx,
|
---|
| 153 | int bkref_node, int bkref_str_idx) internal_function;
|
---|
| 154 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx,
|
---|
| 155 | const re_sub_match_top_t *sub_top,
|
---|
| 156 | re_sub_match_last_t *sub_last,
|
---|
| 157 | int bkref_node, int bkref_str) internal_function;
|
---|
| 158 | static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
|
---|
| 159 | int subexp_idx, int type) internal_function;
|
---|
| 160 | static reg_errcode_t check_arrival (re_match_context_t *mctx,
|
---|
| 161 | state_array_t *path, int top_node,
|
---|
| 162 | int top_str, int last_node, int last_str,
|
---|
| 163 | int type) internal_function;
|
---|
| 164 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx,
|
---|
| 165 | int str_idx,
|
---|
| 166 | re_node_set *cur_nodes,
|
---|
| 167 | re_node_set *next_nodes) internal_function;
|
---|
| 168 | static reg_errcode_t check_arrival_expand_ecl (re_dfa_t *dfa,
|
---|
| 169 | re_node_set *cur_nodes,
|
---|
| 170 | int ex_subexp, int type) internal_function;
|
---|
| 171 | static reg_errcode_t check_arrival_expand_ecl_sub (re_dfa_t *dfa,
|
---|
| 172 | re_node_set *dst_nodes,
|
---|
| 173 | int target, int ex_subexp,
|
---|
| 174 | int type) internal_function;
|
---|
| 175 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx,
|
---|
| 176 | re_node_set *cur_nodes, int cur_str,
|
---|
| 177 | int subexp_num, int type) internal_function;
|
---|
| 178 | static int build_trtable (re_dfa_t *dfa,
|
---|
| 179 | re_dfastate_t *state) internal_function;
|
---|
| 180 | #ifdef RE_ENABLE_I18N
|
---|
| 181 | static int check_node_accept_bytes (re_dfa_t *dfa, int node_idx,
|
---|
| 182 | const re_string_t *input, int idx) internal_function;
|
---|
| 183 | # ifdef _LIBC
|
---|
| 184 | static unsigned int find_collation_sequence_value (const unsigned char *mbs,
|
---|
| 185 | size_t name_len) internal_function;
|
---|
| 186 | # endif /* _LIBC */
|
---|
| 187 | #endif /* RE_ENABLE_I18N */
|
---|
| 188 | static int group_nodes_into_DFAstates (re_dfa_t *dfa,
|
---|
| 189 | const re_dfastate_t *state,
|
---|
| 190 | re_node_set *states_node,
|
---|
| 191 | bitset *states_ch) internal_function;
|
---|
| 192 | static int check_node_accept (const re_match_context_t *mctx,
|
---|
| 193 | const re_token_t *node, int idx) internal_function;
|
---|
| 194 | static reg_errcode_t extend_buffers (re_match_context_t *mctx) internal_function;
|
---|
| 195 | |
---|
| 196 |
|
---|
| 197 | /* Entry point for POSIX code. */
|
---|
| 198 |
|
---|
| 199 | /* regexec searches for a given pattern, specified by PREG, in the
|
---|
| 200 | string STRING.
|
---|
| 201 |
|
---|
| 202 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
---|
| 203 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
---|
| 204 | least NMATCH elements, and we set them to the offsets of the
|
---|
| 205 | corresponding matched substrings.
|
---|
| 206 |
|
---|
| 207 | EFLAGS specifies `execution flags' which affect matching: if
|
---|
| 208 | REG_NOTBOL is set, then ^ does not match at the beginning of the
|
---|
| 209 | string; if REG_NOTEOL is set, then $ does not match at the end.
|
---|
| 210 |
|
---|
| 211 | We return 0 if we find a match and REG_NOMATCH if not. */
|
---|
| 212 |
|
---|
| 213 | int
|
---|
| 214 | regexec (preg, string, nmatch, pmatch, eflags)
|
---|
| 215 | const regex_t *__restrict preg;
|
---|
| 216 | const char *__restrict string;
|
---|
| 217 | size_t nmatch;
|
---|
| 218 | regmatch_t pmatch[];
|
---|
| 219 | int eflags;
|
---|
| 220 | {
|
---|
| 221 | reg_errcode_t err;
|
---|
| 222 | int start, length;
|
---|
| 223 |
|
---|
| 224 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND))
|
---|
| 225 | return REG_BADPAT;
|
---|
| 226 |
|
---|
| 227 | if (eflags & REG_STARTEND)
|
---|
| 228 | {
|
---|
| 229 | start = pmatch[0].rm_so;
|
---|
| 230 | length = pmatch[0].rm_eo;
|
---|
| 231 | }
|
---|
| 232 | else
|
---|
| 233 | {
|
---|
| 234 | start = 0;
|
---|
| 235 | length = strlen (string);
|
---|
| 236 | }
|
---|
| 237 | if (preg->no_sub)
|
---|
| 238 | err = re_search_internal (preg, string, length, start, length - start,
|
---|
| 239 | length, 0, NULL, eflags);
|
---|
| 240 | else
|
---|
| 241 | err = re_search_internal (preg, string, length, start, length - start,
|
---|
| 242 | length, nmatch, pmatch, eflags);
|
---|
| 243 | return err != REG_NOERROR;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | #ifdef _LIBC
|
---|
| 247 | # include <shlib-compat.h>
|
---|
| 248 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4);
|
---|
| 249 |
|
---|
| 250 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4)
|
---|
| 251 | __typeof__ (__regexec) __compat_regexec;
|
---|
| 252 |
|
---|
| 253 | int
|
---|
| 254 | attribute_compat_text_section
|
---|
| 255 | __compat_regexec (const regex_t *__restrict preg,
|
---|
| 256 | const char *__restrict string, size_t nmatch,
|
---|
| 257 | regmatch_t pmatch[], int eflags)
|
---|
| 258 | {
|
---|
| 259 | return regexec (preg, string, nmatch, pmatch,
|
---|
| 260 | eflags & (REG_NOTBOL | REG_NOTEOL));
|
---|
| 261 | }
|
---|
| 262 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0);
|
---|
| 263 | # endif
|
---|
| 264 | #endif
|
---|
| 265 |
|
---|
| 266 | /* Entry points for GNU code. */
|
---|
| 267 |
|
---|
| 268 | /* re_match, re_search, re_match_2, re_search_2
|
---|
| 269 |
|
---|
| 270 | The former two functions operate on STRING with length LENGTH,
|
---|
| 271 | while the later two operate on concatenation of STRING1 and STRING2
|
---|
| 272 | with lengths LENGTH1 and LENGTH2, respectively.
|
---|
| 273 |
|
---|
| 274 | re_match() matches the compiled pattern in BUFP against the string,
|
---|
| 275 | starting at index START.
|
---|
| 276 |
|
---|
| 277 | re_search() first tries matching at index START, then it tries to match
|
---|
| 278 | starting from index START + 1, and so on. The last start position tried
|
---|
| 279 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same
|
---|
| 280 | way as re_match().)
|
---|
| 281 |
|
---|
| 282 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding
|
---|
| 283 | the first STOP characters of the concatenation of the strings should be
|
---|
| 284 | concerned.
|
---|
| 285 |
|
---|
| 286 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
|
---|
| 287 | and all groups is stroed in REGS. (For the "_2" variants, the offsets are
|
---|
| 288 | computed relative to the concatenation, not relative to the individual
|
---|
| 289 | strings.)
|
---|
| 290 |
|
---|
| 291 | On success, re_match* functions return the length of the match, re_search*
|
---|
| 292 | return the position of the start of the match. Return value -1 means no
|
---|
| 293 | match was found and -2 indicates an internal error. */
|
---|
| 294 |
|
---|
| 295 | int
|
---|
| 296 | re_match (bufp, string, length, start, regs)
|
---|
| 297 | struct re_pattern_buffer *bufp;
|
---|
| 298 | const char *string;
|
---|
| 299 | int length, start;
|
---|
| 300 | struct re_registers *regs;
|
---|
| 301 | {
|
---|
| 302 | return re_search_stub (bufp, string, length, start, 0, length, regs, 1);
|
---|
| 303 | }
|
---|
| 304 | #ifdef _LIBC
|
---|
| 305 | weak_alias (__re_match, re_match)
|
---|
| 306 | #endif
|
---|
| 307 |
|
---|
| 308 | int
|
---|
| 309 | re_search (bufp, string, length, start, range, regs)
|
---|
| 310 | struct re_pattern_buffer *bufp;
|
---|
| 311 | const char *string;
|
---|
| 312 | int length, start, range;
|
---|
| 313 | struct re_registers *regs;
|
---|
| 314 | {
|
---|
| 315 | return re_search_stub (bufp, string, length, start, range, length, regs, 0);
|
---|
| 316 | }
|
---|
| 317 | #ifdef _LIBC
|
---|
| 318 | weak_alias (__re_search, re_search)
|
---|
| 319 | #endif
|
---|
| 320 |
|
---|
| 321 | int
|
---|
| 322 | re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop)
|
---|
| 323 | struct re_pattern_buffer *bufp;
|
---|
| 324 | const char *string1, *string2;
|
---|
| 325 | int length1, length2, start, stop;
|
---|
| 326 | struct re_registers *regs;
|
---|
| 327 | {
|
---|
| 328 | return re_search_2_stub (bufp, string1, length1, string2, length2,
|
---|
| 329 | start, 0, regs, stop, 1);
|
---|
| 330 | }
|
---|
| 331 | #ifdef _LIBC
|
---|
| 332 | weak_alias (__re_match_2, re_match_2)
|
---|
| 333 | #endif
|
---|
| 334 |
|
---|
| 335 | int
|
---|
| 336 | re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop)
|
---|
| 337 | struct re_pattern_buffer *bufp;
|
---|
| 338 | const char *string1, *string2;
|
---|
| 339 | int length1, length2, start, range, stop;
|
---|
| 340 | struct re_registers *regs;
|
---|
| 341 | {
|
---|
| 342 | return re_search_2_stub (bufp, string1, length1, string2, length2,
|
---|
| 343 | start, range, regs, stop, 0);
|
---|
| 344 | }
|
---|
| 345 | #ifdef _LIBC
|
---|
| 346 | weak_alias (__re_search_2, re_search_2)
|
---|
| 347 | #endif
|
---|
| 348 |
|
---|
| 349 | static int
|
---|
| 350 | re_search_2_stub (bufp, string1, length1, string2, length2, start, range, regs,
|
---|
| 351 | stop, ret_len)
|
---|
| 352 | struct re_pattern_buffer *bufp;
|
---|
| 353 | const char *string1, *string2;
|
---|
| 354 | int length1, length2, start, range, stop, ret_len;
|
---|
| 355 | struct re_registers *regs;
|
---|
| 356 | {
|
---|
| 357 | const char *str;
|
---|
| 358 | int rval;
|
---|
| 359 | int len = length1 + length2;
|
---|
| 360 | int free_str = 0;
|
---|
| 361 |
|
---|
| 362 | if (BE (length1 < 0 || length2 < 0 || stop < 0, 0))
|
---|
| 363 | return -2;
|
---|
| 364 |
|
---|
| 365 | /* Concatenate the strings. */
|
---|
| 366 | if (length2 > 0)
|
---|
| 367 | if (length1 > 0)
|
---|
| 368 | {
|
---|
| 369 | char *s = re_malloc (char, len);
|
---|
| 370 |
|
---|
| 371 | if (BE (s == NULL, 0))
|
---|
| 372 | return -2;
|
---|
| 373 | memcpy (s, string1, length1);
|
---|
| 374 | memcpy (s + length1, string2, length2);
|
---|
| 375 | str = s;
|
---|
| 376 | free_str = 1;
|
---|
| 377 | }
|
---|
| 378 | else
|
---|
| 379 | str = string2;
|
---|
| 380 | else
|
---|
| 381 | str = string1;
|
---|
| 382 |
|
---|
| 383 | rval = re_search_stub (bufp, str, len, start, range, stop, regs,
|
---|
| 384 | ret_len);
|
---|
| 385 | if (free_str)
|
---|
| 386 | re_free ((char *) str);
|
---|
| 387 | return rval;
|
---|
| 388 | }
|
---|
| 389 |
|
---|
| 390 | /* The parameters have the same meaning as those of re_search.
|
---|
| 391 | Additional parameters:
|
---|
| 392 | If RET_LEN is nonzero the length of the match is returned (re_match style);
|
---|
| 393 | otherwise the position of the match is returned. */
|
---|
| 394 |
|
---|
| 395 | static int
|
---|
| 396 | re_search_stub (bufp, string, length, start, range, stop, regs, ret_len)
|
---|
| 397 | struct re_pattern_buffer *bufp;
|
---|
| 398 | const char *string;
|
---|
| 399 | int length, start, range, stop, ret_len;
|
---|
| 400 | struct re_registers *regs;
|
---|
| 401 | {
|
---|
| 402 | reg_errcode_t result;
|
---|
| 403 | regmatch_t *pmatch;
|
---|
| 404 | int nregs, rval;
|
---|
| 405 | int eflags = 0;
|
---|
| 406 |
|
---|
| 407 | /* Check for out-of-range. */
|
---|
| 408 | if (BE (start < 0 || start > length, 0))
|
---|
| 409 | return -1;
|
---|
| 410 | if (BE (start + range > length, 0))
|
---|
| 411 | range = length - start;
|
---|
| 412 | else if (BE (start + range < 0, 0))
|
---|
| 413 | range = -start;
|
---|
| 414 |
|
---|
| 415 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
|
---|
| 416 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
|
---|
| 417 |
|
---|
| 418 | /* Compile fastmap if we haven't yet. */
|
---|
| 419 | if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate)
|
---|
| 420 | re_compile_fastmap (bufp);
|
---|
| 421 |
|
---|
| 422 | if (BE (bufp->no_sub, 0))
|
---|
| 423 | regs = NULL;
|
---|
| 424 |
|
---|
| 425 | /* We need at least 1 register. */
|
---|
| 426 | if (regs == NULL)
|
---|
| 427 | nregs = 1;
|
---|
| 428 | else if (BE (bufp->regs_allocated == REGS_FIXED &&
|
---|
| 429 | regs->num_regs < bufp->re_nsub + 1, 0))
|
---|
| 430 | {
|
---|
| 431 | nregs = regs->num_regs;
|
---|
| 432 | if (BE (nregs < 1, 0))
|
---|
| 433 | {
|
---|
| 434 | /* Nothing can be copied to regs. */
|
---|
| 435 | regs = NULL;
|
---|
| 436 | nregs = 1;
|
---|
| 437 | }
|
---|
| 438 | }
|
---|
| 439 | else
|
---|
| 440 | nregs = bufp->re_nsub + 1;
|
---|
| 441 | pmatch = re_malloc (regmatch_t, nregs);
|
---|
| 442 | if (BE (pmatch == NULL, 0))
|
---|
| 443 | return -2;
|
---|
| 444 |
|
---|
| 445 | result = re_search_internal (bufp, string, length, start, range, stop,
|
---|
| 446 | nregs, pmatch, eflags);
|
---|
| 447 |
|
---|
| 448 | rval = 0;
|
---|
| 449 |
|
---|
| 450 | /* I hope we needn't fill ther regs with -1's when no match was found. */
|
---|
| 451 | if (result != REG_NOERROR)
|
---|
| 452 | rval = -1;
|
---|
| 453 | else if (regs != NULL)
|
---|
| 454 | {
|
---|
| 455 | /* If caller wants register contents data back, copy them. */
|
---|
| 456 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
|
---|
| 457 | bufp->regs_allocated);
|
---|
| 458 | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
|
---|
| 459 | rval = -2;
|
---|
| 460 | }
|
---|
| 461 |
|
---|
| 462 | if (BE (rval == 0, 1))
|
---|
| 463 | {
|
---|
| 464 | if (ret_len)
|
---|
| 465 | {
|
---|
| 466 | assert (pmatch[0].rm_so == start);
|
---|
| 467 | rval = pmatch[0].rm_eo - start;
|
---|
| 468 | }
|
---|
| 469 | else
|
---|
| 470 | rval = pmatch[0].rm_so;
|
---|
| 471 | }
|
---|
| 472 | re_free (pmatch);
|
---|
| 473 | return rval;
|
---|
| 474 | }
|
---|
| 475 |
|
---|
| 476 | static unsigned
|
---|
| 477 | re_copy_regs (regs, pmatch, nregs, regs_allocated)
|
---|
| 478 | struct re_registers *regs;
|
---|
| 479 | regmatch_t *pmatch;
|
---|
| 480 | int nregs, regs_allocated;
|
---|
| 481 | {
|
---|
| 482 | int rval = REGS_REALLOCATE;
|
---|
| 483 | int i;
|
---|
| 484 | int need_regs = nregs + 1;
|
---|
| 485 | /* We need one extra element beyond `num_regs' for the `-1' marker GNU code
|
---|
| 486 | uses. */
|
---|
| 487 |
|
---|
| 488 | /* Have the register data arrays been allocated? */
|
---|
| 489 | if (regs_allocated == REGS_UNALLOCATED)
|
---|
| 490 | { /* No. So allocate them with malloc. */
|
---|
| 491 | regs->start = re_malloc (regoff_t, need_regs);
|
---|
| 492 | regs->end = re_malloc (regoff_t, need_regs);
|
---|
| 493 | if (BE (regs->start == NULL, 0) || BE (regs->end == NULL, 0))
|
---|
| 494 | return REGS_UNALLOCATED;
|
---|
| 495 | regs->num_regs = need_regs;
|
---|
| 496 | }
|
---|
| 497 | else if (regs_allocated == REGS_REALLOCATE)
|
---|
| 498 | { /* Yes. If we need more elements than were already
|
---|
| 499 | allocated, reallocate them. If we need fewer, just
|
---|
| 500 | leave it alone. */
|
---|
| 501 | if (BE (need_regs > regs->num_regs, 0))
|
---|
| 502 | {
|
---|
| 503 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs);
|
---|
| 504 | regoff_t *new_end = re_realloc (regs->end, regoff_t, need_regs);
|
---|
| 505 | if (BE (new_start == NULL, 0) || BE (new_end == NULL, 0))
|
---|
| 506 | return REGS_UNALLOCATED;
|
---|
| 507 | regs->start = new_start;
|
---|
| 508 | regs->end = new_end;
|
---|
| 509 | regs->num_regs = need_regs;
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 | else
|
---|
| 513 | {
|
---|
| 514 | assert (regs_allocated == REGS_FIXED);
|
---|
| 515 | /* This function may not be called with REGS_FIXED and nregs too big. */
|
---|
| 516 | assert (regs->num_regs >= nregs);
|
---|
| 517 | rval = REGS_FIXED;
|
---|
| 518 | }
|
---|
| 519 |
|
---|
| 520 | /* Copy the regs. */
|
---|
| 521 | for (i = 0; i < nregs; ++i)
|
---|
| 522 | {
|
---|
| 523 | regs->start[i] = pmatch[i].rm_so;
|
---|
| 524 | regs->end[i] = pmatch[i].rm_eo;
|
---|
| 525 | }
|
---|
| 526 | for ( ; i < regs->num_regs; ++i)
|
---|
| 527 | regs->start[i] = regs->end[i] = -1;
|
---|
| 528 |
|
---|
| 529 | return rval;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
---|
| 533 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
---|
| 534 | this memory for recording register information. STARTS and ENDS
|
---|
| 535 | must be allocated using the malloc library routine, and must each
|
---|
| 536 | be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
---|
| 537 |
|
---|
| 538 | If NUM_REGS == 0, then subsequent matches should allocate their own
|
---|
| 539 | register data.
|
---|
| 540 |
|
---|
| 541 | Unless this function is called, the first search or match using
|
---|
| 542 | PATTERN_BUFFER will allocate its own register data, without
|
---|
| 543 | freeing the old data. */
|
---|
| 544 |
|
---|
| 545 | void
|
---|
| 546 | re_set_registers (bufp, regs, num_regs, starts, ends)
|
---|
| 547 | struct re_pattern_buffer *bufp;
|
---|
| 548 | struct re_registers *regs;
|
---|
| 549 | unsigned num_regs;
|
---|
| 550 | regoff_t *starts, *ends;
|
---|
| 551 | {
|
---|
| 552 | if (num_regs)
|
---|
| 553 | {
|
---|
| 554 | bufp->regs_allocated = REGS_REALLOCATE;
|
---|
| 555 | regs->num_regs = num_regs;
|
---|
| 556 | regs->start = starts;
|
---|
| 557 | regs->end = ends;
|
---|
| 558 | }
|
---|
| 559 | else
|
---|
| 560 | {
|
---|
| 561 | bufp->regs_allocated = REGS_UNALLOCATED;
|
---|
| 562 | regs->num_regs = 0;
|
---|
| 563 | regs->start = regs->end = (regoff_t *) 0;
|
---|
| 564 | }
|
---|
| 565 | }
|
---|
| 566 | #ifdef _LIBC
|
---|
| 567 | weak_alias (__re_set_registers, re_set_registers)
|
---|
| 568 | #endif
|
---|
| 569 | |
---|
| 570 |
|
---|
| 571 | /* Entry points compatible with 4.2 BSD regex library. We don't define
|
---|
| 572 | them unless specifically requested. */
|
---|
| 573 |
|
---|
| 574 | #if defined _REGEX_RE_COMP || defined _LIBC
|
---|
| 575 | int
|
---|
| 576 | # ifdef _LIBC
|
---|
| 577 | weak_function
|
---|
| 578 | # endif
|
---|
| 579 | re_exec (s)
|
---|
| 580 | const char *s;
|
---|
| 581 | {
|
---|
| 582 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
|
---|
| 583 | }
|
---|
| 584 | #endif /* _REGEX_RE_COMP */
|
---|
| 585 | |
---|
| 586 |
|
---|
| 587 | /* Internal entry point. */
|
---|
| 588 |
|
---|
| 589 | /* Searches for a compiled pattern PREG in the string STRING, whose
|
---|
| 590 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same
|
---|
| 591 | mingings with regexec. START, and RANGE have the same meanings
|
---|
| 592 | with re_search.
|
---|
| 593 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
|
---|
| 594 | otherwise return the error code.
|
---|
| 595 | Note: We assume front end functions already check ranges.
