[3076] | 1 | /*
|
---|
| 2 | * Copyright (c) 1983, 1993
|
---|
| 3 | * The Regents of the University of California. All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | * 1. Redistributions of source code must retain the above copyright
|
---|
| 9 | * notice, this list of conditions and the following disclaimer.
|
---|
| 10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
| 11 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 12 | * documentation and/or other materials provided with the distribution.
|
---|
| 13 | * 3. All advertising materials mentioning features or use of this software
|
---|
| 14 | * must display the following acknowledgement:
|
---|
| 15 | * This product includes software developed by the University of
|
---|
| 16 | * California, Berkeley and its contributors.
|
---|
| 17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
| 18 | * may be used to endorse or promote products derived from this software
|
---|
| 19 | * without specific prior written permission.
|
---|
| 20 | *
|
---|
| 21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
| 22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
| 24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
| 25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
| 26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
| 27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
| 28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
| 31 | * SUCH DAMAGE.
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 | #if defined(LIBC_SCCS) && !defined(lint)