|
---|
| 596 | (START + RANGE >= 0 && START + RANGE <= LENGTH) */
|
---|
| 597 |
|
---|
| 598 | static reg_errcode_t
|
---|
| 599 | re_search_internal (preg, string, length, start, range, stop, nmatch, pmatch,
|
---|
| 600 | eflags)
|
---|
| 601 | const regex_t *preg;
|
---|
| 602 | const char *string;
|
---|
| 603 | int length, start, range, stop, eflags;
|
---|
| 604 | size_t nmatch;
|
---|
| 605 | regmatch_t pmatch[];
|
---|
| 606 | {
|
---|
| 607 | reg_errcode_t err;
|
---|
| 608 | re_dfa_t *dfa = (re_dfa_t *)preg->buffer;
|
---|
| 609 | int left_lim, right_lim, incr;
|
---|
| 610 | int fl_longest_match, match_first, match_kind, match_last = -1;
|
---|
| 611 | int extra_nmatch;
|
---|
| 612 | int sb, ch;
|
---|
| 613 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
|
---|
| 614 | re_match_context_t mctx = { .dfa = dfa };
|
---|
| 615 | #else
|
---|
| 616 | re_match_context_t mctx;
|
---|
| 617 | #endif
|
---|
| 618 | char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate
|
---|
| 619 | && range && !preg->can_be_null) ? preg->fastmap : NULL;
|
---|
| 620 | unsigned RE_TRANSLATE_TYPE t = (unsigned RE_TRANSLATE_TYPE) preg->translate;
|
---|
| 621 |
|
---|
| 622 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L))
|
---|
| 623 | memset (&mctx, '\0', sizeof (re_match_context_t));
|
---|
| 624 | mctx.dfa = dfa;
|
---|
| 625 | #endif
|
---|
| 626 |
|
---|
| 627 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0;
|
---|
| 628 | nmatch -= extra_nmatch;
|
---|
| 629 |
|
---|
| 630 | /* Check if the DFA haven't been compiled. */
|
---|
| 631 | if (BE (preg->used == 0 || dfa->init_state == NULL
|
---|
| 632 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
|
---|
| 633 | || dfa->init_state_begbuf == NULL, 0))
|
---|
| 634 | return REG_NOMATCH;
|
---|
| 635 |
|
---|
| 636 | #ifdef DEBUG
|
---|
| 637 | /* We assume front-end functions already check them. */
|
---|
| 638 | assert (start + range >= 0 && start + range <= length);
|
---|
| 639 | #endif
|
---|
| 640 |
|
---|
| 641 | /* If initial states with non-begbuf contexts have no elements,
|
---|
| 642 | the regex must be anchored. If preg->newline_anchor is set,
|
---|
| 643 | we'll never use init_state_nl, so do not check it. */
|
---|
| 644 | if (dfa->init_state->nodes.nelem == 0
|
---|
| 645 | && dfa->init_state_word->nodes.nelem == 0
|
---|
| 646 | && (dfa->init_state_nl->nodes.nelem == 0
|
---|
| 647 | || !preg->newline_anchor))
|
---|
| 648 | {
|
---|
| 649 | if (start != 0 && start + range != 0)
|
---|
| 650 | return REG_NOMATCH;
|
---|
| 651 | start = range = 0;
|
---|
| 652 | }
|
---|
| 653 |
|
---|
| 654 | /* We must check the longest matching, if nmatch > 0. */
|
---|
| 655 | fl_longest_match = (nmatch != 0 || dfa->nbackref);
|
---|
| 656 |
|
---|
| 657 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1,
|
---|
| 658 | preg->translate, preg->syntax & RE_ICASE, dfa);
|
---|
| 659 | if (BE (err != REG_NOERROR, 0))
|
---|
| 660 | goto free_return;
|
---|
| 661 | mctx.input.stop = stop;
|
---|
| 662 | mctx.input.raw_stop = stop;
|
---|
| 663 | mctx.input.newline_anchor = preg->newline_anchor;
|
---|
| 664 |
|
---|
| 665 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
|
---|
| 666 | if (BE (err != REG_NOERROR, 0))
|
---|
| 667 | goto free_return;
|
---|
| 668 |
|
---|
| 669 | /* We will log all the DFA states through which the dfa pass,
|
---|
| 670 | if nmatch > 1, or this dfa has "multibyte node", which is a
|
---|
| 671 | back-reference or a node which can accept multibyte character or
|
---|
| 672 | multi character collating element. */
|
---|
| 673 | if (nmatch > 1 || dfa->has_mb_node)
|
---|
| 674 | {
|
---|
| 675 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1);
|
---|
| 676 | if (BE (mctx.state_log == NULL, 0))
|
---|
| 677 | {
|
---|
| 678 | err = REG_ESPACE;
|
---|
| 679 | goto free_return;
|
---|
| 680 | }
|
---|
| 681 | }
|
---|
| 682 | else
|
---|
| 683 | mctx.state_log = NULL;
|
---|
| 684 |
|
---|
| 685 | match_first = start;
|
---|
| 686 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
|
---|
| 687 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF;
|
---|
| 688 |
|
---|
| 689 | /* Check incrementally whether of not the input string match. */
|
---|
| 690 | incr = (range < 0) ? -1 : 1;
|
---|
| 691 | left_lim = (range < 0) ? start + range : start;
|
---|
| 692 | right_lim = (range < 0) ? start : start + range;
|
---|
| 693 | sb = dfa->mb_cur_max == 1;
|
---|
| 694 | match_kind =
|
---|
| 695 | (fastmap
|
---|
| 696 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0)
|
---|
| 697 | | (range >= 0 ? 2 : 0)
|
---|
| 698 | | (t != NULL ? 1 : 0))
|
---|
| 699 | : 8);
|
---|
| 700 |
|
---|
| 701 | for (;; match_first += incr)
|
---|
| 702 | {
|
---|
| 703 | err = REG_NOMATCH;
|
---|
| 704 | if (match_first < left_lim || right_lim < match_first)
|
---|
| 705 | goto free_return;
|
---|
| 706 |
|
---|
| 707 | /* Advance as rapidly as possible through the string, until we
|
---|
| 708 | find a plausible place to start matching. This may be done
|
---|
| 709 | with varying efficiency, so there are various possibilities:
|
---|
| 710 | only the most common of them are specialized, in order to
|
---|
| 711 | save on code size. We use a switch statement for speed. */
|
---|
| 712 | switch (match_kind)
|
---|
| 713 | {
|
---|
| 714 | case 8:
|
---|
| 715 | /* No fastmap. */
|
---|
| 716 | break;
|
---|
| 717 |
|
---|
| 718 | case 7:
|
---|
| 719 | /* Fastmap with single-byte translation, match forward. */
|
---|
| 720 | while (BE (match_first < right_lim, 1)
|
---|
| 721 | && !fastmap[t[(unsigned char) string[match_first]]])
|
---|
| 722 | ++match_first;
|
---|
| 723 | goto forward_match_found_start_or_reached_end;
|
---|
| 724 |
|
---|
| 725 | case 6:
|
---|
| 726 | /* Fastmap without translation, match forward. */
|
---|
| 727 | while (BE (match_first < right_lim, 1)
|
---|
| 728 | && !fastmap[(unsigned char) string[match_first]])
|
---|
| 729 | ++match_first;
|
---|
| 730 |
|
---|
| 731 | forward_match_found_start_or_reached_end:
|
---|
| 732 | if (BE (match_first == right_lim, 0))
|
---|
| 733 | {
|
---|
| 734 | ch = match_first >= length
|
---|
| 735 | ? 0 : (unsigned char) string[match_first];
|
---|
| 736 | if (!fastmap[t ? t[ch] : ch])
|
---|
| 737 | goto free_return;
|
---|
| 738 | }
|
---|
| 739 | break;
|
---|
| 740 |
|
---|
| 741 | case 4:
|
---|
| 742 | case 5:
|
---|
| 743 | /* Fastmap without multi-byte translation, match backwards. */
|
---|
| 744 | while (match_first >= left_lim)
|
---|
| 745 | {
|
---|
| 746 | ch = match_first >= length
|
---|
| 747 | ? 0 : (unsigned char) string[match_first];
|
---|
| 748 | if (fastmap[t ? t[ch] : ch])
|
---|
| 749 | break;
|
---|
| 750 | --match_first;
|
---|
| 751 | }
|
---|
| 752 | if (match_first < left_lim)
|
---|
| 753 | goto free_return;
|
---|
| 754 | break;
|
---|
| 755 |
|
---|
| 756 | default:
|
---|
| 757 | /* In this case, we can't determine easily the current byte,
|
---|
| 758 | since it might be a component byte of a multibyte
|
---|
| 759 | character. Then we use the constructed buffer instead. */
|
---|
| 760 | for (;;)
|
---|
| 761 | {
|
---|
| 762 | /* If MATCH_FIRST is out of the valid range, reconstruct the
|
---|
| 763 | buffers. */
|
---|
| 764 | unsigned int offset = match_first - mctx.input.raw_mbs_idx;
|
---|
| 765 | if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0))
|
---|
| 766 | {
|
---|
| 767 | err = re_string_reconstruct (&mctx.input, match_first,
|
---|
| 768 | eflags);
|
---|
| 769 | if (BE (err != REG_NOERROR, 0))
|
---|
| 770 | goto free_return;
|
---|
| 771 |
|
---|
| 772 | offset = match_first - mctx.input.raw_mbs_idx;
|
---|
| 773 | }
|
---|
| 774 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'.
|
---|
| 775 | Note that MATCH_FIRST must not be smaller than 0. */
|
---|
| 776 | ch = (match_first >= length
|
---|
| 777 | ? 0 : re_string_byte_at (&mctx.input, offset));
|
---|
| 778 | if (fastmap[ch])
|
---|
| 779 | break;
|
---|
| 780 | match_first += incr;
|
---|
| 781 | if (match_first < left_lim || match_first > right_lim)
|
---|
| 782 | {
|
---|
| 783 | err = REG_NOMATCH;
|
---|
| 784 | goto free_return;
|
---|
| 785 | }
|
---|
| 786 | }
|
---|
| 787 | break;
|
---|
| 788 | }
|
---|
| 789 |
|
---|
| 790 | /* Reconstruct the buffers so that the matcher can assume that
|
---|
| 791 | the matching starts from the beginning of the buffer. */
|
---|
| 792 | err = re_string_reconstruct (&mctx.input, match_first, eflags);
|
---|
| 793 | if (BE (err != REG_NOERROR, 0))
|
---|
| 794 | goto free_return;
|
---|
| 795 |
|
---|
| 796 | #ifdef RE_ENABLE_I18N
|
---|
| 797 | /* Don't consider this char as a possible match start if it part,
|
---|
| 798 | yet isn't the head, of a multibyte character. */
|
---|
| 799 | if (!sb && !re_string_first_byte (&mctx.input, 0))
|
---|
| 800 | continue;
|
---|
| 801 | #endif
|
---|
| 802 |
|
---|
| 803 | /* It seems to be appropriate one, then use the matcher. */
|
---|
| 804 | /* We assume that the matching starts from 0. */
|
---|
| 805 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
|
---|
| 806 | match_last = check_matching (&mctx, fl_longest_match,
|
---|
| 807 | range >= 0 ? &match_first : NULL);
|
---|
| 808 | if (match_last != -1)
|
---|
| 809 | {
|
---|
| 810 | if (BE (match_last == -2, 0))
|
---|
| 811 | {
|
---|
| 812 | err = REG_ESPACE;
|
---|
| 813 | goto free_return;
|
---|
| 814 | }
|
---|
| 815 | else
|
---|
| 816 | {
|
---|
| 817 | mctx.match_last = match_last;
|
---|
| 818 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
|
---|
| 819 | {
|
---|
| 820 | re_dfastate_t *pstate = mctx.state_log[match_last];
|
---|
| 821 | mctx.last_node = check_halt_state_context (&mctx, pstate,
|
---|
| 822 | match_last);
|
---|
| 823 | }
|
---|
| 824 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
|
---|
| 825 | || dfa->nbackref)
|
---|
| 826 | {
|
---|
| 827 | err = prune_impossible_nodes (&mctx);
|
---|
| 828 | if (err == REG_NOERROR)
|
---|
| 829 | break;
|
---|
| 830 | if (BE (err != REG_NOMATCH, 0))
|
---|
| 831 | goto free_return;
|
---|
| 832 | match_last = -1;
|
---|
| 833 | }
|
---|
| 834 | else
|
---|
| 835 | break; /* We found a match. */
|
---|
| 836 | }
|
---|
| 837 | }
|
---|
| 838 |
|
---|
| 839 | match_ctx_clean (&mctx);
|
---|
| 840 | }
|
---|
| 841 |
|
---|
| 842 | #ifdef DEBUG
|
---|
| 843 | assert (match_last != -1);
|
---|
| 844 | assert (err == REG_NOERROR);
|
---|
| 845 | #endif
|
---|
| 846 |
|
---|
| 847 | /* Set pmatch[] if we need. */
|
---|
| 848 | if (nmatch > 0)
|
---|
| 849 | {
|
---|
| 850 | int reg_idx;
|
---|
| 851 |
|
---|
| 852 | /* Initialize registers. */
|
---|
| 853 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx)
|
---|
| 854 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
|
---|
| 855 |
|
---|
| 856 | /* Set the points where matching start/end. */
|
---|
| 857 | pmatch[0].rm_so = 0;
|
---|
| 858 | pmatch[0].rm_eo = mctx.match_last;
|
---|
| 859 |
|
---|
| 860 | if (!preg->no_sub && nmatch > 1)
|
---|
| 861 | {
|
---|
| 862 | err = set_regs (preg, &mctx, nmatch, pmatch,
|
---|
| 863 | dfa->has_plural_match && dfa->nbackref > 0);
|
---|
| 864 | if (BE (err != REG_NOERROR, 0))
|
---|
| 865 | goto free_return;
|
---|
| 866 | }
|
---|
| 867 |
|
---|
| 868 | /* At last, add the offset to the each registers, since we slided
|
---|
| 869 | the buffers so that we could assume that the matching starts
|
---|
| 870 | from 0. */
|
---|
| 871 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
|
---|
| 872 | if (pmatch[reg_idx].rm_so != -1)
|
---|
| 873 | {
|
---|
| 874 | #ifdef RE_ENABLE_I18N
|
---|
| 875 | if (BE (mctx.input.offsets_needed != 0, 0))
|
---|
| 876 | {
|
---|
| 877 | if (pmatch[reg_idx].rm_so == mctx.input.valid_len)
|
---|
| 878 | pmatch[reg_idx].rm_so += mctx.input.valid_raw_len - mctx.input.valid_len;
|
---|
| 879 | else
|
---|
| 880 | pmatch[reg_idx].rm_so = mctx.input.offsets[pmatch[reg_idx].rm_so];
|
---|
| 881 | if (pmatch[reg_idx].rm_eo == mctx.input.valid_len)
|
---|
| 882 | pmatch[reg_idx].rm_eo += mctx.input.valid_raw_len - mctx.input.valid_len;
|
---|
| 883 | else
|
---|
| 884 | pmatch[reg_idx].rm_eo = mctx.input.offsets[pmatch[reg_idx].rm_eo];
|
---|
| 885 | }
|
---|
| 886 | #else
|
---|
| 887 | assert (mctx.input.offsets_needed == 0);
|
---|
| 888 | #endif
|
---|
| 889 | pmatch[reg_idx].rm_so += match_first;
|
---|
| 890 | pmatch[reg_idx].rm_eo += match_first;
|
---|
| 891 | }
|
---|
| 892 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx)
|
---|
| 893 | {
|
---|
| 894 | pmatch[nmatch + reg_idx].rm_so = -1;
|
---|
| 895 | pmatch[nmatch + reg_idx].rm_eo = -1;
|
---|
| 896 | }
|
---|
| 897 |
|
---|
| 898 | if (dfa->subexp_map)
|
---|
| 899 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++)
|
---|
| 900 | if (dfa->subexp_map[reg_idx] != reg_idx)
|
---|
| 901 | {
|
---|
| 902 | pmatch[reg_idx + 1].rm_so
|
---|
| 903 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so;
|
---|
| 904 | pmatch[reg_idx + 1].rm_eo
|
---|
| 905 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo;
|
---|
| 906 | }
|
---|
| 907 | }
|
---|
| 908 |
|
---|
| 909 | free_return:
|
---|
| 910 | re_free (mctx.state_log);
|
---|
| 911 | if (dfa->nbackref)
|
---|
| 912 | match_ctx_free (&mctx);
|
---|
| 913 | re_string_destruct (&mctx.input);
|
---|
| 914 | return err;
|
---|
| 915 | }
|
---|
| 916 |
|
---|
| 917 | static reg_errcode_t
|
---|
| 918 | prune_impossible_nodes (mctx)
|
---|
| 919 | re_match_context_t *mctx;
|
---|
| 920 | {
|
---|
| 921 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 922 | int halt_node, match_last;
|
---|
| 923 | reg_errcode_t ret;
|
---|
| 924 | re_dfastate_t **sifted_states;
|
---|
| 925 | re_dfastate_t **lim_states = NULL;
|
---|
| 926 | re_sift_context_t sctx;
|
---|
| 927 | #ifdef DEBUG
|
---|
| 928 | assert (mctx->state_log != NULL);
|
---|
| 929 | #endif
|
---|
| 930 | match_last = mctx->match_last;
|
---|
| 931 | halt_node = mctx->last_node;
|
---|
| 932 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
|
---|
| 933 | if (BE (sifted_states == NULL, 0))
|
---|
| 934 | {
|
---|
| 935 | ret = REG_ESPACE;
|
---|
| 936 | goto free_return;
|
---|
| 937 | }
|
---|
| 938 | if (dfa->nbackref)
|
---|
| 939 | {
|
---|
| 940 | lim_states = re_malloc (re_dfastate_t *, match_last + 1);
|
---|
| 941 | if (BE (lim_states == NULL, 0))
|
---|
| 942 | {
|
---|
| 943 | ret = REG_ESPACE;
|
---|
| 944 | goto free_return;
|
---|
| 945 | }
|
---|
| 946 | while (1)
|
---|
| 947 | {
|
---|
| 948 | memset (lim_states, '\0',
|
---|
| 949 | sizeof (re_dfastate_t *) * (match_last + 1));
|
---|
| 950 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
|
---|
| 951 | match_last);
|
---|
| 952 | ret = sift_states_backward (mctx, &sctx);
|
---|
| 953 | re_node_set_free (&sctx.limits);
|
---|
| 954 | if (BE (ret != REG_NOERROR, 0))
|
---|
| 955 | goto free_return;
|
---|
| 956 | if (sifted_states[0] != NULL || lim_states[0] != NULL)
|
---|
| 957 | break;
|
---|
| 958 | do
|
---|
| 959 | {
|
---|
| 960 | --match_last;
|
---|
| 961 | if (match_last < 0)
|
---|
| 962 | {
|
---|
| 963 | ret = REG_NOMATCH;
|
---|
| 964 | goto free_return;
|
---|
| 965 | }
|
---|
| 966 | } while (mctx->state_log[match_last] == NULL
|
---|
| 967 | || !mctx->state_log[match_last]->halt);
|
---|
| 968 | halt_node = check_halt_state_context (mctx,
|
---|
| 969 | mctx->state_log[match_last],
|
---|
| 970 | match_last);
|
---|
| 971 | }
|
---|
| 972 | ret = merge_state_array (dfa, sifted_states, lim_states,
|
---|
| 973 | match_last + 1);
|
---|
| 974 | re_free (lim_states);
|
---|
| 975 | lim_states = NULL;
|
---|
| 976 | if (BE (ret != REG_NOERROR, 0))
|
---|
| 977 | goto free_return;
|
---|
| 978 | }
|
---|
| 979 | else
|
---|
| 980 | {
|
---|
| 981 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last);
|
---|
| 982 | ret = sift_states_backward (mctx, &sctx);
|
---|
| 983 | re_node_set_free (&sctx.limits);
|
---|
| 984 | if (BE (ret != REG_NOERROR, 0))
|
---|
| 985 | goto free_return;
|
---|
| 986 | }
|
---|
| 987 | re_free (mctx->state_log);
|
---|
| 988 | mctx->state_log = sifted_states;
|
---|
| 989 | sifted_states = NULL;
|
---|
| 990 | mctx->last_node = halt_node;
|
---|
| 991 | mctx->match_last = match_last;
|
---|
| 992 | ret = REG_NOERROR;
|
---|
| 993 | free_return:
|
---|
| 994 | re_free (sifted_states);
|
---|
| 995 | re_free (lim_states);
|
---|
| 996 | return ret;
|
---|
| 997 | }
|
---|
| 998 |
|
---|
| 999 | /* Acquire an initial state and return it.
|
---|
| 1000 | We must select appropriate initial state depending on the context,
|
---|
| 1001 | since initial states may have constraints like "\<", "^", etc.. */
|
---|
| 1002 |
|
---|
| 1003 | static inline re_dfastate_t *
|
---|
| 1004 | acquire_init_state_context (err, mctx, idx)
|
---|
| 1005 | reg_errcode_t *err;
|
---|
| 1006 | const re_match_context_t *mctx;
|
---|
| 1007 | int idx;
|
---|
| 1008 | {
|
---|
| 1009 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 1010 | if (dfa->init_state->has_constraint)
|
---|
| 1011 | {
|
---|
| 1012 | unsigned int context;
|
---|
| 1013 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags);
|
---|
| 1014 | if (IS_WORD_CONTEXT (context))
|
---|
| 1015 | return dfa->init_state_word;
|
---|
| 1016 | else if (IS_ORDINARY_CONTEXT (context))
|
---|
| 1017 | return dfa->init_state;
|
---|
| 1018 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
|
---|
| 1019 | return dfa->init_state_begbuf;
|
---|
| 1020 | else if (IS_NEWLINE_CONTEXT (context))
|
---|
| 1021 | return dfa->init_state_nl;
|
---|
| 1022 | else if (IS_BEGBUF_CONTEXT (context))
|
---|
| 1023 | {
|
---|
| 1024 | /* It is relatively rare case, then calculate on demand. */
|
---|
| 1025 | return re_acquire_state_context (err, dfa,
|
---|
| 1026 | dfa->init_state->entrance_nodes,
|
---|
| 1027 | context);
|
---|
| 1028 | }
|
---|
| 1029 | else
|
---|
| 1030 | /* Must not happen? */
|
---|
| 1031 | return dfa->init_state;
|
---|
| 1032 | }
|
---|
| 1033 | else
|
---|
| 1034 | return dfa->init_state;
|
---|
| 1035 | }
|
---|
| 1036 |
|
---|
| 1037 | /* Check whether the regular expression match input string INPUT or not,
|
---|
| 1038 | and return the index where the matching end, return -1 if not match,
|
---|
| 1039 | or return -2 in case of an error.
|
---|
| 1040 | FL_LONGEST_MATCH means we want the POSIX longest matching.
|
---|
| 1041 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the
|
---|
| 1042 | next place where we may want to try matching.
|
---|
| 1043 | Note that the matcher assume that the maching starts from the current
|
---|
| 1044 | index of the buffer. */
|
---|
| 1045 |
|
---|
| 1046 | static int
|
---|
| 1047 | check_matching (mctx, fl_longest_match, p_match_first)
|
---|
| 1048 | re_match_context_t *mctx;
|
---|
| 1049 | int fl_longest_match;
|
---|
| 1050 | int *p_match_first;
|
---|
| 1051 | {
|
---|
| 1052 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 1053 | reg_errcode_t err;
|
---|
| 1054 | int match = 0;
|
---|
| 1055 | int match_last = -1;
|
---|
| 1056 | int cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
| 1057 | re_dfastate_t *cur_state;
|
---|
| 1058 | int at_init_state = p_match_first != NULL;
|
---|
| 1059 | int next_start_idx = cur_str_idx;
|
---|
| 1060 |
|
---|
| 1061 | err = REG_NOERROR;
|
---|
| 1062 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx);
|
---|
| 1063 | /* An initial state must not be NULL (invalid). */
|
---|
| 1064 | if (BE (cur_state == NULL, 0))
|
---|
| 1065 | {
|
---|
| 1066 | assert (err == REG_ESPACE);
|
---|
| 1067 | return -2;
|
---|
| 1068 | }
|
---|
| 1069 |
|
---|
| 1070 | if (mctx->state_log != NULL)
|
---|
| 1071 | {
|
---|
| 1072 | mctx->state_log[cur_str_idx] = cur_state;
|
---|
| 1073 |
|
---|
| 1074 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them
|
---|
| 1075 | later. E.g. Processing back references. */
|
---|
| 1076 | if (BE (dfa->nbackref, 0))
|
---|
| 1077 | {
|
---|
| 1078 | at_init_state = 0;
|
---|
| 1079 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0);
|
---|
| 1080 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1081 | return err;
|
---|
| 1082 |
|
---|
| 1083 | if (cur_state->has_backref)
|
---|
| 1084 | {
|
---|
| 1085 | err = transit_state_bkref (mctx, &cur_state->nodes);
|
---|
| 1086 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1087 | return err;
|
---|
| 1088 | }
|
---|
| 1089 | }
|
---|
| 1090 | }
|
---|
| 1091 |
|
---|
| 1092 | /* If the RE accepts NULL string. */
|
---|
| 1093 | if (BE (cur_state->halt, 0))
|
---|
| 1094 | {
|
---|
| 1095 | if (!cur_state->has_constraint
|
---|
| 1096 | || check_halt_state_context (mctx, cur_state, cur_str_idx))
|
---|
| 1097 | {
|
---|
| 1098 | if (!fl_longest_match)
|
---|
| 1099 | return cur_str_idx;
|
---|
| 1100 | else
|
---|
| 1101 | {
|
---|
| 1102 | match_last = cur_str_idx;
|
---|
| 1103 | match = 1;
|
---|
| 1104 | }
|
---|
| 1105 | }
|
---|
| 1106 | }
|
---|
| 1107 |
|
---|
| 1108 | while (!re_string_eoi (&mctx->input))
|
---|
| 1109 | {
|
---|
| 1110 | re_dfastate_t *old_state = cur_state;
|
---|
| 1111 | int next_char_idx = re_string_cur_idx (&mctx->input) + 1;
|
---|
| 1112 |
|
---|
| 1113 | if (BE (next_char_idx >= mctx->input.bufs_len, 0)
|
---|
| 1114 | || (BE (next_char_idx >= mctx->input.valid_len, 0)
|
---|
| 1115 | && mctx->input.valid_len < mctx->input.len))
|
---|
| 1116 | {
|
---|
| 1117 | err = extend_buffers (mctx);
|
---|
| 1118 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1119 | {
|
---|
| 1120 | assert (err == REG_ESPACE);
|
---|
| 1121 | return -2;
|
---|
| 1122 | }
|
---|
| 1123 | }
|
---|
| 1124 |
|
---|
| 1125 | cur_state = transit_state (&err, mctx, cur_state);
|
---|
| 1126 | if (mctx->state_log != NULL)
|
---|
| 1127 | cur_state = merge_state_with_log (&err, mctx, cur_state);
|
---|
| 1128 |
|
---|
| 1129 | if (cur_state == NULL)
|
---|
| 1130 | {
|
---|
| 1131 | /* Reached the invalid state or an error. Try to recover a valid
|
---|
| 1132 | state using the state log, if available and if we have not
|
---|
| 1133 | already found a valid (even if not the longest) match. */
|
---|
| 1134 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1135 | return -2;
|
---|
| 1136 |
|
---|
| 1137 | if (mctx->state_log == NULL
|
---|
| 1138 | || (match && !fl_longest_match)
|
---|
| 1139 | || (cur_state = find_recover_state (&err, mctx)) == NULL)
|
---|
| 1140 | break;
|
---|
| 1141 | }
|
---|
| 1142 |
|
---|
| 1143 | if (BE (at_init_state, 0))
|
---|
| 1144 | {
|
---|
| 1145 | if (old_state == cur_state)
|
---|
| 1146 | next_start_idx = next_char_idx;
|
---|
| 1147 | else
|
---|
| 1148 | at_init_state = 0;
|
---|
| 1149 | }
|
---|
| 1150 |
|
---|
| 1151 | if (cur_state->halt)
|
---|
| 1152 | {
|
---|
| 1153 | /* Reached a halt state.
|
---|
| 1154 | Check the halt state can satisfy the current context. */
|
---|
| 1155 | if (!cur_state->has_constraint
|
---|
| 1156 | || check_halt_state_context (mctx, cur_state,
|
---|
| 1157 | re_string_cur_idx (&mctx->input)))
|
---|
| 1158 | {
|
---|
| 1159 | /* We found an appropriate halt state. */
|
---|
| 1160 | match_last = re_string_cur_idx (&mctx->input);
|
---|
| 1161 | match = 1;
|
---|
| 1162 |
|
---|
| 1163 | /* We found a match, do not modify match_first below. */
|
---|
| 1164 | p_match_first = NULL;
|
---|
| 1165 | if (!fl_longest_match)
|
---|
| 1166 | break;
|
---|
| 1167 | }
|
---|
| 1168 | }
|
---|
| 1169 | }
|
---|
| 1170 |
|
---|
| 1171 | if (p_match_first)
|
---|
| 1172 | *p_match_first += next_start_idx;
|
---|
| 1173 |
|
---|
| 1174 | return match_last;
|
---|
| 1175 | }
|
---|
| 1176 |
|
---|
| 1177 | /* Check NODE match the current context. */
|
---|
| 1178 |
|
---|
| 1179 | static int check_halt_node_context (dfa, node, context)
|
---|
| 1180 | const re_dfa_t *dfa;
|
---|
| 1181 | int node;
|
---|
| 1182 | unsigned int context;
|
---|
| 1183 | {
|
---|
| 1184 | re_token_type_t type = dfa->nodes[node].type;
|
---|
| 1185 | unsigned int constraint = dfa->nodes[node].constraint;
|
---|
| 1186 | if (type != END_OF_RE)
|
---|
| 1187 | return 0;
|
---|
| 1188 | if (!constraint)
|
---|
| 1189 | return 1;
|
---|
| 1190 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
|
---|
| 1191 | return 0;
|
---|
| 1192 | return 1;
|
---|
| 1193 | }
|
---|
| 1194 |
|
---|
| 1195 | /* Check the halt state STATE match the current context.
|
---|
| 1196 | Return 0 if not match, if the node, STATE has, is a halt node and
|
---|
| 1197 | match the context, return the node. */
|
---|
| 1198 |
|
---|
| 1199 | static int
|
---|
| 1200 | check_halt_state_context (mctx, state, idx)
|
---|
| 1201 | const re_match_context_t *mctx;
|
---|
| 1202 | const re_dfastate_t *state;
|
---|
| 1203 | int idx;
|
---|
| 1204 | {
|
---|
| 1205 | int i;
|
---|
| 1206 | unsigned int context;
|
---|
| 1207 | #ifdef DEBUG
|
---|
| 1208 | assert (state->halt);
|
---|
| 1209 | #endif
|
---|
| 1210 | context = re_string_context_at (&mctx->input, idx, mctx->eflags);
|
---|
| 1211 | for (i = 0; i < state->nodes.nelem; ++i)
|
---|
| 1212 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context))
|
---|
| 1213 | return state->nodes.elems[i];
|
---|
| 1214 | return 0;
|
---|
| 1215 | }
|
---|
| 1216 |
|
---|
| 1217 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
|
---|
| 1218 | corresponding to the DFA).
|
---|
| 1219 | Return the destination node, and update EPS_VIA_NODES, return -1 in case
|
---|
| 1220 | of errors. */
|
---|
| 1221 |
|
---|
| 1222 | static int
|
---|
| 1223 | proceed_next_node (mctx, nregs, regs, pidx, node, eps_via_nodes, fs)
|
---|
| 1224 | const re_match_context_t *mctx;
|
---|
| 1225 | regmatch_t *regs;
|
---|
| 1226 | int nregs, *pidx, node;
|
---|
| 1227 | re_node_set *eps_via_nodes;
|
---|
| 1228 | struct re_fail_stack_t *fs;
|
---|
| 1229 | {
|
---|
| 1230 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 1231 | int i, err, dest_node;
|
---|
| 1232 | dest_node = -1;
|
---|
| 1233 | if (IS_EPSILON_NODE (dfa->nodes[node].type))
|
---|
| 1234 | {
|
---|
| 1235 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
|
---|
| 1236 | re_node_set *edests = &dfa->edests[node];
|
---|
| 1237 | int dest_node;
|
---|
| 1238 | err = re_node_set_insert (eps_via_nodes, node);
|
---|
| 1239 | if (BE (err < 0, 0))
|
---|
| 1240 | return -2;
|
---|
| 1241 | /* Pick up a valid destination, or return -1 if none is found. */
|
---|
| 1242 | for (dest_node = -1, i = 0; i < edests->nelem; ++i)
|
---|
| 1243 | {
|
---|
| 1244 | int candidate = edests->elems[i];
|
---|
| 1245 | if (!re_node_set_contains (cur_nodes, candidate))
|
---|
| 1246 | continue;
|
---|
| 1247 | if (dest_node == -1)
|
---|
| 1248 | dest_node = candidate;
|
---|
| 1249 |
|
---|
| 1250 | else
|
---|
| 1251 | {
|
---|
| 1252 | /* In order to avoid infinite loop like "(a*)*", return the second
|
---|
| 1253 | epsilon-transition if the first was already considered. */
|
---|
| 1254 | if (re_node_set_contains (eps_via_nodes, dest_node))
|
---|
| 1255 | return candidate;
|
---|
| 1256 |
|
---|
| 1257 | /* Otherwise, push the second epsilon-transition on the fail stack. */
|
---|
| 1258 | else if (fs != NULL
|
---|
| 1259 | && push_fail_stack (fs, *pidx, candidate, nregs, regs,
|
---|
| 1260 | eps_via_nodes) != REG_NOERROR)
|
---|
| 1261 | return -2;
|
---|
| 1262 |
|
---|
| 1263 | /* We know we are going to exit. */
|
---|
| 1264 | break;
|
---|
| 1265 | }
|
---|
| 1266 | }
|
---|
| 1267 | return dest_node;
|
---|
| 1268 | }
|
---|
| 1269 | else
|
---|
| 1270 | {
|
---|
| 1271 | int naccepted = 0;
|
---|
| 1272 | re_token_type_t type = dfa->nodes[node].type;
|
---|
| 1273 |
|
---|
| 1274 | #ifdef RE_ENABLE_I18N
|
---|
| 1275 | if (dfa->nodes[node].accept_mb)
|
---|
| 1276 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx);
|
---|
| 1277 | else
|
---|
| 1278 | #endif /* RE_ENABLE_I18N */
|
---|
| 1279 | if (type == OP_BACK_REF)
|
---|
| 1280 | {
|
---|
| 1281 | int subexp_idx = dfa->nodes[node].opr.idx + 1;
|
---|
| 1282 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
|
---|
| 1283 | if (fs != NULL)
|
---|
| 1284 | {
|
---|
| 1285 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
|
---|
| 1286 | return -1;
|
---|
| 1287 | else if (naccepted)
|
---|
| 1288 | {
|
---|
| 1289 | char *buf = (char *) re_string_get_buffer (&mctx->input);
|
---|
| 1290 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
|
---|
| 1291 | naccepted) != 0)
|
---|
| 1292 | return -1;
|
---|
| 1293 | }
|
---|
| 1294 | }
|
---|
| 1295 |
|
---|
| 1296 | if (naccepted == 0)
|
---|
| 1297 | {
|
---|
| 1298 | err = re_node_set_insert (eps_via_nodes, node);
|
---|
| 1299 | if (BE (err < 0, 0))
|
---|
| 1300 | return -2;
|
---|
| 1301 | dest_node = dfa->edests[node].elems[0];
|
---|
| 1302 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
|
---|
| 1303 | dest_node))
|
---|
| 1304 | return dest_node;
|
---|
| 1305 | }
|
---|
| 1306 | }
|
---|
| 1307 |
|
---|
| 1308 | if (naccepted != 0
|
---|
| 1309 | || check_node_accept (mctx, dfa->nodes + node, *pidx))
|
---|
| 1310 | {
|
---|
| 1311 | dest_node = dfa->nexts[node];
|
---|
| 1312 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
|
---|
| 1313 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
|
---|
| 1314 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
|
---|
| 1315 | dest_node)))
|
---|
| 1316 | return -1;
|
---|
| 1317 | re_node_set_empty (eps_via_nodes);
|
---|
| 1318 | return dest_node;
|
---|
| 1319 | }
|
---|
| 1320 | }
|
---|
| 1321 | return -1;
|
---|
| 1322 | }
|
---|
| 1323 |
|
---|
| 1324 | static reg_errcode_t
|
---|
| 1325 | push_fail_stack (fs, str_idx, dest_node, nregs, regs, eps_via_nodes)
|
---|
| 1326 | struct re_fail_stack_t *fs;
|
---|
| 1327 | int str_idx, dest_node, nregs;
|
---|
| 1328 | regmatch_t *regs;
|
---|
| 1329 | re_node_set *eps_via_nodes;
|
---|
| 1330 | {
|
---|
| 1331 | reg_errcode_t err;
|
---|
| 1332 | int num = fs->num++;
|
---|
| 1333 | if (fs->num == fs->alloc)
|
---|
| 1334 | {
|
---|
| 1335 | struct re_fail_stack_ent_t *new_array;
|
---|
| 1336 | new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
|
---|
| 1337 | * fs->alloc * 2));
|
---|
| 1338 | if (new_array == NULL)
|
---|
| 1339 | return REG_ESPACE;
|
---|
| 1340 | fs->alloc *= 2;
|
---|
| 1341 | fs->stack = new_array;
|
---|
| 1342 | }
|
---|
| 1343 | fs->stack[num].idx = str_idx;
|
---|
| 1344 | fs->stack[num].node = dest_node;
|
---|
| 1345 | fs->stack[num].regs = re_malloc (regmatch_t, nregs);
|
---|
| 1346 | if (fs->stack[num].regs == NULL)
|
---|
| 1347 | return REG_ESPACE;
|
---|
| 1348 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
|
---|
| 1349 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
|
---|
| 1350 | return err;
|
---|
| 1351 | }
|
---|
| 1352 |
|
---|
| 1353 | static int
|
---|
| 1354 | pop_fail_stack (fs, pidx, nregs, regs, eps_via_nodes)
|
---|
| 1355 | struct re_fail_stack_t *fs;
|
---|
| 1356 | int *pidx, nregs;
|
---|
| 1357 | regmatch_t *regs;
|
---|
| 1358 | re_node_set *eps_via_nodes;
|
---|
| 1359 | {
|
---|
| 1360 | int num = --fs->num;
|
---|
| 1361 | assert (num >= 0);
|
---|
| 1362 | *pidx = fs->stack[num].idx;
|
---|
| 1363 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
|
---|
| 1364 | re_node_set_free (eps_via_nodes);
|
---|
| 1365 | re_free (fs->stack[num].regs);
|
---|
| 1366 | *eps_via_nodes = fs->stack[num].eps_via_nodes;
|
---|
| 1367 | return fs->stack[num].node;
|
---|
| 1368 | }
|
---|
| 1369 |
|
---|
| 1370 | /* Set the positions where the subexpressions are starts/ends to registers
|
---|
| 1371 | PMATCH.
|
---|
| 1372 | Note: We assume that pmatch[0] is already set, and
|
---|
| 1373 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */
|
---|
| 1374 |
|
---|
| 1375 | static reg_errcode_t
|
---|
| 1376 | set_regs (preg, mctx, nmatch, pmatch, fl_backtrack)
|
---|
| 1377 | const regex_t *preg;
|
---|
| 1378 | const re_match_context_t *mctx;
|
---|
| 1379 | size_t nmatch;
|
---|
| 1380 | regmatch_t *pmatch;
|
---|
| 1381 | int fl_backtrack;
|
---|
| 1382 | {
|
---|
| 1383 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
---|
| 1384 | int idx, cur_node;
|
---|
| 1385 | re_node_set eps_via_nodes;
|
---|
| 1386 | struct re_fail_stack_t *fs;
|
---|
| 1387 | struct re_fail_stack_t fs_body = { 0, 2, NULL };
|
---|
| 1388 | regmatch_t *prev_idx_match;
|
---|
| 1389 |
|
---|
| 1390 | #ifdef DEBUG
|
---|
| 1391 | assert (nmatch > 1);
|
---|
| 1392 | assert (mctx->state_log != NULL);
|
---|
| 1393 | #endif
|
---|
| 1394 | if (fl_backtrack)
|
---|
| 1395 | {
|
---|
| 1396 | fs = &fs_body;
|
---|
| 1397 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
|
---|
| 1398 | if (fs->stack == NULL)
|
---|
| 1399 | return REG_ESPACE;
|
---|
| 1400 | }
|
---|
| 1401 | else
|
---|
| 1402 | fs = NULL;
|
---|
| 1403 |
|
---|
| 1404 | cur_node = dfa->init_node;
|
---|
| 1405 | re_node_set_init_empty (&eps_via_nodes);
|
---|
| 1406 |
|
---|
| 1407 | prev_idx_match = re_malloc (regmatch_t, nmatch);
|
---|
| 1408 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
|
---|
| 1409 |
|
---|
| 1410 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
|
---|
| 1411 | {
|
---|
| 1412 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch);
|
---|
| 1413 |
|
---|
| 1414 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
|
---|
| 1415 | {
|
---|
| 1416 | int reg_idx;
|
---|
| 1417 | if (fs)
|
---|
| 1418 | {
|
---|
| 1419 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
|
---|
| 1420 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
|
---|
| 1421 | break;
|
---|
| 1422 | if (reg_idx == nmatch)
|
---|
| 1423 | {
|
---|
| 1424 | re_node_set_free (&eps_via_nodes);
|
---|
| 1425 | re_free (prev_idx_match);
|
---|
| 1426 | return free_fail_stack_return (fs);
|
---|
| 1427 | }
|
---|
| 1428 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
|
---|
| 1429 | &eps_via_nodes);
|
---|
| 1430 | }
|
---|
| 1431 | else
|
---|
| 1432 | {
|
---|
| 1433 | re_node_set_free (&eps_via_nodes);
|
---|
| 1434 | re_free (prev_idx_match);
|
---|
| 1435 | return REG_NOERROR;
|
---|
| 1436 | }
|
---|
| 1437 | }
|
---|
| 1438 |
|
---|
| 1439 | /* Proceed to next node. */
|
---|
| 1440 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node,
|
---|
| 1441 | &eps_via_nodes, fs);
|
---|
| 1442 |
|
---|
| 1443 | if (BE (cur_node < 0, 0))
|
---|
| 1444 | {
|
---|
| 1445 | if (BE (cur_node == -2, 0))
|
---|
| 1446 | {
|
---|
| 1447 | re_node_set_free (&eps_via_nodes);
|
---|
| 1448 | free_fail_stack_return (fs);
|
---|
| 1449 | re_free (prev_idx_match);
|
---|
| 1450 | return REG_ESPACE;
|
---|
| 1451 | }
|
---|
| 1452 | if (fs)
|
---|
| 1453 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
|
---|
| 1454 | &eps_via_nodes);
|
---|
| 1455 | else
|
---|
| 1456 | {
|
---|
| 1457 | re_node_set_free (&eps_via_nodes);
|
---|
| 1458 | re_free (prev_idx_match);
|
---|
| 1459 | return REG_NOMATCH;
|
---|
| 1460 | }
|
---|
| 1461 | }
|
---|
| 1462 | }
|
---|
| 1463 | re_node_set_free (&eps_via_nodes);
|
---|
| 1464 | re_free (prev_idx_match);
|
---|
| 1465 | return free_fail_stack_return (fs);
|
---|
| 1466 | }
|
---|
| 1467 |
|
---|
| 1468 | static reg_errcode_t
|
---|
| 1469 | free_fail_stack_return (fs)
|
---|
| 1470 | struct re_fail_stack_t *fs;
|
---|
| 1471 | {
|
---|
| 1472 | if (fs)
|
---|
| 1473 | {
|
---|
| 1474 | int fs_idx;
|
---|
| 1475 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
|
---|
| 1476 | {
|
---|
| 1477 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
|
---|
| 1478 | re_free (fs->stack[fs_idx].regs);
|
---|
| 1479 | }
|
---|
| 1480 | re_free (fs->stack);
|
---|
| 1481 | }
|
---|
| 1482 | return REG_NOERROR;
|
---|
| 1483 | }
|
---|
| 1484 |
|
---|
| 1485 | static void
|
---|
| 1486 | update_regs (dfa, pmatch, prev_idx_match, cur_node, cur_idx, nmatch)
|
---|
| 1487 | re_dfa_t *dfa;
|
---|
| 1488 | regmatch_t *pmatch, *prev_idx_match;
|
---|
| 1489 | int cur_node, cur_idx, nmatch;
|
---|
| 1490 | {
|
---|
| 1491 | int type = dfa->nodes[cur_node].type;
|
---|
| 1492 | if (type == OP_OPEN_SUBEXP)
|
---|
| 1493 | {
|
---|
| 1494 | int reg_num = dfa->nodes[cur_node].opr.idx + 1;
|
---|
| 1495 |
|
---|
| 1496 | /* We are at the first node of this sub expression. */
|
---|
| 1497 | if (reg_num < nmatch)
|
---|
| 1498 | {
|
---|
| 1499 | pmatch[reg_num].rm_so = cur_idx;
|
---|
| 1500 | pmatch[reg_num].rm_eo = -1;
|
---|
| 1501 | }
|
---|
| 1502 | }
|
---|
| 1503 | else if (type == OP_CLOSE_SUBEXP)
|
---|
| 1504 | {
|
---|
| 1505 | int reg_num = dfa->nodes[cur_node].opr.idx + 1;
|
---|
| 1506 | if (reg_num < nmatch)
|
---|
| 1507 | {
|
---|
| 1508 | /* We are at the last node of this sub expression. */
|
---|
| 1509 | if (pmatch[reg_num].rm_so < cur_idx)
|
---|
| 1510 | {
|
---|
| 1511 | pmatch[reg_num].rm_eo = cur_idx;
|
---|
| 1512 | /* This is a non-empty match or we are not inside an optional
|
---|
| 1513 | subexpression. Accept this right away. */
|
---|
| 1514 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
|
---|
| 1515 | }
|
---|
| 1516 | else
|
---|
| 1517 | {
|
---|
| 1518 | if (dfa->nodes[cur_node].opt_subexp
|
---|
| 1519 | && prev_idx_match[reg_num].rm_so != -1)
|
---|
| 1520 | /* We transited through an empty match for an optional
|
---|
| 1521 | subexpression, like (a?)*, and this is not the subexp's
|
---|
| 1522 | first match. Copy back the old content of the registers
|
---|
| 1523 | so that matches of an inner subexpression are undone as
|
---|
| 1524 | well, like in ((a?))*. */
|
---|
| 1525 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch);
|
---|
| 1526 | else
|
---|
| 1527 | /* We completed a subexpression, but it may be part of
|
---|
| 1528 | an optional one, so do not update PREV_IDX_MATCH. */
|
---|
| 1529 | pmatch[reg_num].rm_eo = cur_idx;
|
---|
| 1530 | }
|
---|
| 1531 | }
|
---|
| 1532 | }
|
---|
| 1533 | }
|
---|
| 1534 |
|
---|
| 1535 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
|
---|
| 1536 | and sift the nodes in each states according to the following rules.
|
---|
| 1537 | Updated state_log will be wrote to STATE_LOG.
|
---|
| 1538 |
|
---|
| 1539 | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
|
---|
| 1540 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log):
|
---|
| 1541 | If `a' isn't the LAST_NODE and `a' can't epsilon transit to
|
---|
| 1542 | the LAST_NODE, we throw away the node `a'.
|
---|
| 1543 | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
|
---|
| 1544 | string `s' and transit to `b':
|
---|
| 1545 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
|
---|
| 1546 | away the node `a'.
|
---|
| 1547 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
|
---|
| 1548 | thrown away, we throw away the node `a'.
|
---|
| 1549 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b':
|
---|
| 1550 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
|
---|
| 1551 | node `a'.
|
---|
| 1552 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away,
|
---|
| 1553 | we throw away the node `a'. */
|
---|
| 1554 |
|
---|
| 1555 | #define STATE_NODE_CONTAINS(state,node) \
|
---|
| 1556 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node))
|
---|
| 1557 |
|
---|
| 1558 | static reg_errcode_t
|
---|
| 1559 | sift_states_backward (mctx, sctx)
|
---|
| 1560 | re_match_context_t *mctx;
|
---|
| 1561 | re_sift_context_t *sctx;
|
---|
| 1562 | {
|
---|
| 1563 | reg_errcode_t err;
|
---|
| 1564 | int null_cnt = 0;
|
---|
| 1565 | int str_idx = sctx->last_str_idx;
|
---|
| 1566 | re_node_set cur_dest;
|
---|
| 1567 |
|
---|
| 1568 | #ifdef DEBUG
|
---|
| 1569 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
|
---|
| 1570 | #endif
|
---|
| 1571 |
|
---|
| 1572 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon
|
---|
| 1573 | transit to the last_node and the last_node itself. */
|
---|
| 1574 | err = re_node_set_init_1 (&cur_dest, sctx->last_node);
|
---|
| 1575 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1576 | return err;
|
---|
| 1577 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
|
---|
| 1578 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1579 | goto free_return;
|
---|
| 1580 |
|
---|
| 1581 | /* Then check each states in the state_log. */
|
---|
| 1582 | while (str_idx > 0)
|
---|
| 1583 | {
|
---|
| 1584 | /* Update counters. */
|
---|
| 1585 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
|
---|
| 1586 | if (null_cnt > mctx->max_mb_elem_len)
|
---|
| 1587 | {
|
---|
| 1588 | memset (sctx->sifted_states, '\0',
|
---|
| 1589 | sizeof (re_dfastate_t *) * str_idx);
|
---|
| 1590 | re_node_set_free (&cur_dest);
|
---|
| 1591 | return REG_NOERROR;
|
---|
| 1592 | }
|
---|
| 1593 | re_node_set_empty (&cur_dest);
|
---|
| 1594 | --str_idx;
|
---|
| 1595 |
|
---|
| 1596 | if (mctx->state_log[str_idx])
|
---|
| 1597 | {
|
---|
| 1598 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest);
|
---|
| 1599 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1600 | goto free_return;
|
---|
| 1601 | }
|
---|
| 1602 |
|
---|
| 1603 | /* Add all the nodes which satisfy the following conditions:
|
---|
| 1604 | - It can epsilon transit to a node in CUR_DEST.
|
---|
| 1605 | - It is in CUR_SRC.
|
---|
| 1606 | And update state_log. */
|
---|
| 1607 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
|
---|
| 1608 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1609 | goto free_return;
|
---|
| 1610 | }
|
---|
| 1611 | err = REG_NOERROR;
|
---|
| 1612 | free_return:
|
---|
| 1613 | re_node_set_free (&cur_dest);
|
---|
| 1614 | return err;
|
---|
| 1615 | }
|
---|
| 1616 |
|
---|
| 1617 | static reg_errcode_t
|
---|
| 1618 | build_sifted_states (mctx, sctx, str_idx, cur_dest)
|
---|
| 1619 | re_match_context_t *mctx;
|
---|
| 1620 | re_sift_context_t *sctx;
|
---|
| 1621 | int str_idx;
|
---|
| 1622 | re_node_set *cur_dest;
|
---|
| 1623 | {
|
---|
| 1624 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 1625 | re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes;
|
---|
| 1626 | int i;
|
---|
| 1627 |
|
---|
| 1628 | /* Then build the next sifted state.
|
---|
| 1629 | We build the next sifted state on `cur_dest', and update
|
---|
| 1630 | `sifted_states[str_idx]' with `cur_dest'.
|
---|
| 1631 | Note:
|
---|
| 1632 | `cur_dest' is the sifted state from `state_log[str_idx + 1]'.
|
---|
| 1633 | `cur_src' points the node_set of the old `state_log[str_idx]'
|
---|
| 1634 | (with the epsilon nodes pre-filtered out). */
|
---|
| 1635 | for (i = 0; i < cur_src->nelem; i++)
|
---|
| 1636 | {
|
---|
| 1637 | int prev_node = cur_src->elems[i];
|
---|
| 1638 | int naccepted = 0;
|
---|
| 1639 | int ret;
|
---|
| 1640 |
|
---|
| 1641 | #ifdef DEBUG
|
---|
| 1642 | re_token_type_t type = dfa->nodes[prev_node].type;
|
---|
| 1643 | assert (!IS_EPSILON_NODE (type));
|
---|
| 1644 | #endif
|
---|
| 1645 | #ifdef RE_ENABLE_I18N
|
---|
| 1646 | /* If the node may accept `multi byte'. */
|
---|
| 1647 | if (dfa->nodes[prev_node].accept_mb)
|
---|
| 1648 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node,
|
---|
| 1649 | str_idx, sctx->last_str_idx);
|
---|
| 1650 | #endif /* RE_ENABLE_I18N */
|
---|
| 1651 |
|
---|
| 1652 | /* We don't check backreferences here.
|
---|
| 1653 | See update_cur_sifted_state(). */
|
---|
| 1654 | if (!naccepted
|
---|
| 1655 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx)
|
---|
| 1656 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
|
---|
| 1657 | dfa->nexts[prev_node]))
|
---|
| 1658 | naccepted = 1;
|
---|
| 1659 |
|
---|
| 1660 | if (naccepted == 0)
|
---|
| 1661 | continue;
|
---|
| 1662 |
|
---|
| 1663 | if (sctx->limits.nelem)
|
---|
| 1664 | {
|
---|
| 1665 | int to_idx = str_idx + naccepted;
|
---|
| 1666 | if (check_dst_limits (mctx, &sctx->limits,
|
---|
| 1667 | dfa->nexts[prev_node], to_idx,
|
---|
| 1668 | prev_node, str_idx))
|
---|
| 1669 | continue;
|
---|
| 1670 | }
|
---|
| 1671 | ret = re_node_set_insert (cur_dest, prev_node);
|
---|
| 1672 | if (BE (ret == -1, 0))
|
---|
| 1673 | return REG_ESPACE;
|
---|
| 1674 | }
|
---|
| 1675 |
|
---|
| 1676 | return REG_NOERROR;
|
---|
| 1677 | }
|
---|
| 1678 |
|
---|
| 1679 | /* Helper functions. */
|
---|
| 1680 |
|
---|
| 1681 | static reg_errcode_t
|
---|
| 1682 | clean_state_log_if_needed (mctx, next_state_log_idx)
|
---|
| 1683 | re_match_context_t *mctx;
|
---|
| 1684 | int next_state_log_idx;
|
---|
| 1685 | {
|
---|
| 1686 | int top = mctx->state_log_top;
|
---|
| 1687 |
|
---|
| 1688 | if (next_state_log_idx >= mctx->input.bufs_len
|
---|
| 1689 | || (next_state_log_idx >= mctx->input.valid_len
|
---|
| 1690 | && mctx->input.valid_len < mctx->input.len))
|
---|
| 1691 | {
|
---|
| 1692 | reg_errcode_t err;
|
---|
| 1693 | err = extend_buffers (mctx);
|
---|
| 1694 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1695 | return err;
|
---|
| 1696 | }
|
---|
| 1697 |
|
---|
| 1698 | if (top < next_state_log_idx)
|
---|
| 1699 | {
|
---|
| 1700 | memset (mctx->state_log + top + 1, '\0',
|
---|
| 1701 | sizeof (re_dfastate_t *) * (next_state_log_idx - top));
|
---|
| 1702 | mctx->state_log_top = next_state_log_idx;
|
---|
| 1703 | }
|
---|
| 1704 | return REG_NOERROR;
|
---|
| 1705 | }
|
---|
| 1706 |
|
---|
| 1707 | static reg_errcode_t
|
---|
| 1708 | merge_state_array (dfa, dst, src, num)
|
---|
| 1709 | re_dfa_t *dfa;
|
---|
| 1710 | re_dfastate_t **dst;
|
---|
| 1711 | re_dfastate_t **src;
|
---|
| 1712 | int num;
|
---|
| 1713 | {
|
---|
| 1714 | int st_idx;
|
---|
| 1715 | reg_errcode_t err;
|
---|
| 1716 | for (st_idx = 0; st_idx < num; ++st_idx)
|
---|
| 1717 | {
|
---|
| 1718 | if (dst[st_idx] == NULL)
|
---|
| 1719 | dst[st_idx] = src[st_idx];
|
---|
| 1720 | else if (src[st_idx] != NULL)
|
---|
| 1721 | {
|
---|
| 1722 | re_node_set merged_set;
|
---|
| 1723 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
|
---|
| 1724 | &src[st_idx]->nodes);
|
---|
| 1725 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1726 | return err;
|
---|
| 1727 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
|
---|
| 1728 | re_node_set_free (&merged_set);
|
---|
| 1729 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1730 | return err;
|
---|
| 1731 | }
|
---|
| 1732 | }
|
---|
| 1733 | return REG_NOERROR;
|
---|
| 1734 | }
|
---|
| 1735 |
|
---|
| 1736 | static reg_errcode_t
|
---|
| 1737 | update_cur_sifted_state (mctx, sctx, str_idx, dest_nodes)
|
---|
| 1738 | re_match_context_t *mctx;
|
---|
| 1739 | re_sift_context_t *sctx;
|
---|
| 1740 | int str_idx;
|
---|
| 1741 | re_node_set *dest_nodes;
|
---|
| 1742 | {
|
---|
| 1743 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 1744 | reg_errcode_t err;
|
---|
| 1745 | const re_node_set *candidates;
|
---|
| 1746 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL
|
---|
| 1747 | : &mctx->state_log[str_idx]->nodes);
|
---|
| 1748 |
|
---|
| 1749 | if (dest_nodes->nelem == 0)
|
---|
| 1750 | sctx->sifted_states[str_idx] = NULL;
|
---|
| 1751 | else
|
---|
| 1752 | {
|
---|
| 1753 | if (candidates)
|
---|
| 1754 | {
|
---|
| 1755 | /* At first, add the nodes which can epsilon transit to a node in
|
---|
| 1756 | DEST_NODE. */
|
---|
| 1757 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
|
---|
| 1758 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1759 | return err;
|
---|
| 1760 |
|
---|
| 1761 | /* Then, check the limitations in the current sift_context. */
|
---|
| 1762 | if (sctx->limits.nelem)
|
---|
| 1763 | {
|
---|
| 1764 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
|
---|
| 1765 | mctx->bkref_ents, str_idx);
|
---|
| 1766 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1767 | return err;
|
---|
| 1768 | }
|
---|
| 1769 | }
|
---|
| 1770 |
|
---|
| 1771 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
|
---|
| 1772 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1773 | return err;
|
---|
| 1774 | }
|
---|
| 1775 |
|
---|
| 1776 | if (candidates && mctx->state_log[str_idx]->has_backref)
|
---|
| 1777 | {
|
---|
| 1778 | err = sift_states_bkref (mctx, sctx, str_idx, candidates);
|
---|
| 1779 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1780 | return err;
|
---|
| 1781 | }
|
---|
| 1782 | return REG_NOERROR;
|
---|
| 1783 | }
|
---|
| 1784 |
|
---|
| 1785 | static reg_errcode_t
|
---|
| 1786 | add_epsilon_src_nodes (dfa, dest_nodes, candidates)
|
---|
| 1787 | re_dfa_t *dfa;
|
---|
| 1788 | re_node_set *dest_nodes;
|
---|
| 1789 | const re_node_set *candidates;
|
---|
| 1790 | {
|
---|
| 1791 | reg_errcode_t err = REG_NOERROR;
|
---|
| 1792 | int i;
|
---|
| 1793 |
|
---|
| 1794 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes);
|
---|
| 1795 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1796 | return err;
|
---|
| 1797 |
|
---|
| 1798 | if (!state->inveclosure.alloc)
|
---|
| 1799 | {
|
---|
| 1800 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem);
|
---|
| 1801 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1802 | return REG_ESPACE;
|
---|
| 1803 | for (i = 0; i < dest_nodes->nelem; i++)
|
---|
| 1804 | re_node_set_merge (&state->inveclosure,
|
---|
| 1805 | dfa->inveclosures + dest_nodes->elems[i]);
|
---|
| 1806 | }
|
---|
| 1807 | return re_node_set_add_intersect (dest_nodes, candidates,
|
---|
| 1808 | &state->inveclosure);
|
---|
| 1809 | }
|
---|
| 1810 |
|
---|
| 1811 | static reg_errcode_t
|
---|
| 1812 | sub_epsilon_src_nodes (dfa, node, dest_nodes, candidates)
|
---|
| 1813 | re_dfa_t *dfa;
|
---|
| 1814 | int node;
|
---|
| 1815 | re_node_set *dest_nodes;
|
---|
| 1816 | const re_node_set *candidates;
|
---|
| 1817 | {
|
---|
| 1818 | int ecl_idx;
|
---|
| 1819 | reg_errcode_t err;
|
---|
| 1820 | re_node_set *inv_eclosure = dfa->inveclosures + node;
|
---|
| 1821 | re_node_set except_nodes;
|
---|
| 1822 | re_node_set_init_empty (&except_nodes);
|
---|
| 1823 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
|
---|
| 1824 | {
|
---|
| 1825 | int cur_node = inv_eclosure->elems[ecl_idx];
|
---|
| 1826 | if (cur_node == node)
|
---|
| 1827 | continue;
|
---|
| 1828 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
|
---|
| 1829 | {
|
---|
| 1830 | int edst1 = dfa->edests[cur_node].elems[0];
|
---|
| 1831 | int edst2 = ((dfa->edests[cur_node].nelem > 1)
|
---|
| 1832 | ? dfa->edests[cur_node].elems[1] : -1);
|
---|
| 1833 | if ((!re_node_set_contains (inv_eclosure, edst1)
|
---|
| 1834 | && re_node_set_contains (dest_nodes, edst1))
|
---|
| 1835 | || (edst2 > 0
|
---|
| 1836 | && !re_node_set_contains (inv_eclosure, edst2)
|
---|
| 1837 | && re_node_set_contains (dest_nodes, edst2)))
|
---|
| 1838 | {
|
---|
| 1839 | err = re_node_set_add_intersect (&except_nodes, candidates,
|
---|
| 1840 | dfa->inveclosures + cur_node);
|
---|
| 1841 | if (BE (err != REG_NOERROR, 0))
|
---|
| 1842 | {
|
---|
| 1843 | re_node_set_free (&except_nodes);
|
---|
| 1844 | return err;
|
---|
| 1845 | }
|
---|
| 1846 | }
|
---|
| 1847 | }
|
---|
| 1848 | }
|
---|
| 1849 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
|
---|
| 1850 | {
|
---|
| 1851 | int cur_node = inv_eclosure->elems[ecl_idx];
|
---|
| 1852 | if (!re_node_set_contains (&except_nodes, cur_node))
|
---|
| 1853 | {
|
---|
| 1854 | int idx = re_node_set_contains (dest_nodes, cur_node) - 1;
|
---|
| 1855 | re_node_set_remove_at (dest_nodes, idx);
|
---|
| 1856 | }
|
---|
| 1857 | }
|
---|
| 1858 | re_node_set_free (&except_nodes);
|
---|
| 1859 | return REG_NOERROR;
|
---|
| 1860 | }
|
---|
| 1861 |
|
---|
| 1862 | static int
|
---|
| 1863 | check_dst_limits (mctx, limits, dst_node, dst_idx, src_node, src_idx)
|
---|
| 1864 | re_match_context_t *mctx;
|
---|
| 1865 | re_node_set *limits;
|
---|
| 1866 | int dst_node, dst_idx, src_node, src_idx;
|
---|
| 1867 | {
|
---|
| 1868 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 1869 | int lim_idx, src_pos, dst_pos;
|
---|
| 1870 |
|
---|
| 1871 | int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx);
|
---|
| 1872 | int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx);
|
---|
| 1873 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
|
---|
| 1874 | {
|
---|
| 1875 | int subexp_idx;
|
---|
| 1876 | struct re_backref_cache_entry *ent;
|
---|
| 1877 | ent = mctx->bkref_ents + limits->elems[lim_idx];
|
---|
| 1878 | subexp_idx = dfa->nodes[ent->node].opr.idx;
|
---|
| 1879 |
|
---|
| 1880 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
|
---|
| 1881 | subexp_idx, dst_node, dst_idx,
|
---|
| 1882 | dst_bkref_idx);
|
---|
| 1883 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
|
---|
| 1884 | subexp_idx, src_node, src_idx,
|
---|
| 1885 | src_bkref_idx);
|
---|
| 1886 |
|
---|
| 1887 | /* In case of:
|
---|
| 1888 | <src> <dst> ( <subexp> )
|
---|
| 1889 | ( <subexp> ) <src> <dst>
|
---|
| 1890 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */
|
---|
| 1891 | if (src_pos == dst_pos)
|
---|
| 1892 | continue; /* This is unrelated limitation. */
|
---|
| 1893 | else
|
---|
| 1894 | return 1;
|
---|
| 1895 | }
|
---|
| 1896 | return 0;
|
---|
| 1897 | }
|
---|
| 1898 |
|
---|
| 1899 | static int
|
---|
| 1900 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, from_node, bkref_idx)
|
---|
| 1901 | re_match_context_t *mctx;
|
---|
| 1902 | int boundaries, subexp_idx, from_node, bkref_idx;
|
---|
| 1903 | {
|
---|
| 1904 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 1905 | re_node_set *eclosures = dfa->eclosures + from_node;
|
---|
| 1906 | int node_idx;
|
---|
| 1907 |
|
---|
| 1908 | /* Else, we are on the boundary: examine the nodes on the epsilon
|
---|
| 1909 | closure. */
|
---|
| 1910 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
|
---|
| 1911 | {
|
---|
| 1912 | int node = eclosures->elems[node_idx];
|
---|
| 1913 | switch (dfa->nodes[node].type)
|
---|
| 1914 | {
|
---|
| 1915 | case OP_BACK_REF:
|
---|
| 1916 | if (bkref_idx != -1)
|
---|
| 1917 | {
|
---|
| 1918 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx;
|
---|
| 1919 | do
|
---|
| 1920 | {
|
---|
| 1921 | int dst, cpos;
|
---|
| 1922 |
|
---|
| 1923 | if (ent->node != node)
|
---|
| 1924 | continue;
|
---|
| 1925 |
|
---|
| 1926 | if (subexp_idx <= 8 * sizeof (ent->eps_reachable_subexps_map)
|
---|
| 1927 | && !(ent->eps_reachable_subexps_map & (1 << subexp_idx)))
|
---|
| 1928 | continue;
|
---|
| 1929 |
|
---|
| 1930 | /* Recurse trying to reach the OP_OPEN_SUBEXP and
|
---|
| 1931 | OP_CLOSE_SUBEXP cases below. But, if the
|
---|
| 1932 | destination node is the same node as the source
|
---|
| 1933 | node, don't recurse because it would cause an
|
---|
| 1934 | infinite loop: a regex that exhibits this behavior
|
---|
| 1935 | is ()\1*\1* */
|
---|
| 1936 | dst = dfa->edests[node].elems[0];
|
---|
| 1937 | if (dst == from_node)
|
---|
| 1938 | {
|
---|
| 1939 | if (boundaries & 1)
|
---|
| 1940 | return -1;
|
---|
| 1941 | else /* if (boundaries & 2) */
|
---|
| 1942 | return 0;
|
---|
| 1943 | }
|
---|
| 1944 |
|
---|
| 1945 | cpos =
|
---|
| 1946 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
|
---|
| 1947 | dst, bkref_idx);
|
---|
| 1948 | if (cpos == -1 /* && (boundaries & 1) */)
|
---|
| 1949 | return -1;
|
---|
| 1950 | if (cpos == 0 && (boundaries & 2))
|
---|
| 1951 | return 0;
|
---|
| 1952 |
|
---|
| 1953 | ent->eps_reachable_subexps_map &= ~(1 << subexp_idx);
|
---|
| 1954 | }
|
---|
| 1955 | while (ent++->more);
|
---|
| 1956 | }
|
---|
| 1957 | break;
|
---|
| 1958 |
|
---|
| 1959 | case OP_OPEN_SUBEXP:
|
---|
| 1960 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
| 1961 | return -1;
|
---|
| 1962 | break;
|
---|
| 1963 |
|
---|
| 1964 | case OP_CLOSE_SUBEXP:
|
---|
| 1965 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
| 1966 | return 0;
|
---|
| 1967 | break;
|
---|
| 1968 |
|
---|
| 1969 | default:
|
---|
| 1970 | break;
|
---|
| 1971 | }
|
---|
| 1972 | }
|
---|
| 1973 |
|
---|
| 1974 | return (boundaries & 2) ? 1 : 0;
|
---|
| 1975 | }
|
---|
| 1976 |
|
---|
| 1977 | static int
|
---|
| 1978 | check_dst_limits_calc_pos (mctx, limit, subexp_idx, from_node, str_idx, bkref_idx)
|
---|
| 1979 | re_match_context_t *mctx;
|
---|
| 1980 | int limit, subexp_idx, from_node, str_idx, bkref_idx;
|
---|
| 1981 | {
|
---|
| 1982 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
|
---|
| 1983 | int boundaries;
|
---|
| 1984 |
|
---|
| 1985 | /* If we are outside the range of the subexpression, return -1 or 1. */
|
---|
| 1986 | if (str_idx < lim->subexp_from)
|
---|
| 1987 | return -1;
|
---|
| 1988 |
|
---|
| 1989 | if (lim->subexp_to < str_idx)
|
---|
| 1990 | return 1;
|
---|
| 1991 |
|
---|
| 1992 | /* If we are within the subexpression, return 0. */
|
---|
| 1993 | boundaries = (str_idx == lim->subexp_from);
|
---|
| 1994 | boundaries |= (str_idx == lim->subexp_to) << 1;
|
---|
| 1995 | if (boundaries == 0)
|
---|
| 1996 | return 0;
|
---|
| 1997 |
|
---|
| 1998 | /* Else, examine epsilon closure. */
|
---|
| 1999 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
|
---|
| 2000 | from_node, bkref_idx);
|
---|
| 2001 | }
|
---|
| 2002 |
|
---|
| 2003 | /* Check the limitations of sub expressions LIMITS, and remove the nodes
|
---|
| 2004 | which are against limitations from DEST_NODES. */
|
---|
| 2005 |
|
---|
| 2006 | static reg_errcode_t
|
---|
| 2007 | check_subexp_limits (dfa, dest_nodes, candidates, limits, bkref_ents, str_idx)
|
---|
| 2008 | re_dfa_t *dfa;
|
---|
| 2009 | re_node_set *dest_nodes;
|
---|
| 2010 | const re_node_set *candidates;
|
---|
| 2011 | re_node_set *limits;
|
---|
| 2012 | struct re_backref_cache_entry *bkref_ents;
|
---|
| 2013 | int str_idx;
|
---|
| 2014 | {
|
---|
| 2015 | reg_errcode_t err;
|
---|
| 2016 | int node_idx, lim_idx;
|
---|
| 2017 |
|
---|
| 2018 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
|
---|
| 2019 | {
|
---|
| 2020 | int subexp_idx;
|
---|
| 2021 | struct re_backref_cache_entry *ent;
|
---|
| 2022 | ent = bkref_ents + limits->elems[lim_idx];
|
---|
| 2023 |
|
---|
| 2024 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
|
---|
| 2025 | continue; /* This is unrelated limitation. */
|
---|
| 2026 |
|
---|
| 2027 | subexp_idx = dfa->nodes[ent->node].opr.idx;
|
---|
| 2028 | if (ent->subexp_to == str_idx)
|
---|
| 2029 | {
|
---|
| 2030 | int ops_node = -1;
|
---|
| 2031 | int cls_node = -1;
|
---|
| 2032 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
---|
| 2033 | {
|
---|
| 2034 | int node = dest_nodes->elems[node_idx];
|
---|
| 2035 | re_token_type_t type = dfa->nodes[node].type;
|
---|
| 2036 | if (type == OP_OPEN_SUBEXP
|
---|
| 2037 | && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
| 2038 | ops_node = node;
|
---|
| 2039 | else if (type == OP_CLOSE_SUBEXP
|
---|
| 2040 | && subexp_idx == dfa->nodes[node].opr.idx)
|
---|
| 2041 | cls_node = node;
|
---|
| 2042 | }
|
---|
| 2043 |
|
---|
| 2044 | /* Check the limitation of the open subexpression. */
|
---|
| 2045 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */
|
---|
| 2046 | if (ops_node >= 0)
|
---|
| 2047 | {
|
---|
| 2048 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes,
|
---|
| 2049 | candidates);
|
---|
| 2050 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2051 | return err;
|
---|
| 2052 | }
|
---|
| 2053 |
|
---|
| 2054 | /* Check the limitation of the close subexpression. */
|
---|
| 2055 | if (cls_node >= 0)
|
---|
| 2056 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
---|
| 2057 | {
|
---|
| 2058 | int node = dest_nodes->elems[node_idx];
|
---|
| 2059 | if (!re_node_set_contains (dfa->inveclosures + node,
|
---|
| 2060 | cls_node)
|
---|
| 2061 | && !re_node_set_contains (dfa->eclosures + node,
|
---|
| 2062 | cls_node))
|
---|
| 2063 | {
|
---|
| 2064 | /* It is against this limitation.
|
---|
| 2065 | Remove it form the current sifted state. */
|
---|
| 2066 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
|
---|
| 2067 | candidates);
|
---|
| 2068 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2069 | return err;
|
---|
| 2070 | --node_idx;
|
---|
| 2071 | }
|
---|
| 2072 | }
|
---|
| 2073 | }
|
---|
| 2074 | else /* (ent->subexp_to != str_idx) */
|
---|
| 2075 | {
|
---|
| 2076 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
|
---|
| 2077 | {
|
---|
| 2078 | int node = dest_nodes->elems[node_idx];
|
---|
| 2079 | re_token_type_t type = dfa->nodes[node].type;
|
---|
| 2080 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
|
---|
| 2081 | {
|
---|
| 2082 | if (subexp_idx != dfa->nodes[node].opr.idx)
|
---|
| 2083 | continue;
|
---|
| 2084 | /* It is against this limitation.
|
---|
| 2085 | Remove it form the current sifted state. */
|
---|
| 2086 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
|
---|
| 2087 | candidates);
|
---|
| 2088 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2089 | return err;
|
---|
| 2090 | }
|
---|
| 2091 | }
|
---|
| 2092 | }
|
---|
| 2093 | }
|
---|
| 2094 | return REG_NOERROR;
|
---|
| 2095 | }
|
---|
| 2096 |
|
---|
| 2097 | static reg_errcode_t
|
---|
| 2098 | sift_states_bkref (mctx, sctx, str_idx, candidates)
|
---|
| 2099 | re_match_context_t *mctx;
|
---|
| 2100 | re_sift_context_t *sctx;
|
---|
| 2101 | int str_idx;
|
---|
| 2102 | const re_node_set *candidates;
|
---|
| 2103 | {
|
---|
| 2104 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2105 | reg_errcode_t err;
|
---|
| 2106 | int node_idx, node;
|
---|
| 2107 | re_sift_context_t local_sctx;
|
---|
| 2108 | int first_idx = search_cur_bkref_entry (mctx, str_idx);
|
---|
| 2109 |
|
---|
| 2110 | if (first_idx == -1)
|
---|
| 2111 | return REG_NOERROR;
|
---|
| 2112 |
|
---|
| 2113 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */
|
---|
| 2114 |
|
---|
| 2115 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
|
---|
| 2116 | {
|
---|
| 2117 | int enabled_idx;
|
---|
| 2118 | re_token_type_t type;
|
---|
| 2119 | struct re_backref_cache_entry *entry;
|
---|
| 2120 | node = candidates->elems[node_idx];
|
---|
| 2121 | type = dfa->nodes[node].type;
|
---|
| 2122 | /* Avoid infinite loop for the REs like "()\1+". */
|
---|
| 2123 | if (node == sctx->last_node && str_idx == sctx->last_str_idx)
|
---|
| 2124 | continue;
|
---|
| 2125 | if (type != OP_BACK_REF)
|
---|
| 2126 | continue;
|
---|
| 2127 |
|
---|
| 2128 | entry = mctx->bkref_ents + first_idx;
|
---|
| 2129 | enabled_idx = first_idx;
|
---|
| 2130 | do
|
---|
| 2131 | {
|
---|
| 2132 | int subexp_len, to_idx, dst_node;
|
---|
| 2133 | re_dfastate_t *cur_state;
|
---|
| 2134 |
|
---|
| 2135 | if (entry->node != node)
|
---|
| 2136 | continue;
|
---|
| 2137 | subexp_len = entry->subexp_to - entry->subexp_from;
|
---|
| 2138 | to_idx = str_idx + subexp_len;
|
---|
| 2139 | dst_node = (subexp_len ? dfa->nexts[node]
|
---|
| 2140 | : dfa->edests[node].elems[0]);
|
---|
| 2141 |
|
---|
| 2142 | if (to_idx > sctx->last_str_idx
|
---|
| 2143 | || sctx->sifted_states[to_idx] == NULL
|
---|
| 2144 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node)
|
---|
| 2145 | || check_dst_limits (mctx, &sctx->limits, node,
|
---|
| 2146 | str_idx, dst_node, to_idx))
|
---|
| 2147 | continue;
|
---|
| 2148 |
|
---|
| 2149 | if (local_sctx.sifted_states == NULL)
|
---|
| 2150 | {
|
---|
| 2151 | local_sctx = *sctx;
|
---|
| 2152 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits);
|
---|
| 2153 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2154 | goto free_return;
|
---|
| 2155 | }
|
---|
| 2156 | local_sctx.last_node = node;
|
---|
| 2157 | local_sctx.last_str_idx = str_idx;
|
---|
| 2158 | err = re_node_set_insert (&local_sctx.limits, enabled_idx);
|
---|
| 2159 | if (BE (err < 0, 0))
|
---|
| 2160 | {
|
---|
| 2161 | err = REG_ESPACE;
|
---|
| 2162 | goto free_return;
|
---|
| 2163 | }
|
---|
| 2164 | cur_state = local_sctx.sifted_states[str_idx];
|
---|
| 2165 | err = sift_states_backward (mctx, &local_sctx);
|
---|
| 2166 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2167 | goto free_return;
|
---|
| 2168 | if (sctx->limited_states != NULL)
|
---|
| 2169 | {
|
---|
| 2170 | err = merge_state_array (dfa, sctx->limited_states,
|
---|
| 2171 | local_sctx.sifted_states,
|
---|
| 2172 | str_idx + 1);
|
---|
| 2173 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2174 | goto free_return;
|
---|
| 2175 | }
|
---|
| 2176 | local_sctx.sifted_states[str_idx] = cur_state;
|
---|
| 2177 | re_node_set_remove (&local_sctx.limits, enabled_idx);
|
---|
| 2178 |
|
---|
| 2179 | /* mctx->bkref_ents may have changed, reload the pointer. */
|
---|
| 2180 | entry = mctx->bkref_ents + enabled_idx;
|
---|
| 2181 | }
|
---|
| 2182 | while (enabled_idx++, entry++->more);
|
---|
| 2183 | }
|
---|
| 2184 | err = REG_NOERROR;
|
---|
| 2185 | free_return:
|
---|
| 2186 | if (local_sctx.sifted_states != NULL)
|
---|
| 2187 | {
|
---|
| 2188 | re_node_set_free (&local_sctx.limits);
|
---|
| 2189 | }
|
---|
| 2190 |
|
---|
| 2191 | return err;
|
---|
| 2192 | }
|
---|
| 2193 |
|
---|
| 2194 |
|
---|
| 2195 | #ifdef RE_ENABLE_I18N
|
---|
| 2196 | static int
|
---|
| 2197 | sift_states_iter_mb (mctx, sctx, node_idx, str_idx, max_str_idx)
|
---|
| 2198 | const re_match_context_t *mctx;
|
---|
| 2199 | re_sift_context_t *sctx;
|
---|
| 2200 | int node_idx, str_idx, max_str_idx;
|
---|
| 2201 | {
|
---|
| 2202 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2203 | int naccepted;
|
---|
| 2204 | /* Check the node can accept `multi byte'. */
|
---|
| 2205 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx);
|
---|
| 2206 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
|
---|
| 2207 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
|
---|
| 2208 | dfa->nexts[node_idx]))
|
---|
| 2209 | /* The node can't accept the `multi byte', or the
|
---|
| 2210 | destination was already thrown away, then the node
|
---|
| 2211 | could't accept the current input `multi byte'. */
|
---|
| 2212 | naccepted = 0;
|
---|
| 2213 | /* Otherwise, it is sure that the node could accept
|
---|
| 2214 | `naccepted' bytes input. */
|
---|
| 2215 | return naccepted;
|
---|
| 2216 | }
|
---|
| 2217 | #endif /* RE_ENABLE_I18N */
|
---|
| 2218 |
|
---|
| 2219 | |
---|
| 2220 |
|
---|
| 2221 | /* Functions for state transition. */
|
---|
| 2222 |
|
---|
| 2223 | /* Return the next state to which the current state STATE will transit by
|
---|
| 2224 | accepting the current input byte, and update STATE_LOG if necessary.
|
---|
| 2225 | If STATE can accept a multibyte char/collating element/back reference
|
---|
| 2226 | update the destination of STATE_LOG. */
|
---|
| 2227 |
|
---|
| 2228 | static re_dfastate_t *
|
---|
| 2229 | transit_state (err, mctx, state)
|
---|
| 2230 | reg_errcode_t *err;
|
---|
| 2231 | re_match_context_t *mctx;
|
---|
| 2232 | re_dfastate_t *state;
|
---|
| 2233 | {
|
---|
| 2234 | re_dfastate_t **trtable;
|
---|
| 2235 | unsigned char ch;
|
---|
| 2236 |
|
---|
| 2237 | #ifdef RE_ENABLE_I18N
|
---|
| 2238 | /* If the current state can accept multibyte. */
|
---|
| 2239 | if (BE (state->accept_mb, 0))
|
---|
| 2240 | {
|
---|
| 2241 | *err = transit_state_mb (mctx, state);
|
---|
| 2242 | if (BE (*err != REG_NOERROR, 0))
|
---|
| 2243 | return NULL;
|
---|
| 2244 | }
|
---|
| 2245 | #endif /* RE_ENABLE_I18N */
|
---|
| 2246 |
|
---|
| 2247 | /* Then decide the next state with the single byte. */
|
---|
| 2248 | #if 0
|
---|
| 2249 | if (0)
|
---|
| 2250 | /* don't use transition table */
|
---|
| 2251 | return transit_state_sb (err, mctx, state);
|
---|
| 2252 | #endif
|
---|
| 2253 |
|
---|
| 2254 | /* Use transition table */
|
---|
| 2255 | ch = re_string_fetch_byte (&mctx->input);
|
---|
| 2256 | for (;;)
|
---|
| 2257 | {
|
---|
| 2258 | trtable = state->trtable;
|
---|
| 2259 | if (BE (trtable != NULL, 1))
|
---|
| 2260 | return trtable[ch];
|
---|
| 2261 |
|
---|
| 2262 | trtable = state->word_trtable;
|
---|
| 2263 | if (BE (trtable != NULL, 1))
|
---|
| 2264 | {
|
---|
| 2265 | unsigned int context;
|
---|
| 2266 | context
|
---|
| 2267 | = re_string_context_at (&mctx->input,
|
---|
| 2268 | re_string_cur_idx (&mctx->input) - 1,
|
---|
| 2269 | mctx->eflags);
|
---|
| 2270 | if (IS_WORD_CONTEXT (context))
|
---|
| 2271 | return trtable[ch + SBC_MAX];
|
---|
| 2272 | else
|
---|
| 2273 | return trtable[ch];
|
---|
| 2274 | }
|
---|
| 2275 |
|
---|
| 2276 | if (!build_trtable (mctx->dfa, state))
|
---|
| 2277 | {
|
---|
| 2278 | *err = REG_ESPACE;
|
---|
| 2279 | return NULL;
|
---|
| 2280 | }
|
---|
| 2281 |
|
---|
| 2282 | /* Retry, we now have a transition table. */
|
---|
| 2283 | }
|
---|
| 2284 | }
|
---|
| 2285 |
|
---|
| 2286 | /* Update the state_log if we need */
|
---|
| 2287 | re_dfastate_t *
|
---|
| 2288 | merge_state_with_log (err, mctx, next_state)
|
---|
| 2289 | reg_errcode_t *err;
|
---|
| 2290 | re_match_context_t *mctx;
|
---|
| 2291 | re_dfastate_t *next_state;
|
---|
| 2292 | {
|
---|
| 2293 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2294 | int cur_idx = re_string_cur_idx (&mctx->input);
|
---|
| 2295 |
|
---|
| 2296 | if (cur_idx > mctx->state_log_top)
|
---|
| 2297 | {
|
---|
| 2298 | mctx->state_log[cur_idx] = next_state;
|
---|
| 2299 | mctx->state_log_top = cur_idx;
|
---|
| 2300 | }
|
---|
| 2301 | else if (mctx->state_log[cur_idx] == 0)
|
---|
| 2302 | {
|
---|
| 2303 | mctx->state_log[cur_idx] = next_state;
|
---|
| 2304 | }
|
---|
| 2305 | else
|
---|
| 2306 | {
|
---|
| 2307 | re_dfastate_t *pstate;
|
---|
| 2308 | unsigned int context;
|
---|
| 2309 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
|
---|
| 2310 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is
|
---|
| 2311 | the destination of a multibyte char/collating element/
|
---|
| 2312 | back reference. Then the next state is the union set of
|
---|
| 2313 | these destinations and the results of the transition table. */
|
---|
| 2314 | pstate = mctx->state_log[cur_idx];
|
---|
| 2315 | log_nodes = pstate->entrance_nodes;
|
---|
| 2316 | if (next_state != NULL)
|
---|
| 2317 | {
|
---|
| 2318 | table_nodes = next_state->entrance_nodes;
|
---|
| 2319 | *err = re_node_set_init_union (&next_nodes, table_nodes,
|
---|
| 2320 | log_nodes);
|
---|
| 2321 | if (BE (*err != REG_NOERROR, 0))
|
---|
| 2322 | return NULL;
|
---|
| 2323 | }
|
---|
| 2324 | else
|
---|
| 2325 | next_nodes = *log_nodes;
|
---|
| 2326 | /* Note: We already add the nodes of the initial state,
|
---|
| 2327 | then we don't need to add them here. */
|
---|
| 2328 |
|
---|
| 2329 | context = re_string_context_at (&mctx->input,
|
---|
| 2330 | re_string_cur_idx (&mctx->input) - 1,
|
---|
| 2331 | mctx->eflags);
|
---|
| 2332 | next_state = mctx->state_log[cur_idx]
|
---|
| 2333 | = re_acquire_state_context (err, dfa, &next_nodes, context);
|
---|
| 2334 | /* We don't need to check errors here, since the return value of
|
---|
| 2335 | this function is next_state and ERR is already set. */
|
---|
| 2336 |
|
---|
| 2337 | if (table_nodes != NULL)
|
---|
| 2338 | re_node_set_free (&next_nodes);
|
---|
| 2339 | }
|
---|
| 2340 |
|
---|
| 2341 | if (BE (dfa->nbackref, 0) && next_state != NULL)
|
---|
| 2342 | {
|
---|
| 2343 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them
|
---|
| 2344 | later. We must check them here, since the back references in the
|
---|
| 2345 | next state might use them. */
|
---|
| 2346 | *err = check_subexp_matching_top (mctx, &next_state->nodes,
|
---|
| 2347 | cur_idx);
|
---|
| 2348 | if (BE (*err != REG_NOERROR, 0))
|
---|
| 2349 | return NULL;
|
---|
| 2350 |
|
---|
| 2351 | /* If the next state has back references. */
|
---|
| 2352 | if (next_state->has_backref)
|
---|
| 2353 | {
|
---|
| 2354 | *err = transit_state_bkref (mctx, &next_state->nodes);
|
---|
| 2355 | if (BE (*err != REG_NOERROR, 0))
|
---|
| 2356 | return NULL;
|
---|
| 2357 | next_state = mctx->state_log[cur_idx];
|
---|
| 2358 | }
|
---|
| 2359 | }
|
---|
| 2360 |
|
---|
| 2361 | return next_state;
|
---|
| 2362 | }
|
---|
| 2363 |
|
---|
| 2364 | /* Skip bytes in the input that correspond to part of a
|
---|
| 2365 | multi-byte match, then look in the log for a state
|
---|
| 2366 | from which to restart matching. */
|
---|
| 2367 | re_dfastate_t *
|
---|
| 2368 | find_recover_state (err, mctx)
|
---|
| 2369 | reg_errcode_t *err;
|
---|
| 2370 | re_match_context_t *mctx;
|
---|
| 2371 | {
|
---|
| 2372 | re_dfastate_t *cur_state = NULL;
|
---|
| 2373 | do
|
---|
| 2374 | {
|
---|
| 2375 | int max = mctx->state_log_top;
|
---|
| 2376 | int cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
| 2377 |
|
---|
| 2378 | do
|
---|
| 2379 | {
|
---|
| 2380 | if (++cur_str_idx > max)
|
---|
| 2381 | return NULL;
|
---|
| 2382 | re_string_skip_bytes (&mctx->input, 1);
|
---|
| 2383 | }
|
---|
| 2384 | while (mctx->state_log[cur_str_idx] == NULL);
|
---|
| 2385 |
|
---|
| 2386 | cur_state = merge_state_with_log (err, mctx, NULL);
|
---|
| 2387 | }
|
---|
| 2388 | while (err == REG_NOERROR && cur_state == NULL);
|
---|
| 2389 | return cur_state;
|
---|
| 2390 | }
|
---|
| 2391 |
|
---|
| 2392 | /* Helper functions for transit_state. */
|
---|
| 2393 |
|
---|
| 2394 | /* From the node set CUR_NODES, pick up the nodes whose types are
|
---|
| 2395 | OP_OPEN_SUBEXP and which have corresponding back references in the regular
|
---|
| 2396 | expression. And register them to use them later for evaluating the
|
---|
| 2397 | correspoding back references. */
|
---|
| 2398 |
|
---|
| 2399 | static reg_errcode_t
|
---|
| 2400 | check_subexp_matching_top (mctx, cur_nodes, str_idx)
|
---|
| 2401 | re_match_context_t *mctx;
|
---|
| 2402 | re_node_set *cur_nodes;
|
---|
| 2403 | int str_idx;
|
---|
| 2404 | {
|
---|
| 2405 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2406 | int node_idx;
|
---|
| 2407 | reg_errcode_t err;
|
---|
| 2408 |
|
---|
| 2409 | /* TODO: This isn't efficient.
|
---|
| 2410 | Because there might be more than one nodes whose types are
|
---|
| 2411 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
|
---|
| 2412 | nodes.
|
---|
| 2413 | E.g. RE: (a){2} */
|
---|
| 2414 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
|
---|
| 2415 | {
|
---|
| 2416 | int node = cur_nodes->elems[node_idx];
|
---|
| 2417 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP
|
---|
| 2418 | && dfa->nodes[node].opr.idx < (8 * sizeof (dfa->used_bkref_map))
|
---|
| 2419 | && dfa->used_bkref_map & (1 << dfa->nodes[node].opr.idx))
|
---|
| 2420 | {
|
---|
| 2421 | err = match_ctx_add_subtop (mctx, node, str_idx);
|
---|
| 2422 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2423 | return err;
|
---|
| 2424 | }
|
---|
| 2425 | }
|
---|
| 2426 | return REG_NOERROR;
|
---|
| 2427 | }
|
---|
| 2428 |
|
---|
| 2429 | #if 0
|
---|
| 2430 | /* Return the next state to which the current state STATE will transit by
|
---|
| 2431 | accepting the current input byte. */
|
---|
| 2432 |
|
---|
| 2433 | static re_dfastate_t *
|
---|
| 2434 | transit_state_sb (err, mctx, state)
|
---|
| 2435 | reg_errcode_t *err;
|
---|
| 2436 | re_match_context_t *mctx;
|
---|
| 2437 | re_dfastate_t *state;
|
---|
| 2438 | {
|
---|
| 2439 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2440 | re_node_set next_nodes;
|
---|
| 2441 | re_dfastate_t *next_state;
|
---|
| 2442 | int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
| 2443 | unsigned int context;
|
---|
| 2444 |
|
---|
| 2445 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
|
---|
| 2446 | if (BE (*err != REG_NOERROR, 0))
|
---|
| 2447 | return NULL;
|
---|
| 2448 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
|
---|
| 2449 | {
|
---|
| 2450 | int cur_node = state->nodes.elems[node_cnt];
|
---|
| 2451 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx))
|
---|
| 2452 | {
|
---|
| 2453 | *err = re_node_set_merge (&next_nodes,
|
---|
| 2454 | dfa->eclosures + dfa->nexts[cur_node]);
|
---|
| 2455 | if (BE (*err != REG_NOERROR, 0))
|
---|
| 2456 | {
|
---|
| 2457 | re_node_set_free (&next_nodes);
|
---|
| 2458 | return NULL;
|
---|
| 2459 | }
|
---|
| 2460 | }
|
---|
| 2461 | }
|
---|
| 2462 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags);
|
---|
| 2463 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
|
---|
| 2464 | /* We don't need to check errors here, since the return value of
|
---|
| 2465 | this function is next_state and ERR is already set. */
|
---|
| 2466 |
|
---|
| 2467 | re_node_set_free (&next_nodes);
|
---|
| 2468 | re_string_skip_bytes (&mctx->input, 1);
|
---|
| 2469 | return next_state;
|
---|
| 2470 | }
|
---|
| 2471 | #endif
|
---|
| 2472 |
|
---|
| 2473 | #ifdef RE_ENABLE_I18N
|
---|
| 2474 | static reg_errcode_t
|
---|
| 2475 | transit_state_mb (mctx, pstate)
|
---|
| 2476 | re_match_context_t *mctx;
|
---|
| 2477 | re_dfastate_t *pstate;
|
---|
| 2478 | {
|
---|
| 2479 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2480 | reg_errcode_t err;
|
---|
| 2481 | int i;
|
---|
| 2482 |
|
---|
| 2483 | for (i = 0; i < pstate->nodes.nelem; ++i)
|
---|
| 2484 | {
|
---|
| 2485 | re_node_set dest_nodes, *new_nodes;
|
---|
| 2486 | int cur_node_idx = pstate->nodes.elems[i];
|
---|
| 2487 | int naccepted, dest_idx;
|
---|
| 2488 | unsigned int context;
|
---|
| 2489 | re_dfastate_t *dest_state;
|
---|
| 2490 |
|
---|
| 2491 | if (!dfa->nodes[cur_node_idx].accept_mb)
|
---|
| 2492 | continue;
|
---|
| 2493 |
|
---|
| 2494 | if (dfa->nodes[cur_node_idx].constraint)
|
---|
| 2495 | {
|
---|
| 2496 | context = re_string_context_at (&mctx->input,
|
---|
| 2497 | re_string_cur_idx (&mctx->input),
|
---|
| 2498 | mctx->eflags);
|
---|
| 2499 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
|
---|
| 2500 | context))
|
---|
| 2501 | continue;
|
---|
| 2502 | }
|
---|
| 2503 |
|
---|
| 2504 | /* How many bytes the node can accept? */
|
---|
| 2505 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input,
|
---|
| 2506 | re_string_cur_idx (&mctx->input));
|
---|
| 2507 | if (naccepted == 0)
|
---|
| 2508 | continue;
|
---|
| 2509 |
|
---|
| 2510 | /* The node can accepts `naccepted' bytes. */
|
---|
| 2511 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted;
|
---|
| 2512 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
|
---|
| 2513 | : mctx->max_mb_elem_len);
|
---|
| 2514 | err = clean_state_log_if_needed (mctx, dest_idx);
|
---|
| 2515 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2516 | return err;
|
---|
| 2517 | #ifdef DEBUG
|
---|
| 2518 | assert (dfa->nexts[cur_node_idx] != -1);
|
---|
| 2519 | #endif
|
---|
| 2520 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx];
|
---|
| 2521 |
|
---|
| 2522 | dest_state = mctx->state_log[dest_idx];
|
---|
| 2523 | if (dest_state == NULL)
|
---|
| 2524 | dest_nodes = *new_nodes;
|
---|
| 2525 | else
|
---|
| 2526 | {
|
---|
| 2527 | err = re_node_set_init_union (&dest_nodes,
|
---|
| 2528 | dest_state->entrance_nodes, new_nodes);
|
---|
| 2529 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2530 | return err;
|
---|
| 2531 | }
|
---|
| 2532 | context = re_string_context_at (&mctx->input, dest_idx - 1, mctx->eflags);
|
---|
| 2533 | mctx->state_log[dest_idx]
|
---|
| 2534 | = re_acquire_state_context (&err, dfa, &dest_nodes, context);
|
---|
| 2535 | if (dest_state != NULL)
|
---|
| 2536 | re_node_set_free (&dest_nodes);
|
---|
| 2537 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
|
---|
| 2538 | return err;
|
---|
| 2539 | }
|
---|
| 2540 | return REG_NOERROR;
|
---|
| 2541 | }
|
---|
| 2542 | #endif /* RE_ENABLE_I18N */
|
---|
| 2543 |
|
---|
| 2544 | static reg_errcode_t
|
---|
| 2545 | transit_state_bkref (mctx, nodes)
|
---|
| 2546 | re_match_context_t *mctx;
|
---|
| 2547 | const re_node_set *nodes;
|
---|
| 2548 | {
|
---|
| 2549 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2550 | reg_errcode_t err;
|
---|
| 2551 | int i;
|
---|
| 2552 | int cur_str_idx = re_string_cur_idx (&mctx->input);
|
---|
| 2553 |
|
---|
| 2554 | for (i = 0; i < nodes->nelem; ++i)
|
---|
| 2555 | {
|
---|
| 2556 | int dest_str_idx, prev_nelem, bkc_idx;
|
---|
| 2557 | int node_idx = nodes->elems[i];
|
---|
| 2558 | unsigned int context;
|
---|
| 2559 | const re_token_t *node = dfa->nodes + node_idx;
|
---|
| 2560 | re_node_set *new_dest_nodes;
|
---|
| 2561 |
|
---|
| 2562 | /* Check whether `node' is a backreference or not. */
|
---|
| 2563 | if (node->type != OP_BACK_REF)
|
---|
| 2564 | continue;
|
---|
| 2565 |
|
---|
| 2566 | if (node->constraint)
|
---|
| 2567 | {
|
---|
| 2568 | context = re_string_context_at (&mctx->input, cur_str_idx,
|
---|
| 2569 | mctx->eflags);
|
---|
| 2570 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
|
---|
| 2571 | continue;
|
---|
| 2572 | }
|
---|
| 2573 |
|
---|
| 2574 | /* `node' is a backreference.
|
---|
| 2575 | Check the substring which the substring matched. */
|
---|
| 2576 | bkc_idx = mctx->nbkref_ents;
|
---|
| 2577 | err = get_subexp (mctx, node_idx, cur_str_idx);
|
---|
| 2578 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2579 | goto free_return;
|
---|
| 2580 |
|
---|
| 2581 | /* And add the epsilon closures (which is `new_dest_nodes') of
|
---|
| 2582 | the backreference to appropriate state_log. */
|
---|
| 2583 | #ifdef DEBUG
|
---|
| 2584 | assert (dfa->nexts[node_idx] != -1);
|
---|
| 2585 | #endif
|
---|
| 2586 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
|
---|
| 2587 | {
|
---|
| 2588 | int subexp_len;
|
---|
| 2589 | re_dfastate_t *dest_state;
|
---|
| 2590 | struct re_backref_cache_entry *bkref_ent;
|
---|
| 2591 | bkref_ent = mctx->bkref_ents + bkc_idx;
|
---|
| 2592 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
|
---|
| 2593 | continue;
|
---|
| 2594 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
|
---|
| 2595 | new_dest_nodes = (subexp_len == 0
|
---|
| 2596 | ? dfa->eclosures + dfa->edests[node_idx].elems[0]
|
---|
| 2597 | : dfa->eclosures + dfa->nexts[node_idx]);
|
---|
| 2598 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
|
---|
| 2599 | - bkref_ent->subexp_from);
|
---|
| 2600 | context = re_string_context_at (&mctx->input, dest_str_idx - 1,
|
---|
| 2601 | mctx->eflags);
|
---|
| 2602 | dest_state = mctx->state_log[dest_str_idx];
|
---|
| 2603 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
|
---|
| 2604 | : mctx->state_log[cur_str_idx]->nodes.nelem);
|
---|
| 2605 | /* Add `new_dest_node' to state_log. */
|
---|
| 2606 | if (dest_state == NULL)
|
---|
| 2607 | {
|
---|
| 2608 | mctx->state_log[dest_str_idx]
|
---|
| 2609 | = re_acquire_state_context (&err, dfa, new_dest_nodes,
|
---|
| 2610 | context);
|
---|
| 2611 | if (BE (mctx->state_log[dest_str_idx] == NULL
|
---|
| 2612 | && err != REG_NOERROR, 0))
|
---|
| 2613 | goto free_return;
|
---|
| 2614 | }
|
---|
| 2615 | else
|
---|
| 2616 | {
|
---|
| 2617 | re_node_set dest_nodes;
|
---|
| 2618 | err = re_node_set_init_union (&dest_nodes,
|
---|
| 2619 | dest_state->entrance_nodes,
|
---|
| 2620 | new_dest_nodes);
|
---|
| 2621 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2622 | {
|
---|
| 2623 | re_node_set_free (&dest_nodes);
|
---|
| 2624 | goto free_return;
|
---|
| 2625 | }
|
---|
| 2626 | mctx->state_log[dest_str_idx]
|
---|
| 2627 | = re_acquire_state_context (&err, dfa, &dest_nodes, context);
|
---|
| 2628 | re_node_set_free (&dest_nodes);
|
---|
| 2629 | if (BE (mctx->state_log[dest_str_idx] == NULL
|
---|
| 2630 | && err != REG_NOERROR, 0))
|
---|
| 2631 | goto free_return;
|
---|
| 2632 | }
|
---|
| 2633 | /* We need to check recursively if the backreference can epsilon
|
---|
| 2634 | transit. */
|
---|
| 2635 | if (subexp_len == 0
|
---|
| 2636 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
|
---|
| 2637 | {
|
---|
| 2638 | err = check_subexp_matching_top (mctx, new_dest_nodes,
|
---|
| 2639 | cur_str_idx);
|
---|
| 2640 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2641 | goto free_return;
|
---|
| 2642 | err = transit_state_bkref (mctx, new_dest_nodes);
|
---|
| 2643 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2644 | goto free_return;
|
---|
| 2645 | }
|
---|
| 2646 | }
|
---|
| 2647 | }
|
---|
| 2648 | err = REG_NOERROR;
|
---|
| 2649 | free_return:
|
---|
| 2650 | return err;
|
---|
| 2651 | }
|
---|
| 2652 |
|
---|
| 2653 | /* Enumerate all the candidates which the backreference BKREF_NODE can match
|
---|
| 2654 | at BKREF_STR_IDX, and register them by match_ctx_add_entry().
|
---|
| 2655 | Note that we might collect inappropriate candidates here.
|
---|
| 2656 | However, the cost of checking them strictly here is too high, then we
|
---|
| 2657 | delay these checking for prune_impossible_nodes(). */
|
---|
| 2658 |
|
---|
| 2659 | static reg_errcode_t
|
---|
| 2660 | get_subexp (mctx, bkref_node, bkref_str_idx)
|
---|
| 2661 | re_match_context_t *mctx;
|
---|
| 2662 | int bkref_node, bkref_str_idx;
|
---|
| 2663 | {
|
---|
| 2664 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2665 | int subexp_num, sub_top_idx;
|
---|
| 2666 | const char *buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
| 2667 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */
|
---|
| 2668 | int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
|
---|
| 2669 | if (cache_idx != -1)
|
---|
| 2670 | {
|
---|
| 2671 | const struct re_backref_cache_entry *entry = mctx->bkref_ents + cache_idx;
|
---|
| 2672 | do
|
---|
| 2673 | if (entry->node == bkref_node)
|
---|
| 2674 | return REG_NOERROR; /* We already checked it. */
|
---|
| 2675 | while (entry++->more);
|
---|
| 2676 | }
|
---|
| 2677 |
|
---|
| 2678 | subexp_num = dfa->nodes[bkref_node].opr.idx;
|
---|
| 2679 |
|
---|
| 2680 | /* For each sub expression */
|
---|
| 2681 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
|
---|
| 2682 | {
|
---|
| 2683 | reg_errcode_t err;
|
---|
| 2684 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
|
---|
| 2685 | re_sub_match_last_t *sub_last;
|
---|
| 2686 | int sub_last_idx, sl_str, bkref_str_off;
|
---|
| 2687 |
|
---|
| 2688 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
|
---|
| 2689 | continue; /* It isn't related. */
|
---|
| 2690 |
|
---|
| 2691 | sl_str = sub_top->str_idx;
|
---|
| 2692 | bkref_str_off = bkref_str_idx;
|
---|
| 2693 | /* At first, check the last node of sub expressions we already
|
---|
| 2694 | evaluated. */
|
---|
| 2695 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
|
---|
| 2696 | {
|
---|
| 2697 | int sl_str_diff;
|
---|
| 2698 | sub_last = sub_top->lasts[sub_last_idx];
|
---|
| 2699 | sl_str_diff = sub_last->str_idx - sl_str;
|
---|
| 2700 | /* The matched string by the sub expression match with the substring
|
---|
| 2701 | at the back reference? */
|
---|
| 2702 | if (sl_str_diff > 0)
|
---|
| 2703 | {
|
---|
| 2704 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0))
|
---|
| 2705 | {
|
---|
| 2706 | /* Not enough chars for a successful match. */
|
---|
| 2707 | if (bkref_str_off + sl_str_diff > mctx->input.len)
|
---|
| 2708 | break;
|
---|
| 2709 |
|
---|
| 2710 | err = clean_state_log_if_needed (mctx,
|
---|
| 2711 | bkref_str_off
|
---|
| 2712 | + sl_str_diff);
|
---|
| 2713 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2714 | return err;
|
---|
| 2715 | buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
| 2716 | }
|
---|
| 2717 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0)
|
---|
| 2718 | break; /* We don't need to search this sub expression any more. */
|
---|
| 2719 | }
|
---|
| 2720 | bkref_str_off += sl_str_diff;
|
---|
| 2721 | sl_str += sl_str_diff;
|
---|
| 2722 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
|
---|
| 2723 | bkref_str_idx);
|
---|
| 2724 |
|
---|
| 2725 | /* Reload buf, since the preceding call might have reallocated
|
---|
| 2726 | the buffer. */
|
---|
| 2727 | buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
| 2728 |
|
---|
| 2729 | if (err == REG_NOMATCH)
|
---|
| 2730 | continue;
|
---|
| 2731 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2732 | return err;
|
---|
| 2733 | }
|
---|
| 2734 |
|
---|
| 2735 | if (sub_last_idx < sub_top->nlasts)
|
---|
| 2736 | continue;
|
---|
| 2737 | if (sub_last_idx > 0)
|
---|
| 2738 | ++sl_str;
|
---|
| 2739 | /* Then, search for the other last nodes of the sub expression. */
|
---|
| 2740 | for (; sl_str <= bkref_str_idx; ++sl_str)
|
---|
| 2741 | {
|
---|
| 2742 | int cls_node, sl_str_off;
|
---|
| 2743 | const re_node_set *nodes;
|
---|
| 2744 | sl_str_off = sl_str - sub_top->str_idx;
|
---|
| 2745 | /* The matched string by the sub expression match with the substring
|
---|
| 2746 | at the back reference? */
|
---|
| 2747 | if (sl_str_off > 0)
|
---|
| 2748 | {
|
---|
| 2749 | if (BE (bkref_str_off >= mctx->input.valid_len, 0))
|
---|
| 2750 | {
|
---|
| 2751 | /* If we are at the end of the input, we cannot match. */
|
---|
| 2752 | if (bkref_str_off >= mctx->input.len)
|
---|
| 2753 | break;
|
---|
| 2754 |
|
---|
| 2755 | err = extend_buffers (mctx);
|
---|
| 2756 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2757 | return err;
|
---|
| 2758 |
|
---|
| 2759 | buf = (const char *) re_string_get_buffer (&mctx->input);
|
---|
| 2760 | }
|
---|
| 2761 | if (buf [bkref_str_off++] != buf[sl_str - 1])
|
---|
| 2762 | break; /* We don't need to search this sub expression
|
---|
| 2763 | any more. */
|
---|
| 2764 | }
|
---|
| 2765 | if (mctx->state_log[sl_str] == NULL)
|
---|
| 2766 | continue;
|
---|
| 2767 | /* Does this state have a ')' of the sub expression? */
|
---|
| 2768 | nodes = &mctx->state_log[sl_str]->nodes;
|
---|
| 2769 | cls_node = find_subexp_node (dfa, nodes, subexp_num, OP_CLOSE_SUBEXP);
|
---|
| 2770 | if (cls_node == -1)
|
---|
| 2771 | continue; /* No. */
|
---|
| 2772 | if (sub_top->path == NULL)
|
---|
| 2773 | {
|
---|
| 2774 | sub_top->path = calloc (sizeof (state_array_t),
|
---|
| 2775 | sl_str - sub_top->str_idx + 1);
|
---|
| 2776 | if (sub_top->path == NULL)
|
---|
| 2777 | return REG_ESPACE;
|
---|
| 2778 | }
|
---|
| 2779 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
|
---|
| 2780 | in the current context? */
|
---|
| 2781 | err = check_arrival (mctx, sub_top->path, sub_top->node,
|
---|
| 2782 | sub_top->str_idx, cls_node, sl_str, OP_CLOSE_SUBEXP);
|
---|
| 2783 | if (err == REG_NOMATCH)
|
---|
| 2784 | continue;
|
---|
| 2785 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2786 | return err;
|
---|
| 2787 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
|
---|
| 2788 | if (BE (sub_last == NULL, 0))
|
---|
| 2789 | return REG_ESPACE;
|
---|
| 2790 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
|
---|
| 2791 | bkref_str_idx);
|
---|
| 2792 | if (err == REG_NOMATCH)
|
---|
| 2793 | continue;
|
---|
| 2794 | }
|
---|
| 2795 | }
|
---|
| 2796 | return REG_NOERROR;
|
---|
| 2797 | }
|
---|
| 2798 |
|
---|
| 2799 | /* Helper functions for get_subexp(). */
|
---|
| 2800 |
|
---|
| 2801 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
|
---|
| 2802 | If it can arrive, register the sub expression expressed with SUB_TOP
|
---|
| 2803 | and SUB_LAST. */
|
---|
| 2804 |
|
---|
| 2805 | static reg_errcode_t
|
---|
| 2806 | get_subexp_sub (mctx, sub_top, sub_last, bkref_node, bkref_str)
|
---|
| 2807 | re_match_context_t *mctx;
|
---|
| 2808 | const re_sub_match_top_t *sub_top;
|
---|
| 2809 | re_sub_match_last_t *sub_last;
|
---|
| 2810 | int bkref_node, bkref_str;
|
---|
| 2811 | {
|
---|
| 2812 | reg_errcode_t err;
|
---|
| 2813 | int to_idx;
|
---|
| 2814 | /* Can the subexpression arrive the back reference? */
|
---|
| 2815 | err = check_arrival (mctx, &sub_last->path, sub_last->node,
|
---|
| 2816 | sub_last->str_idx, bkref_node, bkref_str, OP_OPEN_SUBEXP);
|
---|
| 2817 | if (err != REG_NOERROR)
|
---|
| 2818 | return err;
|
---|
| 2819 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
|
---|
| 2820 | sub_last->str_idx);
|
---|
| 2821 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2822 | return err;
|
---|
| 2823 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
|
---|
| 2824 | return clean_state_log_if_needed (mctx, to_idx);
|
---|
| 2825 | }
|
---|
| 2826 |
|
---|
| 2827 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
|
---|
| 2828 | Search '(' if FL_OPEN, or search ')' otherwise.
|
---|
| 2829 | TODO: This function isn't efficient...
|
---|
| 2830 | Because there might be more than one nodes whose types are
|
---|
| 2831 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
|
---|
| 2832 | nodes.
|
---|
| 2833 | E.g. RE: (a){2} */
|
---|
| 2834 |
|
---|
| 2835 | static int
|
---|
| 2836 | find_subexp_node (dfa, nodes, subexp_idx, type)
|
---|
| 2837 | const re_dfa_t *dfa;
|
---|
| 2838 | const re_node_set *nodes;
|
---|
| 2839 | int subexp_idx, type;
|
---|
| 2840 | {
|
---|
| 2841 | int cls_idx;
|
---|
| 2842 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
|
---|
| 2843 | {
|
---|
| 2844 | int cls_node = nodes->elems[cls_idx];
|
---|
| 2845 | const re_token_t *node = dfa->nodes + cls_node;
|
---|
| 2846 | if (node->type == type
|
---|
| 2847 | && node->opr.idx == subexp_idx)
|
---|
| 2848 | return cls_node;
|
---|
| 2849 | }
|
---|
| 2850 | return -1;
|
---|
| 2851 | }
|
---|
| 2852 |
|
---|
| 2853 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node
|
---|
| 2854 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be
|
---|
| 2855 | heavily reused.
|
---|
| 2856 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */
|
---|
| 2857 |
|
---|
| 2858 | static reg_errcode_t
|
---|
| 2859 | check_arrival (mctx, path, top_node, top_str, last_node, last_str,
|
---|
| 2860 | type)
|
---|
| 2861 | re_match_context_t *mctx;
|
---|
| 2862 | state_array_t *path;
|
---|
| 2863 | int top_node, top_str, last_node, last_str, type;
|
---|
| 2864 | {
|
---|
| 2865 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 2866 | reg_errcode_t err;
|
---|
| 2867 | int subexp_num, backup_cur_idx, str_idx, null_cnt;
|
---|
| 2868 | re_dfastate_t *cur_state = NULL;
|
---|
| 2869 | re_node_set *cur_nodes, next_nodes;
|
---|
| 2870 | re_dfastate_t **backup_state_log;
|
---|
| 2871 | unsigned int context;
|
---|
| 2872 |
|
---|
| 2873 | subexp_num = dfa->nodes[top_node].opr.idx;
|
---|
| 2874 | /* Extend the buffer if we need. */
|
---|
| 2875 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0))
|
---|
| 2876 | {
|
---|
| 2877 | re_dfastate_t **new_array;
|
---|
| 2878 | int old_alloc = path->alloc;
|
---|
| 2879 | path->alloc += last_str + mctx->max_mb_elem_len + 1;
|
---|
| 2880 | new_array = re_realloc (path->array, re_dfastate_t *, path->alloc);
|
---|
| 2881 | if (new_array == NULL)
|
---|
| 2882 | {
|
---|
| 2883 | path->alloc = old_alloc;
|
---|
| 2884 | return REG_ESPACE;
|
---|
| 2885 | }
|
---|
| 2886 | path->array = new_array;
|
---|
| 2887 | memset (new_array + old_alloc, '\0',
|
---|
| 2888 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
|
---|
| 2889 | }
|
---|
| 2890 |
|
---|
| 2891 | str_idx = path->next_idx == 0 ? top_str : path->next_idx;
|
---|
| 2892 |
|
---|
| 2893 | /* Temporary modify MCTX. */
|
---|
| 2894 | backup_state_log = mctx->state_log;
|
---|
| 2895 | backup_cur_idx = mctx->input.cur_idx;
|
---|
| 2896 | mctx->state_log = path->array;
|
---|
| 2897 | mctx->input.cur_idx = str_idx;
|
---|
| 2898 |
|
---|
| 2899 | /* Setup initial node set. */
|
---|
| 2900 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
|
---|
| 2901 | if (str_idx == top_str)
|
---|
| 2902 | {
|
---|
| 2903 | err = re_node_set_init_1 (&next_nodes, top_node);
|
---|
| 2904 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2905 | return err;
|
---|
| 2906 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
|
---|
| 2907 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2908 | {
|
---|
| 2909 | re_node_set_free (&next_nodes);
|
---|
| 2910 | return err;
|
---|
| 2911 | }
|
---|
| 2912 | }
|
---|
| 2913 | else
|
---|
| 2914 | {
|
---|
| 2915 | cur_state = mctx->state_log[str_idx];
|
---|
| 2916 | if (cur_state && cur_state->has_backref)
|
---|
| 2917 | {
|
---|
| 2918 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
|
---|
| 2919 | if (BE ( err != REG_NOERROR, 0))
|
---|
| 2920 | return err;
|
---|
| 2921 | }
|
---|
| 2922 | else
|
---|
| 2923 | re_node_set_init_empty (&next_nodes);
|
---|
| 2924 | }
|
---|
| 2925 | if (str_idx == top_str || (cur_state && cur_state->has_backref))
|
---|
| 2926 | {
|
---|
| 2927 | if (next_nodes.nelem)
|
---|
| 2928 | {
|
---|
| 2929 | err = expand_bkref_cache (mctx, &next_nodes, str_idx,
|
---|
| 2930 | subexp_num, type);
|
---|
| 2931 | if (BE ( err != REG_NOERROR, 0))
|
---|
| 2932 | {
|
---|
| 2933 | re_node_set_free (&next_nodes);
|
---|
| 2934 | return err;
|
---|
| 2935 | }
|
---|
| 2936 | }
|
---|
| 2937 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
|
---|
| 2938 | if (BE (cur_state == NULL && err != REG_NOERROR, 0))
|
---|
| 2939 | {
|
---|
| 2940 | re_node_set_free (&next_nodes);
|
---|
| 2941 | return err;
|
---|
| 2942 | }
|
---|
| 2943 | mctx->state_log[str_idx] = cur_state;
|
---|
| 2944 | }
|
---|
| 2945 |
|
---|
| 2946 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
|
---|
| 2947 | {
|
---|
| 2948 | re_node_set_empty (&next_nodes);
|
---|
| 2949 | if (mctx->state_log[str_idx + 1])
|
---|
| 2950 | {
|
---|
| 2951 | err = re_node_set_merge (&next_nodes,
|
---|
| 2952 | &mctx->state_log[str_idx + 1]->nodes);
|
---|
| 2953 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2954 | {
|
---|
| 2955 | re_node_set_free (&next_nodes);
|
---|
| 2956 | return err;
|
---|
| 2957 | }
|
---|
| 2958 | }
|
---|
| 2959 | if (cur_state)
|
---|
| 2960 | {
|
---|
| 2961 | err = check_arrival_add_next_nodes (mctx, str_idx,
|
---|
| 2962 | &cur_state->non_eps_nodes, &next_nodes);
|
---|
| 2963 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2964 | {
|
---|
| 2965 | re_node_set_free (&next_nodes);
|
---|
| 2966 | return err;
|
---|
| 2967 | }
|
---|
| 2968 | }
|
---|
| 2969 | ++str_idx;
|
---|
| 2970 | if (next_nodes.nelem)
|
---|
| 2971 | {
|
---|
| 2972 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
|
---|
| 2973 | if (BE (err != REG_NOERROR, 0))
|
---|
| 2974 | {
|
---|
| 2975 | re_node_set_free (&next_nodes);
|
---|
| 2976 | return err;
|
---|
| 2977 | }
|
---|
| 2978 | err = expand_bkref_cache (mctx, &next_nodes, str_idx,
|
---|
| 2979 | subexp_num, type);
|
---|
| 2980 | if (BE ( err != REG_NOERROR, 0))
|
---|
| 2981 | {
|
---|
| 2982 | re_node_set_free (&next_nodes);
|
---|
| 2983 | return err;
|
---|
| 2984 | }
|
---|
| 2985 | }
|
---|
| 2986 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
|
---|
| 2987 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
|
---|
| 2988 | if (BE (cur_state == NULL && err != REG_NOERROR, 0))
|
---|
| 2989 | {
|
---|
| 2990 | re_node_set_free (&next_nodes);
|
---|
| 2991 | return err;
|
---|
| 2992 | }
|
---|
| 2993 | mctx->state_log[str_idx] = cur_state;
|
---|
| 2994 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
|
---|
| 2995 | }
|
---|
| 2996 | re_node_set_free (&next_nodes);
|
---|
| 2997 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
|
---|
| 2998 | : &mctx->state_log[last_str]->nodes);
|
---|
| 2999 | path->next_idx = str_idx;
|
---|
| 3000 |
|
---|
| 3001 | /* Fix MCTX. */
|
---|
| 3002 | mctx->state_log = backup_state_log;
|
---|
| 3003 | mctx->input.cur_idx = backup_cur_idx;
|
---|
| 3004 |
|
---|
| 3005 | /* Then check the current node set has the node LAST_NODE. */
|
---|
| 3006 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node))
|
---|
| 3007 | return REG_NOERROR;
|
---|
| 3008 |
|
---|
| 3009 | return REG_NOMATCH;
|
---|
| 3010 | }
|
---|
| 3011 |
|
---|
| 3012 | /* Helper functions for check_arrival. */
|
---|
| 3013 |
|
---|
| 3014 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
|
---|
| 3015 | to NEXT_NODES.
|
---|
| 3016 | TODO: This function is similar to the functions transit_state*(),
|
---|
| 3017 | however this function has many additional works.
|
---|
| 3018 | Can't we unify them? */
|
---|
| 3019 |
|
---|
| 3020 | static reg_errcode_t
|
---|
| 3021 | check_arrival_add_next_nodes (mctx, str_idx, cur_nodes, next_nodes)
|
---|
| 3022 | re_match_context_t *mctx;
|
---|
| 3023 | int str_idx;
|
---|
| 3024 | re_node_set *cur_nodes, *next_nodes;
|
---|
| 3025 | {
|
---|
| 3026 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 3027 | int result;
|
---|
| 3028 | int cur_idx;
|
---|
| 3029 | re_node_set union_set;
|
---|
| 3030 | re_node_set_init_empty (&union_set);
|
---|
| 3031 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
|
---|
| 3032 | {
|
---|
| 3033 | int naccepted = 0;
|
---|
| 3034 | int cur_node = cur_nodes->elems[cur_idx];
|
---|
| 3035 | #ifdef DEBUG
|
---|
| 3036 | re_token_type_t type = dfa->nodes[cur_node].type;
|
---|
| 3037 | assert (!IS_EPSILON_NODE (type));
|
---|
| 3038 | #endif
|
---|
| 3039 | #ifdef RE_ENABLE_I18N
|
---|
| 3040 | /* If the node may accept `multi byte'. */
|
---|
| 3041 | if (dfa->nodes[cur_node].accept_mb)
|
---|
| 3042 | {
|
---|
| 3043 | reg_errcode_t err;
|
---|
| 3044 |
|
---|
| 3045 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input,
|
---|
| 3046 | str_idx);
|
---|
| 3047 | if (naccepted > 1)
|
---|
| 3048 | {
|
---|
| 3049 | re_dfastate_t *dest_state;
|
---|
| 3050 | int next_node = dfa->nexts[cur_node];
|
---|
| 3051 | int next_idx = str_idx + naccepted;
|
---|
| 3052 | dest_state = mctx->state_log[next_idx];
|
---|
| 3053 | re_node_set_empty (&union_set);
|
---|
| 3054 | if (dest_state)
|
---|
| 3055 | {
|
---|
| 3056 | err = re_node_set_merge (&union_set, &dest_state->nodes);
|
---|
| 3057 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3058 | {
|
---|
| 3059 | re_node_set_free (&union_set);
|
---|
| 3060 | return err;
|
---|
| 3061 | }
|
---|
| 3062 | }
|
---|
| 3063 | result = re_node_set_insert (&union_set, next_node);
|
---|
| 3064 | if (BE (result < 0, 0))
|
---|
| 3065 | {
|
---|
| 3066 | re_node_set_free (&union_set);
|
---|
| 3067 | return REG_ESPACE;
|
---|
| 3068 | }
|
---|
| 3069 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
|
---|
| 3070 | &union_set);
|
---|
| 3071 | if (BE (mctx->state_log[next_idx] == NULL
|
---|
| 3072 | && err != REG_NOERROR, 0))
|
---|
| 3073 | {
|
---|
| 3074 | re_node_set_free (&union_set);
|
---|
| 3075 | return err;
|
---|
| 3076 | }
|
---|
| 3077 | }
|
---|
| 3078 | }
|
---|
| 3079 | #endif /* RE_ENABLE_I18N */
|
---|
| 3080 | if (naccepted
|
---|
| 3081 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx))
|
---|
| 3082 | {
|
---|
| 3083 | result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
|
---|
| 3084 | if (BE (result < 0, 0))
|
---|
| 3085 | {
|
---|
| 3086 | re_node_set_free (&union_set);
|
---|
| 3087 | return REG_ESPACE;
|
---|
| 3088 | }
|
---|
| 3089 | }
|
---|
| 3090 | }
|
---|
| 3091 | re_node_set_free (&union_set);
|
---|
| 3092 | return REG_NOERROR;
|
---|
| 3093 | }
|
---|
| 3094 |
|
---|
| 3095 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to
|
---|
| 3096 | CUR_NODES, however exclude the nodes which are:
|
---|
| 3097 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
|
---|
| 3098 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
|
---|
| 3099 | */
|
---|
| 3100 |
|
---|
| 3101 | static reg_errcode_t
|
---|
| 3102 | check_arrival_expand_ecl (dfa, cur_nodes, ex_subexp, type)
|
---|
| 3103 | re_dfa_t *dfa;
|
---|
| 3104 | re_node_set *cur_nodes;
|
---|
| 3105 | int ex_subexp, type;
|
---|
| 3106 | {
|
---|
| 3107 | reg_errcode_t err;
|
---|
| 3108 | int idx, outside_node;
|
---|
| 3109 | re_node_set new_nodes;
|
---|
| 3110 | #ifdef DEBUG
|
---|
| 3111 | assert (cur_nodes->nelem);
|
---|
| 3112 | #endif
|
---|
| 3113 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
|
---|
| 3114 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3115 | return err;
|
---|
| 3116 | /* Create a new node set NEW_NODES with the nodes which are epsilon
|
---|
| 3117 | closures of the node in CUR_NODES. */
|
---|
| 3118 |
|
---|
| 3119 | for (idx = 0; idx < cur_nodes->nelem; ++idx)
|
---|
| 3120 | {
|
---|
| 3121 | int cur_node = cur_nodes->elems[idx];
|
---|
| 3122 | re_node_set *eclosure = dfa->eclosures + cur_node;
|
---|
| 3123 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type);
|
---|
| 3124 | if (outside_node == -1)
|
---|
| 3125 | {
|
---|
| 3126 | /* There are no problematic nodes, just merge them. */
|
---|
| 3127 | err = re_node_set_merge (&new_nodes, eclosure);
|
---|
| 3128 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3129 | {
|
---|
| 3130 | re_node_set_free (&new_nodes);
|
---|
| 3131 | return err;
|
---|
| 3132 | }
|
---|
| 3133 | }
|
---|
| 3134 | else
|
---|
| 3135 | {
|
---|
| 3136 | /* There are problematic nodes, re-calculate incrementally. */
|
---|
| 3137 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
|
---|
| 3138 | ex_subexp, type);
|
---|
| 3139 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3140 | {
|
---|
| 3141 | re_node_set_free (&new_nodes);
|
---|
| 3142 | return err;
|
---|
| 3143 | }
|
---|
| 3144 | }
|
---|
| 3145 | }
|
---|
| 3146 | re_node_set_free (cur_nodes);
|
---|
| 3147 | *cur_nodes = new_nodes;
|
---|
| 3148 | return REG_NOERROR;
|
---|
| 3149 | }
|
---|
| 3150 |
|
---|
| 3151 | /* Helper function for check_arrival_expand_ecl.
|
---|
| 3152 | Check incrementally the epsilon closure of TARGET, and if it isn't
|
---|
| 3153 | problematic append it to DST_NODES. */
|
---|
| 3154 |
|
---|
| 3155 | static reg_errcode_t
|
---|
| 3156 | check_arrival_expand_ecl_sub (dfa, dst_nodes, target, ex_subexp, type)
|
---|
| 3157 | re_dfa_t *dfa;
|
---|
| 3158 | int target, ex_subexp, type;
|
---|
| 3159 | re_node_set *dst_nodes;
|
---|
| 3160 | {
|
---|
| 3161 | int cur_node;
|
---|
| 3162 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
|
---|
| 3163 | {
|
---|
| 3164 | int err;
|
---|
| 3165 |
|
---|
| 3166 | if (dfa->nodes[cur_node].type == type
|
---|
| 3167 | && dfa->nodes[cur_node].opr.idx == ex_subexp)
|
---|
| 3168 | {
|
---|
| 3169 | if (type == OP_CLOSE_SUBEXP)
|
---|
| 3170 | {
|
---|
| 3171 | err = re_node_set_insert (dst_nodes, cur_node);
|
---|
| 3172 | if (BE (err == -1, 0))
|
---|
| 3173 | return REG_ESPACE;
|
---|
| 3174 | }
|
---|
| 3175 | break;
|
---|
| 3176 | }
|
---|
| 3177 | err = re_node_set_insert (dst_nodes, cur_node);
|
---|
| 3178 | if (BE (err == -1, 0))
|
---|
| 3179 | return REG_ESPACE;
|
---|
| 3180 | if (dfa->edests[cur_node].nelem == 0)
|
---|
| 3181 | break;
|
---|
| 3182 | if (dfa->edests[cur_node].nelem == 2)
|
---|
| 3183 | {
|
---|
| 3184 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
|
---|
| 3185 | dfa->edests[cur_node].elems[1],
|
---|
| 3186 | ex_subexp, type);
|
---|
| 3187 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3188 | return err;
|
---|
| 3189 | }
|
---|
| 3190 | cur_node = dfa->edests[cur_node].elems[0];
|
---|
| 3191 | }
|
---|
| 3192 | return REG_NOERROR;
|
---|
| 3193 | }
|
---|
| 3194 |
|
---|
| 3195 |
|
---|
| 3196 | /* For all the back references in the current state, calculate the
|
---|
| 3197 | destination of the back references by the appropriate entry
|
---|
| 3198 | in MCTX->BKREF_ENTS. */
|
---|
| 3199 |
|
---|
| 3200 | static reg_errcode_t
|
---|
| 3201 | expand_bkref_cache (mctx, cur_nodes, cur_str, subexp_num,
|
---|
| 3202 | type)
|
---|
| 3203 | re_match_context_t *mctx;
|
---|
| 3204 | int cur_str, subexp_num, type;
|
---|
| 3205 | re_node_set *cur_nodes;
|
---|
| 3206 | {
|
---|
| 3207 | re_dfa_t *const dfa = mctx->dfa;
|
---|
| 3208 | reg_errcode_t err;
|
---|
| 3209 | int cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
|
---|
| 3210 | struct re_backref_cache_entry *ent;
|
---|
| 3211 |
|
---|
| 3212 | if (cache_idx_start == -1)
|
---|
| 3213 | return REG_NOERROR;
|
---|
| 3214 |
|
---|
| 3215 | restart:
|
---|
| 3216 | ent = mctx->bkref_ents + cache_idx_start;
|
---|
| 3217 | do
|
---|
| 3218 | {
|
---|
| 3219 | int to_idx, next_node;
|
---|
| 3220 |
|
---|
| 3221 | /* Is this entry ENT is appropriate? */
|
---|
| 3222 | if (!re_node_set_contains (cur_nodes, ent->node))
|
---|
| 3223 | continue; /* No. */
|
---|
| 3224 |
|
---|
| 3225 | to_idx = cur_str + ent->subexp_to - ent->subexp_from;
|
---|
| 3226 | /* Calculate the destination of the back reference, and append it
|
---|
| 3227 | to MCTX->STATE_LOG. */
|
---|
| 3228 | if (to_idx == cur_str)
|
---|
| 3229 | {
|
---|
| 3230 | /* The backreference did epsilon transit, we must re-check all the
|
---|
| 3231 | node in the current state. */
|
---|
| 3232 | re_node_set new_dests;
|
---|
| 3233 | reg_errcode_t err2, err3;
|
---|
| 3234 | next_node = dfa->edests[ent->node].elems[0];
|
---|
| 3235 | if (re_node_set_contains (cur_nodes, next_node))
|
---|
| 3236 | continue;
|
---|
| 3237 | err = re_node_set_init_1 (&new_dests, next_node);
|
---|
| 3238 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type);
|
---|
| 3239 | err3 = re_node_set_merge (cur_nodes, &new_dests);
|
---|
| 3240 | re_node_set_free (&new_dests);
|
---|
| 3241 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR
|
---|
| 3242 | || err3 != REG_NOERROR, 0))
|
---|
| 3243 | {
|
---|
| 3244 | err = (err != REG_NOERROR ? err
|
---|
| 3245 | : (err2 != REG_NOERROR ? err2 : err3));
|
---|
| 3246 | return err;
|
---|
| 3247 | }
|
---|
| 3248 | /* TODO: It is still inefficient... */
|
---|
| 3249 | goto restart;
|
---|
| 3250 | }
|
---|
| 3251 | else
|
---|
| 3252 | {
|
---|
| 3253 | re_node_set union_set;
|
---|
| 3254 | next_node = dfa->nexts[ent->node];
|
---|
| 3255 | if (mctx->state_log[to_idx])
|
---|
| 3256 | {
|
---|
| 3257 | int ret;
|
---|
| 3258 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
|
---|
| 3259 | next_node))
|
---|
| 3260 | continue;
|
---|
| 3261 | err = re_node_set_init_copy (&union_set,
|
---|
| 3262 | &mctx->state_log[to_idx]->nodes);
|
---|
| 3263 | ret = re_node_set_insert (&union_set, next_node);
|
---|
| 3264 | if (BE (err != REG_NOERROR || ret < 0, 0))
|
---|
| 3265 | {
|
---|
| 3266 | re_node_set_free (&union_set);
|
---|
| 3267 | err = err != REG_NOERROR ? err : REG_ESPACE;
|
---|
| 3268 | return err;
|
---|
| 3269 | }
|
---|
| 3270 | }
|
---|
| 3271 | else
|
---|
| 3272 | {
|
---|
| 3273 | err = re_node_set_init_1 (&union_set, next_node);
|
---|
| 3274 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3275 | return err;
|
---|
| 3276 | }
|
---|
| 3277 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
|
---|
| 3278 | re_node_set_free (&union_set);
|
---|
| 3279 | if (BE (mctx->state_log[to_idx] == NULL
|
---|
| 3280 | && err != REG_NOERROR, 0))
|
---|
| 3281 | return err;
|
---|
| 3282 | }
|
---|
| 3283 | }
|
---|
| 3284 | while (ent++->more);
|
---|
| 3285 | return REG_NOERROR;
|
---|
| 3286 | }
|
---|
| 3287 |
|
---|
| 3288 | /* Build transition table for the state.
|
---|
| 3289 | Return 1 if succeeded, otherwise return NULL. */
|
---|
| 3290 |
|
---|
| 3291 | static int
|
---|
| 3292 | build_trtable (dfa, state)
|
---|
| 3293 | re_dfa_t *dfa;
|
---|
| 3294 | re_dfastate_t *state;
|
---|
| 3295 | {
|
---|
| 3296 | reg_errcode_t err;
|
---|
| 3297 | int i, j, ch, need_word_trtable = 0;
|
---|
| 3298 | unsigned int elem, mask;
|
---|
| 3299 | int dests_node_malloced = 0, dest_states_malloced = 0;
|
---|
| 3300 | int ndests; /* Number of the destination states from `state'. */
|
---|
| 3301 | re_dfastate_t **trtable;
|
---|
| 3302 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
|
---|
| 3303 | re_node_set follows, *dests_node;
|
---|
| 3304 | bitset *dests_ch;
|
---|
| 3305 | bitset acceptable;
|
---|
| 3306 |
|
---|
| 3307 | /* We build DFA states which corresponds to the destination nodes
|
---|
| 3308 | from `state'. `dests_node[i]' represents the nodes which i-th
|
---|
| 3309 | destination state contains, and `dests_ch[i]' represents the
|
---|
| 3310 | characters which i-th destination state accepts. */
|
---|
| 3311 | #ifdef _LIBC
|
---|
| 3312 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX))
|
---|
| 3313 | dests_node = (re_node_set *)
|
---|
| 3314 | alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX);
|
---|
| 3315 | else
|
---|
| 3316 | #endif
|
---|
| 3317 | {
|
---|
| 3318 | dests_node = (re_node_set *)
|
---|
| 3319 | malloc ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX);
|
---|
| 3320 | if (BE (dests_node == NULL, 0))
|
---|
| 3321 | return 0;
|
---|
| 3322 | dests_node_malloced = 1;
|
---|
| 3323 | }
|
---|
| 3324 | dests_ch = (bitset *) (dests_node + SBC_MAX);
|
---|
| 3325 |
|
---|
| 3326 | /* Initialize transiton table. */
|
---|
| 3327 | state->word_trtable = state->trtable = NULL;
|
---|
| 3328 |
|
---|
| 3329 | /* At first, group all nodes belonging to `state' into several
|
---|
| 3330 | destinations. */
|
---|
| 3331 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch);
|
---|
| 3332 | if (BE (ndests <= 0, 0))
|
---|
| 3333 | {
|
---|
| 3334 | if (dests_node_malloced)
|
---|
| 3335 | free (dests_node);
|
---|
| 3336 | /* Return 0 in case of an error, 1 otherwise. */
|
---|
| 3337 | if (ndests == 0)
|
---|
| 3338 | {
|
---|
| 3339 | state->trtable = (re_dfastate_t **)
|
---|
| 3340 | calloc (sizeof (re_dfastate_t *), SBC_MAX);
|
---|
| 3341 | return 1;
|
---|
| 3342 | }
|
---|
| 3343 | return 0;
|
---|
| 3344 | }
|
---|
| 3345 |
|
---|
| 3346 | err = re_node_set_alloc (&follows, ndests + 1);
|
---|
| 3347 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3348 | goto out_free;
|
---|
| 3349 |
|
---|
| 3350 | #ifdef _LIBC
|
---|
| 3351 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX
|
---|
| 3352 | + ndests * 3 * sizeof (re_dfastate_t *)))
|
---|
| 3353 | dest_states = (re_dfastate_t **)
|
---|
| 3354 | alloca (ndests * 3 * sizeof (re_dfastate_t *));
|
---|
| 3355 | else
|
---|
| 3356 | #endif
|
---|
| 3357 | {
|
---|
| 3358 | dest_states = (re_dfastate_t **)
|
---|
| 3359 | malloc (ndests * 3 * sizeof (re_dfastate_t *));
|
---|
| 3360 | if (BE (dest_states == NULL, 0))
|
---|
| 3361 | {
|
---|
| 3362 | out_free:
|
---|
| 3363 | if (dest_states_malloced)
|
---|
| 3364 | free (dest_states);
|
---|
| 3365 | re_node_set_free (&follows);
|
---|
| 3366 | for (i = 0; i < ndests; ++i)
|
---|
| 3367 | re_node_set_free (dests_node + i);
|
---|
| 3368 | if (dests_node_malloced)
|
---|
| 3369 | free (dests_node);
|
---|
| 3370 | return 0;
|
---|
| 3371 | }
|
---|
| 3372 | dest_states_malloced = 1;
|
---|
| 3373 | }
|
---|
| 3374 | dest_states_word = dest_states + ndests;
|
---|
| 3375 | dest_states_nl = dest_states_word + ndests;
|
---|
| 3376 | bitset_empty (acceptable);
|
---|
| 3377 |
|
---|
| 3378 | /* Then build the states for all destinations. */
|
---|
| 3379 | for (i = 0; i < ndests; ++i)
|
---|
| 3380 | {
|
---|
| 3381 | int next_node;
|
---|
| 3382 | re_node_set_empty (&follows);
|
---|
| 3383 | /* Merge the follows of this destination states. */
|
---|
| 3384 | for (j = 0; j < dests_node[i].nelem; ++j)
|
---|
| 3385 | {
|
---|
| 3386 | next_node = dfa->nexts[dests_node[i].elems[j]];
|
---|
| 3387 | if (next_node != -1)
|
---|
| 3388 | {
|
---|
| 3389 | err = re_node_set_merge (&follows, dfa->eclosures + next_node);
|
---|
| 3390 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3391 | goto out_free;
|
---|
| 3392 | }
|
---|
| 3393 | }
|
---|
| 3394 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
|
---|
| 3395 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
|
---|
| 3396 | goto out_free;
|
---|
| 3397 | /* If the new state has context constraint,
|
---|
| 3398 | build appropriate states for these contexts. */
|
---|
| 3399 | if (dest_states[i]->has_constraint)
|
---|
| 3400 | {
|
---|
| 3401 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
|
---|
| 3402 | CONTEXT_WORD);
|
---|
| 3403 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
|
---|
| 3404 | goto out_free;
|
---|
| 3405 |
|
---|
| 3406 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1)
|
---|
| 3407 | need_word_trtable = 1;
|
---|
| 3408 |
|
---|
| 3409 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
|
---|
| 3410 | CONTEXT_NEWLINE);
|
---|
| 3411 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
|
---|
| 3412 | goto out_free;
|
---|
| 3413 | }
|
---|
| 3414 | else
|
---|
| 3415 | {
|
---|
| 3416 | dest_states_word[i] = dest_states[i];
|
---|
| 3417 | dest_states_nl[i] = dest_states[i];
|
---|
| 3418 | }
|
---|
| 3419 | bitset_merge (acceptable, dests_ch[i]);
|
---|
| 3420 | }
|
---|
| 3421 |
|
---|
| 3422 | if (!BE (need_word_trtable, 0))
|
---|
| 3423 | {
|
---|
| 3424 | /* We don't care about whether the following character is a word
|
---|
| 3425 | character, or we are in a single-byte character set so we can
|
---|
| 3426 | discern by looking at the character code: allocate a
|
---|
| 3427 | 256-entry transition table. */
|
---|
| 3428 | trtable = state->trtable =
|
---|
| 3429 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
|
---|
| 3430 | if (BE (trtable == NULL, 0))
|
---|
| 3431 | goto out_free;
|
---|
| 3432 |
|
---|
| 3433 | /* For all characters ch...: */
|
---|
| 3434 | for (i = 0; i < BITSET_UINTS; ++i)
|
---|
| 3435 | for (ch = i * UINT_BITS, elem = acceptable[i], mask = 1;
|
---|
| 3436 | elem;
|
---|
| 3437 | mask <<= 1, elem >>= 1, ++ch)
|
---|
| 3438 | if (BE (elem & 1, 0))
|
---|
| 3439 | {
|
---|
| 3440 | /* There must be exactly one destination which accepts
|
---|
| 3441 | character ch. See group_nodes_into_DFAstates. */
|
---|
| 3442 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
|
---|
| 3443 | ;
|
---|
| 3444 |
|
---|
| 3445 | /* j-th destination accepts the word character ch. */
|
---|
| 3446 | if (dfa->word_char[i] & mask)
|
---|
| 3447 | trtable[ch] = dest_states_word[j];
|
---|
| 3448 | else
|
---|
| 3449 | trtable[ch] = dest_states[j];
|
---|
| 3450 | }
|
---|
| 3451 | }
|
---|
| 3452 | else
|
---|
| 3453 | {
|
---|
| 3454 | /* We care about whether the following character is a word
|
---|
| 3455 | character, and we are in a multi-byte character set: discern
|
---|
| 3456 | by looking at the character code: build two 256-entry
|
---|
| 3457 | transition tables, one starting at trtable[0] and one
|
---|
| 3458 | starting at trtable[SBC_MAX]. */
|
---|
| 3459 | trtable = state->word_trtable =
|
---|
| 3460 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX);
|
---|
| 3461 | if (BE (trtable == NULL, 0))
|
---|
| 3462 | goto out_free;
|
---|
| 3463 |
|
---|
| 3464 | /* For all characters ch...: */
|
---|
| 3465 | for (i = 0; i < BITSET_UINTS; ++i)
|
---|
| 3466 | for (ch = i * UINT_BITS, elem = acceptable[i], mask = 1;
|
---|
| 3467 | elem;
|
---|
| 3468 | mask <<= 1, elem >>= 1, ++ch)
|
---|
| 3469 | if (BE (elem & 1, 0))
|
---|
| 3470 | {
|
---|
| 3471 | /* There must be exactly one destination which accepts
|
---|
| 3472 | character ch. See group_nodes_into_DFAstates. */
|
---|
| 3473 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
|
---|
| 3474 | ;
|
---|
| 3475 |
|
---|
| 3476 | /* j-th destination accepts the word character ch. */
|
---|
| 3477 | trtable[ch] = dest_states[j];
|
---|
| 3478 | trtable[ch + SBC_MAX] = dest_states_word[j];
|
---|
| 3479 | }
|
---|
| 3480 | }
|
---|
| 3481 |
|
---|
| 3482 | /* new line */
|
---|
| 3483 | if (bitset_contain (acceptable, NEWLINE_CHAR))
|
---|
| 3484 | {
|
---|
| 3485 | /* The current state accepts newline character. */
|
---|
| 3486 | for (j = 0; j < ndests; ++j)
|
---|
| 3487 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR))
|
---|
| 3488 | {
|
---|
| 3489 | /* k-th destination accepts newline character. */
|
---|
| 3490 | trtable[NEWLINE_CHAR] = dest_states_nl[j];
|
---|
| 3491 | if (need_word_trtable)
|
---|
| 3492 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j];
|
---|
| 3493 | /* There must be only one destination which accepts
|
---|
| 3494 | newline. See group_nodes_into_DFAstates. */
|
---|
| 3495 | break;
|
---|
| 3496 | }
|
---|
| 3497 | }
|
---|
| 3498 |
|
---|
| 3499 | if (dest_states_malloced)
|
---|
| 3500 | free (dest_states);
|
---|
| 3501 |
|
---|
| 3502 | re_node_set_free (&follows);
|
---|
| 3503 | for (i = 0; i < ndests; ++i)
|
---|
| 3504 | re_node_set_free (dests_node + i);
|
---|
| 3505 |
|
---|
| 3506 | if (dests_node_malloced)
|
---|
| 3507 | free (dests_node);
|
---|
| 3508 |
|
---|
| 3509 | return 1;
|
---|
| 3510 | }
|
---|
| 3511 |
|
---|
| 3512 | /* Group all nodes belonging to STATE into several destinations.
|
---|
| 3513 | Then for all destinations, set the nodes belonging to the destination
|
---|
| 3514 | to DESTS_NODE[i] and set the characters accepted by the destination
|
---|
| 3515 | to DEST_CH[i]. This function return the number of destinations. */
|
---|
| 3516 |
|
---|
| 3517 | static int
|
---|
| 3518 | group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch)
|
---|
| 3519 | re_dfa_t *dfa;
|
---|
| 3520 | const re_dfastate_t *state;
|
---|
| 3521 | re_node_set *dests_node;
|
---|
| 3522 | bitset *dests_ch;
|
---|
| 3523 | {
|
---|
| 3524 | reg_errcode_t err;
|
---|
| 3525 | int result;
|
---|
| 3526 | int i, j, k;
|
---|
| 3527 | int ndests; /* Number of the destinations from `state'. */
|
---|
| 3528 | bitset accepts; /* Characters a node can accept. */
|
---|
| 3529 | const re_node_set *cur_nodes = &state->nodes;
|
---|
| 3530 | bitset_empty (accepts);
|
---|
| 3531 | ndests = 0;
|
---|
| 3532 |
|
---|
| 3533 | /* For all the nodes belonging to `state', */
|
---|
| 3534 | for (i = 0; i < cur_nodes->nelem; ++i)
|
---|
| 3535 | {
|
---|
| 3536 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
|
---|
| 3537 | re_token_type_t type = node->type;
|
---|
| 3538 | unsigned int constraint = node->constraint;
|
---|
| 3539 |
|
---|
| 3540 | /* Enumerate all single byte character this node can accept. */
|
---|
| 3541 | if (type == CHARACTER)
|
---|
| 3542 | bitset_set (accepts, node->opr.c);
|
---|
| 3543 | else if (type == SIMPLE_BRACKET)
|
---|
| 3544 | {
|
---|
| 3545 | bitset_merge (accepts, node->opr.sbcset);
|
---|
| 3546 | }
|
---|
| 3547 | else if (type == OP_PERIOD)
|
---|
| 3548 | {
|
---|
| 3549 | #ifdef RE_ENABLE_I18N
|
---|
| 3550 | if (dfa->mb_cur_max > 1)
|
---|
| 3551 | bitset_merge (accepts, dfa->sb_char);
|
---|
| 3552 | else
|
---|
| 3553 | #endif
|
---|
| 3554 | bitset_set_all (accepts);
|
---|
| 3555 | if (!(dfa->syntax & RE_DOT_NEWLINE))
|
---|
| 3556 | bitset_clear (accepts, '\n');
|
---|
| 3557 | if (dfa->syntax & RE_DOT_NOT_NULL)
|
---|
| 3558 | bitset_clear (accepts, '\0');
|
---|
| 3559 | }
|
---|
| 3560 | #ifdef RE_ENABLE_I18N
|
---|
| 3561 | else if (type == OP_UTF8_PERIOD)
|
---|
| 3562 | {
|
---|
| 3563 | memset (accepts, 255, sizeof (unsigned int) * BITSET_UINTS / 2);
|
---|
| 3564 | if (!(dfa->syntax & RE_DOT_NEWLINE))
|
---|
| 3565 | bitset_clear (accepts, '\n');
|
---|
| 3566 | if (dfa->syntax & RE_DOT_NOT_NULL)
|
---|
| 3567 | bitset_clear (accepts, '\0');
|
---|
| 3568 | }
|
---|
| 3569 | #endif
|
---|
| 3570 | else
|
---|
| 3571 | continue;
|
---|
| 3572 |
|
---|
| 3573 | /* Check the `accepts' and sift the characters which are not
|
---|
| 3574 | match it the context. */
|
---|
| 3575 | if (constraint)
|
---|
| 3576 | {
|
---|
| 3577 | if (constraint & NEXT_NEWLINE_CONSTRAINT)
|
---|
| 3578 | {
|
---|
| 3579 | int accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
|
---|
| 3580 | bitset_empty (accepts);
|
---|
| 3581 | if (accepts_newline)
|
---|
| 3582 | bitset_set (accepts, NEWLINE_CHAR);
|
---|
| 3583 | else
|
---|
| 3584 | continue;
|
---|
| 3585 | }
|
---|
| 3586 | if (constraint & NEXT_ENDBUF_CONSTRAINT)
|
---|
| 3587 | {
|
---|
| 3588 | bitset_empty (accepts);
|
---|
| 3589 | continue;
|
---|
| 3590 | }
|
---|
| 3591 |
|
---|
| 3592 | if (constraint & NEXT_WORD_CONSTRAINT)
|
---|
| 3593 | {
|
---|
| 3594 | unsigned int any_set = 0;
|
---|
| 3595 | if (type == CHARACTER && !node->word_char)
|
---|
| 3596 | {
|
---|
| 3597 | bitset_empty (accepts);
|
---|
| 3598 | continue;
|
---|
| 3599 | }
|
---|
| 3600 | #ifdef RE_ENABLE_I18N
|
---|
| 3601 | if (dfa->mb_cur_max > 1)
|
---|
| 3602 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
| 3603 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j]));
|
---|
| 3604 | else
|
---|
| 3605 | #endif
|
---|
| 3606 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
| 3607 | any_set |= (accepts[j] &= dfa->word_char[j]);
|
---|
| 3608 | if (!any_set)
|
---|
| 3609 | continue;
|
---|
| 3610 | }
|
---|
| 3611 | if (constraint & NEXT_NOTWORD_CONSTRAINT)
|
---|
| 3612 | {
|
---|
| 3613 | unsigned int any_set = 0;
|
---|
| 3614 | if (type == CHARACTER && node->word_char)
|
---|
| 3615 | {
|
---|
| 3616 | bitset_empty (accepts);
|
---|
| 3617 | continue;
|
---|
| 3618 | }
|
---|
| 3619 | #ifdef RE_ENABLE_I18N
|
---|
| 3620 | if (dfa->mb_cur_max > 1)
|
---|
| 3621 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
| 3622 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j]));
|
---|
| 3623 | else
|
---|
| 3624 | #endif
|
---|
| 3625 | for (j = 0; j < BITSET_UINTS; ++j)
|
---|
| 3626 | any_set |= (accepts[j] &= ~dfa->word_char[j]);
|
---|
| 3627 | if (!any_set)
|
---|
| 3628 | continue;
|
---|
| 3629 | }
|
---|
| 3630 | }
|
---|
| 3631 |
|
---|
| 3632 | /* Then divide `accepts' into DFA states, or create a new
|
---|
| 3633 | state. Above, we make sure that accepts is not empty. */
|
---|
| 3634 | for (j = 0; j < ndests; ++j)
|
---|
| 3635 | {
|
---|
| 3636 | bitset intersec; /* Intersection sets, see below. */
|
---|
| 3637 | bitset remains;
|
---|
| 3638 | /* Flags, see below. */
|
---|
| 3639 | int has_intersec, not_subset, not_consumed;
|
---|
| 3640 |
|
---|
| 3641 | /* Optimization, skip if this state doesn't accept the character. */
|
---|
| 3642 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
|
---|
| 3643 | continue;
|
---|
| 3644 |
|
---|
| 3645 | /* Enumerate the intersection set of this state and `accepts'. */
|
---|
| 3646 | has_intersec = 0;
|
---|
| 3647 | for (k = 0; k < BITSET_UINTS; ++k)
|
---|
| 3648 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
|
---|
| 3649 | /* And skip if the intersection set is empty. */
|
---|
| 3650 | if (!has_intersec)
|
---|
| 3651 | continue;
|
---|
| 3652 |
|
---|
| 3653 | /* Then check if this state is a subset of `accepts'. */
|
---|
| 3654 | not_subset = not_consumed = 0;
|
---|
| 3655 | for (k = 0; k < BITSET_UINTS; ++k)
|
---|
| 3656 | {
|
---|
| 3657 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
|
---|
| 3658 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
|
---|
| 3659 | }
|
---|
| 3660 |
|
---|
| 3661 | /* If this state isn't a subset of `accepts', create a
|
---|
| 3662 | new group state, which has the `remains'. */
|
---|
| 3663 | if (not_subset)
|
---|
| 3664 | {
|
---|
| 3665 | bitset_copy (dests_ch[ndests], remains);
|
---|
| 3666 | bitset_copy (dests_ch[j], intersec);
|
---|
| 3667 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
|
---|
| 3668 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3669 | goto error_return;
|
---|
| 3670 | ++ndests;
|
---|
| 3671 | }
|
---|
| 3672 |
|
---|
| 3673 | /* Put the position in the current group. */
|
---|
| 3674 | result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
|
---|
| 3675 | if (BE (result < 0, 0))
|
---|
| 3676 | goto error_return;
|
---|
| 3677 |
|
---|
| 3678 | /* If all characters are consumed, go to next node. */
|
---|
| 3679 | if (!not_consumed)
|
---|
| 3680 | break;
|
---|
| 3681 | }
|
---|
| 3682 | /* Some characters remain, create a new group. */
|
---|
| 3683 | if (j == ndests)
|
---|
| 3684 | {
|
---|
| 3685 | bitset_copy (dests_ch[ndests], accepts);
|
---|
| 3686 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
|
---|
| 3687 | if (BE (err != REG_NOERROR, 0))
|
---|
| 3688 | goto error_return;
|
---|
| 3689 | ++ndests;
|
---|
| 3690 | bitset_empty (accepts);
|
---|
| 3691 | }
|
---|
| 3692 | }
|
---|
| 3693 | return ndests;
|
---|
| 3694 | error_return:
|
---|
| 3695 | for (j = 0; j < ndests; ++j)
|
---|
| 3696 | re_node_set_free (dests_node + j);
|
---|
| 3697 | return -1;
|
---|
| 3698 | }
|
---|
| 3699 |
|
---|
| 3700 | #ifdef RE_ENABLE_I18N
|
---|
| 3701 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
|
---|
| 3702 | Return the number of the bytes the node accepts.
|
---|
| 3703 | STR_IDX is the current index of the input string.
|
---|
| 3704 |
|
---|
| 3705 | This function handles the nodes which can accept one character, or
|
---|
| 3706 | one collating element like '.', '[a-z]', opposite to the other nodes
|
---|
| 3707 | can only accept one byte. */
|
---|
| 3708 |
|
---|
| 3709 | static int
|
---|
| 3710 | check_node_accept_bytes (dfa, node_idx, input, str_idx)
|
---|
| 3711 | re_dfa_t *dfa;
|
---|
| 3712 | int node_idx, str_idx;
|
---|
| 3713 | const re_string_t *input;
|
---|
| 3714 | {
|
---|
| 3715 | const re_token_t *node = dfa->nodes + node_idx;
|
---|
| 3716 | int char_len, elem_len;
|
---|
| 3717 | int i;
|
---|
| 3718 |
|
---|
| 3719 | if (BE (node->type == OP_UTF8_PERIOD, 0))
|
---|
| 3720 | {
|
---|
| 3721 | unsigned char c = re_string_byte_at (input, str_idx), d;
|
---|
| 3722 | if (BE (c < 0xc2, 1))
|
---|
| 3723 | return 0;
|
---|
| 3724 |
|
---|
| 3725 | if (str_idx + 2 > input->len)
|
---|
| 3726 | return 0;
|
---|
| 3727 |
|
---|
| 3728 | d = re_string_byte_at (input, str_idx + 1);
|
---|
| 3729 | if (c < 0xe0)
|
---|
| 3730 | return (d < 0x80 || d > 0xbf) ? 0 : 2;
|
---|
| 3731 | else if (c < 0xf0)
|
---|
| 3732 | {
|
---|
| 3733 | char_len = 3;
|
---|
| 3734 | if (c == 0xe0 && d < 0xa0)
|
---|
| 3735 | return 0;
|
---|
| 3736 | }
|
---|
| 3737 | else if (c < 0xf8)
|
---|
| 3738 | {
|
---|
| 3739 | char_len = 4;
|
---|
| 3740 | if (c == 0xf0 && d < 0x90)
|
---|
| 3741 | return 0;
|
---|
| 3742 | }
|
---|
| 3743 | else if (c < 0xfc)
|
---|
| 3744 | {
|
---|
| 3745 | char_len = 5;
|
---|
| 3746 | if (c == 0xf8 && d < 0x88)
|
---|
| 3747 | return 0;
|
---|
| 3748 | }
|
---|
| 3749 | else if (c < 0xfe)
|
---|
| 3750 | {
|
---|
| 3751 | char_len = 6;
|
---|
| 3752 | if (c == 0xfc && d < 0x84)
|
---|
| 3753 | return 0;
|
---|
| 3754 | }
|
---|
| 3755 | else
|
---|
| 3756 | return 0;
|
---|
| 3757 |
|
---|
| 3758 | if (str_idx + char_len > input->len)
|
---|
| 3759 | return 0;
|
---|
| 3760 |
|
---|
| 3761 | for (i = 1; i < char_len; ++i)
|
---|
| 3762 | {
|
---|
| 3763 | d = re_string_byte_at (input, str_idx + i);
|
---|
| 3764 | if (d < 0x80 || d > 0xbf)
|
---|
| 3765 | return 0;
|
---|
| 3766 | }
|
---|
| 3767 | return char_len;
|
---|
| 3768 | }
|
---|
| 3769 |
|
---|
| 3770 | char_len = re_string_char_size_at (input, str_idx);
|
---|
| 3771 | if (node->type == OP_PERIOD)
|
---|
| 3772 | {
|
---|
| 3773 | if (char_len <= 1)
|
---|
| 3774 | return 0;
|
---|
| 3775 | /* FIXME: I don't think this if is needed, as both '\n'
|
---|
| 3776 | and '\0' are char_len == 1. */
|
---|
| 3777 | /* '.' accepts any one character except the following two cases. */
|
---|
| 3778 | if ((!(dfa->syntax & RE_DOT_NEWLINE) &&
|
---|
| 3779 | re_string_byte_at (input, str_idx) == '\n') ||
|
---|
| 3780 | ((dfa->syntax & RE_DOT_NOT_NULL) &&
|
---|
| 3781 | re_string_byte_at (input, str_idx) == '\0'))
|
---|
| 3782 | return 0;
|
---|
| 3783 | return char_len;
|
---|
| 3784 | }
|
---|
| 3785 |
|
---|
| 3786 | elem_len = re_string_elem_size_at (input, str_idx);
|
---|
| 3787 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0)
|
---|
| 3788 | return 0;
|
---|
| 3789 |
|
---|
| 3790 | if (node->type == COMPLEX_BRACKET)
|
---|
| 3791 | {
|
---|
| 3792 | const re_charset_t *cset = node->opr.mbcset;
|
---|
| 3793 | # ifdef _LIBC
|
---|
| 3794 | const unsigned char *pin = ((char *) re_string_get_buffer (input)
|
---|
| 3795 | + str_idx);
|
---|
| 3796 | int j;
|
---|
| 3797 | uint32_t nrules;
|
---|
| 3798 | # endif /* _LIBC */
|
---|
| 3799 | int match_len = 0;
|
---|
| 3800 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
|
---|
| 3801 | ? re_string_wchar_at (input, str_idx) : 0);
|
---|
| 3802 |
|
---|
| 3803 | /* match with multibyte character? */
|
---|
| 3804 | for (i = 0; i < cset->nmbchars; ++i)
|
---|
| 3805 | if (wc == cset->mbchars[i])
|
---|
| 3806 | {
|
---|
| 3807 | match_len = char_len;
|
---|
| 3808 | goto check_node_accept_bytes_match;
|
---|
| 3809 | }
|
---|
| 3810 | /* match with character_class? */
|
---|
| 3811 | for (i = 0; i < cset->nchar_classes; ++i)
|
---|
| 3812 | {
|
---|
| 3813 | wctype_t wt = cset->char_classes[i];
|
---|
| 3814 | if (__iswctype (wc, wt))
|
---|
| 3815 | {
|
---|
| 3816 | match_len = char_len;
|
---|
| 3817 | goto check_node_accept_bytes_match;
|
---|
| 3818 | }
|
---|
| 3819 | }
|
---|
| 3820 |
|
---|
| 3821 | # ifdef _LIBC
|
---|
| 3822 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
| 3823 | if (nrules != 0)
|
---|
| 3824 | {
|
---|
| 3825 | unsigned int in_collseq = 0;
|
---|
| 3826 | const int32_t *table, *indirect;
|
---|
| 3827 | const unsigned char *weights, *extra;
|
---|
| 3828 | const char *collseqwc;
|
---|
| 3829 | int32_t idx;
|
---|
| 3830 | /* This #include defines a local function! */
|
---|
| 3831 | # include <locale/weight.h>
|
---|
| 3832 |
|
---|
| 3833 | /* match with collating_symbol? */
|
---|
| 3834 | if (cset->ncoll_syms)
|
---|
| 3835 | extra = (const unsigned char *)
|
---|
| 3836 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
---|
| 3837 | for (i = 0; i < cset->ncoll_syms; ++i)
|
---|
| 3838 | {
|
---|
| 3839 | const unsigned char *coll_sym = extra + cset->coll_syms[i];
|
---|
| 3840 | /* Compare the length of input collating element and
|
---|
| 3841 | the length of current collating element. */
|
---|
| 3842 | if (*coll_sym != elem_len)
|
---|
| 3843 | continue;
|
---|
| 3844 | /* Compare each bytes. */
|
---|
| 3845 | for (j = 0; j < *coll_sym; j++)
|
---|
| 3846 | if (pin[j] != coll_sym[1 + j])
|
---|
| 3847 | break;
|
---|
| 3848 | if (j == *coll_sym)
|
---|
| 3849 | {
|
---|
| 3850 | /* Match if every bytes is equal. */
|
---|
| 3851 | match_len = j;
|
---|
| 3852 | goto check_node_accept_bytes_match;
|
---|
| 3853 | }
|
---|
| 3854 | }
|
---|
| 3855 |
|
---|
| 3856 | if (cset->nranges)
|
---|
| 3857 | {
|
---|
| 3858 | if (elem_len <= char_len)
|
---|
| 3859 | {
|
---|
| 3860 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
|
---|
| 3861 | in_collseq = __collseq_table_lookup (collseqwc, wc);
|
---|
| 3862 | }
|
---|
| 3863 | else
|
---|
| 3864 | in_collseq = find_collation_sequence_value (pin, elem_len);
|
---|
| 3865 | }
|
---|
| 3866 | /* match with range expression? */
|
---|
| 3867 | for (i = 0; i < cset->nranges; ++i)
|
---|
| 3868 | if (cset->range_starts[i] <= in_collseq
|
---|
| 3869 | && in_collseq <= cset->range_ends[i])
|
---|
| 3870 | {
|
---|
| 3871 | match_len = elem_len;
|
---|
| 3872 | goto check_node_accept_bytes_match;
|
---|
| 3873 | }
|
---|
| 3874 |
|
---|
| 3875 | /* match with equivalence_class? */
|
---|
| 3876 | if (cset->nequiv_classes)
|
---|
| 3877 | {
|
---|
| 3878 | const unsigned char *cp = pin;
|
---|
| 3879 | table = (const int32_t *)
|
---|
| 3880 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
---|
| 3881 | weights = (const unsigned char *)
|
---|
| 3882 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
|
---|
| 3883 | extra = (const unsigned char *)
|
---|
| 3884 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
|
---|
| 3885 | indirect = (const int32_t *)
|
---|
| 3886 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
|
---|
| 3887 | idx = findidx (&cp);
|
---|
| 3888 | if (idx > 0)
|
---|
| 3889 | for (i = 0; i < cset->nequiv_classes; ++i)
|
---|
| 3890 | {
|
---|
| 3891 | int32_t equiv_class_idx = cset->equiv_classes[i];
|
---|
| 3892 | size_t weight_len = weights[idx];
|
---|
| 3893 | if (weight_len == weights[equiv_class_idx])
|
---|
| 3894 | {
|
---|
| 3895 | int cnt = 0;
|
---|
| 3896 | while (cnt <= weight_len
|
---|
| 3897 | && (weights[equiv_class_idx + 1 + cnt]
|
---|
| 3898 | == weights[idx + 1 + cnt]))
|
---|
| 3899 | ++cnt;
|
---|
| 3900 | if (cnt > weight_len)
|
---|
| 3901 | {
|
---|
| 3902 | match_len = elem_len;
|
---|
| 3903 | goto check_node_accept_bytes_match;
|
---|
| 3904 | }
|
---|
| 3905 | }
|
---|
| 3906 | }
|
---|
| 3907 | }
|
---|
| 3908 | }
|
---|
| 3909 | else
|
---|
| 3910 | # endif /* _LIBC */
|
---|
| 3911 | {
|
---|
| 3912 | /* match with range expression? */
|
---|
| 3913 | #if __GNUC__ >= 2
|
---|
| 3914 | wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
|
---|
| 3915 | #else
|
---|
| 3916 | wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
|
---|
| 3917 | cmp_buf[2] = wc;
|
---|
| 3918 | #endif
|
---|
| 3919 | for (i = 0; i < cset->nranges; ++i)
|
---|
| 3920 | {
|
---|
| 3921 | cmp_buf[0] = cset->range_starts[i];
|
---|
| 3922 | cmp_buf[4] = cset->range_ends[i];
|
---|
| 3923 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
|
---|
| 3924 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
|
---|
| 3925 | {
|
---|
| 3926 | match_len = char_len;
|
---|
| 3927 | goto check_node_accept_bytes_match;
|
---|
| 3928 | }
|
---|
| 3929 | }
|
---|
| 3930 | }
|
---|
| 3931 | check_node_accept_bytes_match:
|
---|
| 3932 | if (!cset->non_match)
|
---|
| 3933 | return match_len;
|
---|
| 3934 | else
|
---|
| 3935 | {
|
---|
| 3936 | if (match_len > 0)
|
---|
| 3937 | return 0;
|
---|
| 3938 | else
|
---|
| 3939 | return (elem_len > char_len) ? elem_len : char_len;
|
---|
| 3940 | }
|
---|
| 3941 | }
|
---|
| 3942 | return 0;
|
---|
| 3943 | }
|
---|
| 3944 |
|
---|
| 3945 | # ifdef _LIBC
|
---|
| 3946 | static unsigned int
|
---|
| 3947 | find_collation_sequence_value (mbs, mbs_len)
|
---|
| 3948 | const unsigned char *mbs;
|
---|
| 3949 | size_t mbs_len;
|
---|
| 3950 | {
|
---|
| 3951 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
---|
| 3952 | if (nrules == 0)
|
---|
| 3953 | {
|
---|
| 3954 | if (mbs_len == 1)
|
---|
| 3955 | {
|
---|
| 3956 | /* No valid character. Match it as a single byte character. */
|
---|
| 3957 | const unsigned char *collseq = (const unsigned char *)
|
---|
| 3958 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
|
---|
| 3959 | return collseq[mbs[0]];
|
---|
| 3960 | }
|
---|
| 3961 | return UINT_MAX;
|
---|
| 3962 | }
|
---|
| 3963 | else
|
---|
| 3964 | {
|
---|
| 3965 | int32_t idx;
|
---|
| 3966 | const unsigned char *extra = (const unsigned char *)
|
---|
| 3967 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
|
---|
| 3968 | int32_t extrasize = (const unsigned char *)
|
---|
| 3969 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra;
|
---|
| 3970 |
|
---|
| 3971 | for (idx = 0; idx < extrasize;)
|
---|
| 3972 | {
|
---|
| 3973 | int mbs_cnt, found = 0;
|
---|
| 3974 | int32_t elem_mbs_len;
|
---|
| 3975 | /* Skip the name of collating element name. */
|
---|
| 3976 | idx = idx + extra[idx] + 1;
|
---|
| 3977 | elem_mbs_len = extra[idx++];
|
---|
| 3978 | if (mbs_len == elem_mbs_len)
|
---|
| 3979 | {
|
---|
| 3980 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
|
---|
| 3981 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
|
---|
| 3982 | break;
|
---|
| 3983 | if (mbs_cnt == elem_mbs_len)
|
---|
| 3984 | /* Found the entry. */
|
---|
| 3985 | found = 1;
|
---|
| 3986 | }
|
---|
| 3987 | /* Skip the byte sequence of the collating element. */
|
---|
| 3988 | idx += elem_mbs_len;
|
---|
| 3989 | /* Adjust for the alignment. */
|
---|
| 3990 | idx = (idx + 3) & ~3;
|
---|
| 3991 | /* Skip the collation sequence value. */
|
---|
| 3992 | idx += sizeof (uint32_t);
|
---|
| 3993 | /* Skip the wide char sequence of the collating element. */
|
---|
| 3994 | idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
|
---|
| 3995 | /* If we found the entry, return the sequence value. */
|
---|
| 3996 | if (found)
|
---|
| 3997 | return *(uint32_t *) (extra + idx);
|
---|
| 3998 | /* Skip the collation sequence value. */
|
---|
| 3999 | idx += sizeof (uint32_t);
|
---|
| 4000 | }
|
---|
| 4001 | return UINT_MAX;
|
---|
| 4002 | }
|
---|
| 4003 | }
|
---|
| 4004 | # endif /* _LIBC */
|
---|
| 4005 | #endif /* RE_ENABLE_I18N */
|
---|
| 4006 |
|
---|
| 4007 | /* Check whether the node accepts the byte which is IDX-th
|
---|
| 4008 | byte of the INPUT. */
|
---|
| 4009 |
|
---|
| 4010 | static int
|
---|
| 4011 | check_node_accept (mctx, node, idx)
|
---|
| 4012 | const re_match_context_t *mctx;
|
---|
| 4013 | const re_token_t *node;
|
---|
| 4014 | int idx;
|
---|
| 4015 | {
|
---|
| 4016 | unsigned char ch;
|
---|
| 4017 | ch = re_string_byte_at (&mctx->input, idx);
|
---|
| 4018 | switch (node->type)
|
---|
| 4019 | {
|
---|
| 4020 | case CHARACTER:
|
---|
| 4021 | if (node->opr.c != ch)
|
---|
| 4022 | return 0;
|
---|
| 4023 | break;
|
---|
| 4024 |
|
---|
| 4025 | case SIMPLE_BRACKET:
|
---|
| 4026 | if (!bitset_contain (node->opr.sbcset, ch))
|
---|
| 4027 | return 0;
|
---|
| 4028 | break;
|
---|
| 4029 |
|
---|
| 4030 | #ifdef RE_ENABLE_I18N
|
---|
| 4031 | case OP_UTF8_PERIOD:
|
---|
| 4032 | if (ch >= 0x80)
|
---|
| 4033 | return 0;
|
---|
| 4034 | /* FALLTHROUGH */
|
---|
| 4035 | #endif
|
---|
| 4036 | case OP_PERIOD:
|
---|
| 4037 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE))
|
---|
| 4038 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL)))
|
---|
| 4039 | return 0;
|
---|
| 4040 | break;
|
---|
| 4041 |
|
---|
| 4042 | default:
|
---|
| 4043 | return 0;
|
---|
| 4044 | }
|
---|
| 4045 |
|
---|
| 4046 | if (node->constraint)
|
---|
| 4047 | {
|
---|
| 4048 | /* The node has constraints. Check whether the current context
|
---|
| 4049 | satisfies the constraints. */
|
---|
| 4050 | unsigned int context = re_string_context_at (&mctx->input, idx,
|
---|
| 4051 | mctx->eflags);
|
---|
| 4052 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
|
---|
| 4053 | return 0;
|
---|
| 4054 | }
|
---|
| 4055 |
|
---|
| 4056 | return 1;
|
---|
| 4057 | }
|
---|
| 4058 |
|
---|
| 4059 | /* Extend the buffers, if the buffers have run out. */
|
---|
| 4060 |
|
---|
| 4061 | static reg_errcode_t
|
---|
| 4062 | extend_buffers (mctx)
|
---|
| 4063 | re_match_context_t *mctx;
|
---|
| 4064 | {
|
---|
| 4065 | reg_errcode_t ret;
|
---|
| 4066 | re_string_t *pstr = &mctx->input;
|
---|
| 4067 |
|
---|
| 4068 | /* Double the lengthes of the buffers. */
|
---|
| 4069 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
|
---|
| 4070 | if (BE (ret != REG_NOERROR, 0))
|
---|
| 4071 | return ret;
|
---|
| 4072 |
|
---|
| 4073 | if (mctx->state_log != NULL)
|
---|
| 4074 | {
|
---|
| 4075 | /* And double the length of state_log. */
|
---|
| 4076 | /* XXX We have no indication of the size of this buffer. If this
|
---|
| 4077 | allocation fail we have no indication that the state_log array
|
---|
| 4078 | does not have the right size. */
|
---|
| 4079 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *,
|
---|
| 4080 | pstr->bufs_len + 1);
|
---|
| 4081 | if (BE (new_array == NULL, 0))
|
---|
| 4082 | return REG_ESPACE;
|
---|
| 4083 | mctx->state_log = new_array;
|
---|
| 4084 | }
|
---|
| 4085 |
|
---|
| 4086 | /* Then reconstruct the buffers. */
|
---|
| 4087 | if (pstr->icase)
|
---|
| 4088 | {
|
---|
| 4089 | #ifdef RE_ENABLE_I18N
|
---|
| 4090 | if (pstr->mb_cur_max > 1)
|
---|
| 4091 | {
|
---|
| 4092 | ret = build_wcs_upper_buffer (pstr);
|
---|
| 4093 | if (BE (ret != REG_NOERROR, 0))
|
---|
| 4094 | return ret;
|
---|
| 4095 | }
|
---|
| 4096 | else
|
---|
| 4097 | #endif /* RE_ENABLE_I18N */
|
---|
| 4098 | build_upper_buffer (pstr);
|
---|
| 4099 | }
|
---|
| 4100 | else
|
---|
| 4101 | {
|
---|
| 4102 | #ifdef RE_ENABLE_I18N
|
---|
| 4103 | if (pstr->mb_cur_max > 1)
|
---|
| 4104 | build_wcs_buffer (pstr);
|
---|
| 4105 | else
|
---|
| 4106 | #endif /* RE_ENABLE_I18N */
|
---|
| 4107 | {
|
---|
| 4108 | if (pstr->trans != NULL)
|
---|
| 4109 | re_string_translate_buffer (pstr);
|
---|
| 4110 | }
|
---|
| 4111 | }
|
---|
| 4112 | return REG_NOERROR;
|
---|
| 4113 | }
|
---|
| 4114 |
|
---|
| 4115 | |
---|
| 4116 |
|
---|
| 4117 | /* Functions for matching context. */
|
---|
| 4118 |
|
---|
| 4119 | /* Initialize MCTX. */
|
---|
| 4120 |
|
---|
| 4121 | static reg_errcode_t
|
---|
| 4122 | match_ctx_init (mctx, eflags, n)
|
---|
| 4123 | re_match_context_t *mctx;
|
---|
| 4124 | int eflags, n;
|
---|
| 4125 | {
|
---|
| 4126 | mctx->eflags = eflags;
|
---|
| 4127 | mctx->match_last = -1;
|
---|
| 4128 | if (n > 0)
|
---|
| 4129 | {
|
---|
| 4130 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
|
---|
| 4131 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
|
---|
| 4132 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
|
---|
| 4133 | return REG_ESPACE;
|
---|
| 4134 | }
|
---|
| 4135 | /* Already zero-ed by the caller.
|
---|
| 4136 | else
|
---|
| 4137 | mctx->bkref_ents = NULL;
|
---|
| 4138 | mctx->nbkref_ents = 0;
|
---|
| 4139 | mctx->nsub_tops = 0; */
|
---|
| 4140 | mctx->abkref_ents = n;
|
---|
| 4141 | mctx->max_mb_elem_len = 1;
|
---|
| 4142 | mctx->asub_tops = n;
|
---|
| 4143 | return REG_NOERROR;
|
---|
| 4144 | }
|
---|
| 4145 |
|
---|
| 4146 | /* Clean the entries which depend on the current input in MCTX.
|
---|
| 4147 | This function must be invoked when the matcher changes the start index
|
---|
| 4148 | of the input, or changes the input string. */
|
---|
| 4149 |
|
---|
| 4150 | static void
|
---|
| 4151 | match_ctx_clean (mctx)
|
---|
| 4152 | re_match_context_t *mctx;
|
---|
| 4153 | {
|
---|
| 4154 | int st_idx;
|
---|
| 4155 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
|
---|
| 4156 | {
|
---|
| 4157 | int sl_idx;
|
---|
| 4158 | re_sub_match_top_t *top = mctx->sub_tops[st_idx];
|
---|
| 4159 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
|
---|
| 4160 | {
|
---|
| 4161 | re_sub_match_last_t *last = top->lasts[sl_idx];
|
---|
| 4162 | re_free (last->path.array);
|
---|
| 4163 | re_free (last);
|
---|
| 4164 | }
|
---|
| 4165 | re_free (top->lasts);
|
---|
| 4166 | if (top->path)
|
---|
| 4167 | {
|
---|
| 4168 | re_free (top->path->array);
|
---|
| 4169 | re_free (top->path);
|
---|
| 4170 | }
|
---|
| 4171 | free (top);
|
---|
| 4172 | }
|
---|
| 4173 |
|
---|
| 4174 | mctx->nsub_tops = 0;
|
---|
| 4175 | mctx->nbkref_ents = 0;
|
---|
| 4176 | }
|
---|
| 4177 |
|
---|
| 4178 | /* Free all the memory associated with MCTX. */
|
---|
| 4179 |
|
---|
| 4180 | static void
|
---|
| 4181 | match_ctx_free (mctx)
|
---|
| 4182 | re_match_context_t *mctx;
|
---|
| 4183 | {
|
---|
| 4184 | /* First, free all the memory associated with MCTX->SUB_TOPS. */
|
---|
| 4185 | match_ctx_clean (mctx);
|
---|
| 4186 | re_free (mctx->sub_tops);
|
---|
| 4187 | re_free (mctx->bkref_ents);
|
---|
| 4188 | }
|
---|
| 4189 |
|
---|
| 4190 | /* Add a new backreference entry to MCTX.
|
---|
| 4191 | Note that we assume that caller never call this function with duplicate
|
---|
| 4192 | entry, and call with STR_IDX which isn't smaller than any existing entry.
|
---|
| 4193 | */
|
---|
| 4194 |
|
---|
| 4195 | static reg_errcode_t
|
---|
| 4196 | match_ctx_add_entry (mctx, node, str_idx, from, to)
|
---|
| 4197 | re_match_context_t *mctx;
|
---|
| 4198 | int node, str_idx, from, to;
|
---|
| 4199 | {
|
---|
| 4200 | if (mctx->nbkref_ents >= mctx->abkref_ents)
|
---|
| 4201 | {
|
---|
| 4202 | struct re_backref_cache_entry* new_entry;
|
---|
| 4203 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
|
---|
| 4204 | mctx->abkref_ents * 2);
|
---|
| 4205 | if (BE (new_entry == NULL, 0))
|
---|
| 4206 | {
|
---|
| 4207 | re_free (mctx->bkref_ents);
|
---|
| 4208 | return REG_ESPACE;
|
---|
| 4209 | }
|
---|
| 4210 | mctx->bkref_ents = new_entry;
|
---|
| 4211 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
|
---|
| 4212 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
|
---|
| 4213 | mctx->abkref_ents *= 2;
|
---|
| 4214 | }
|
---|
| 4215 | if (mctx->nbkref_ents > 0
|
---|
| 4216 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx)
|
---|
| 4217 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;
|
---|
| 4218 |
|
---|
| 4219 | mctx->bkref_ents[mctx->nbkref_ents].node = node;
|
---|
| 4220 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
|
---|
| 4221 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
|
---|
| 4222 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;
|
---|
| 4223 |
|
---|
| 4224 | /* This is a cache that saves negative results of check_dst_limits_calc_pos.
|
---|
| 4225 | If bit N is clear, means that this entry won't epsilon-transition to
|
---|
| 4226 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If
|
---|
| 4227 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one
|
---|
| 4228 | such node.
|
---|
| 4229 |
|
---|
| 4230 | A backreference does not epsilon-transition unless it is empty, so set
|
---|
| 4231 | to all zeros if FROM != TO. */
|
---|
| 4232 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map
|
---|
| 4233 | = (from == to ? ~0 : 0);
|
---|
| 4234 |
|
---|
| 4235 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0;
|
---|
| 4236 | if (mctx->max_mb_elem_len < to - from)
|
---|
| 4237 | mctx->max_mb_elem_len = to - from;
|
---|
| 4238 | return REG_NOERROR;
|
---|
| 4239 | }
|
---|
| 4240 |
|
---|
| 4241 | /* Search for the first entry which has the same str_idx, or -1 if none is
|
---|
| 4242 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */
|
---|
| 4243 |
|
---|
| 4244 | static int
|
---|
| 4245 | search_cur_bkref_entry (mctx, str_idx)
|
---|
| 4246 | re_match_context_t *mctx;
|
---|
| 4247 | int str_idx;
|
---|
| 4248 | {
|
---|
| 4249 | int left, right, mid, last;
|
---|
| 4250 | last = right = mctx->nbkref_ents;
|
---|
| 4251 | for (left = 0; left < right;)
|
---|
| 4252 | {
|
---|
| 4253 | mid = (left + right) / 2;
|
---|
| 4254 | if (mctx->bkref_ents[mid].str_idx < str_idx)
|
---|
| 4255 | left = mid + 1;
|
---|
| 4256 | else
|
---|
| 4257 | right = mid;
|
---|
| 4258 | }
|
---|
| 4259 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx)
|
---|
| 4260 | return left;
|
---|
| 4261 | else
|
---|
| 4262 | return -1;
|
---|
| 4263 | }
|
---|
| 4264 |
|
---|
| 4265 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
|
---|
| 4266 | at STR_IDX. */
|
---|
| 4267 |
|
---|
| 4268 | static reg_errcode_t
|
---|
| 4269 | match_ctx_add_subtop (mctx, node, str_idx)
|
---|
| 4270 | re_match_context_t *mctx;
|
---|
| 4271 | int node, str_idx;
|
---|
| 4272 | {
|
---|
| 4273 | #ifdef DEBUG
|
---|
| 4274 | assert (mctx->sub_tops != NULL);
|
---|
| 4275 | assert (mctx->asub_tops > 0);
|
---|
| 4276 | #endif
|
---|
| 4277 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0))
|
---|
| 4278 | {
|
---|
| 4279 | int new_asub_tops = mctx->asub_tops * 2;
|
---|
| 4280 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops,
|
---|
| 4281 | re_sub_match_top_t *,
|
---|
| 4282 | new_asub_tops);
|
---|
| 4283 | if (BE (new_array == NULL, 0))
|
---|
| 4284 | return REG_ESPACE;
|
---|
| 4285 | mctx->sub_tops = new_array;
|
---|
| 4286 | mctx->asub_tops = new_asub_tops;
|
---|
| 4287 | }
|
---|
| 4288 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
|
---|
| 4289 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0))
|
---|
| 4290 | return REG_ESPACE;
|
---|
| 4291 | mctx->sub_tops[mctx->nsub_tops]->node = node;
|
---|
| 4292 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
|
---|
| 4293 | return REG_NOERROR;
|
---|
| 4294 | }
|
---|
| 4295 |
|
---|
| 4296 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
|
---|
| 4297 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */
|
---|
| 4298 |
|
---|
| 4299 | static re_sub_match_last_t *
|
---|
| 4300 | match_ctx_add_sublast (subtop, node, str_idx)
|
---|
| 4301 | re_sub_match_top_t *subtop;
|
---|
| 4302 | int node, str_idx;
|
---|
| 4303 | {
|
---|
| 4304 | re_sub_match_last_t *new_entry;
|
---|
| 4305 | if (BE (subtop->nlasts == subtop->alasts, 0))
|
---|
| 4306 | {
|
---|
| 4307 | int new_alasts = 2 * subtop->alasts + 1;
|
---|
| 4308 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts,
|
---|
| 4309 | re_sub_match_last_t *,
|
---|
| 4310 | new_alasts);
|
---|
| 4311 | if (BE (new_array == NULL, 0))
|
---|
| 4312 | return NULL;
|
---|
| 4313 | subtop->lasts = new_array;
|
---|
| 4314 | subtop->alasts = new_alasts;
|
---|
| 4315 | }
|
---|
| 4316 | new_entry = calloc (1, sizeof (re_sub_match_last_t));
|
---|
| 4317 | if (BE (new_entry != NULL, 1))
|
---|
| 4318 | {
|
---|
| 4319 | subtop->lasts[subtop->nlasts] = new_entry;
|
---|
| 4320 | new_entry->node = node;
|
---|
| 4321 | new_entry->str_idx = str_idx;
|
---|
| 4322 | ++subtop->nlasts;
|
---|
| 4323 | }
|
---|
| 4324 | return new_entry;
|
---|
| 4325 | }
|
---|
| 4326 |
|
---|
| 4327 | static void
|
---|
| 4328 | sift_ctx_init (sctx, sifted_sts, limited_sts, last_node, last_str_idx)
|
---|
| 4329 | re_sift_context_t *sctx;
|
---|
| 4330 | re_dfastate_t **sifted_sts, **limited_sts;
|
---|
| 4331 | int last_node, last_str_idx;
|
---|
| 4332 | {
|
---|
| 4333 | sctx->sifted_states = sifted_sts;
|
---|
| 4334 | sctx->limited_states = limited_sts;
|
---|
| 4335 | sctx->last_node = last_node;
|
---|
| 4336 | sctx->last_str_idx = last_str_idx;
|
---|
| 4337 | re_node_set_init_empty (&sctx->limits);
|
---|
| 4338 | }
|
---|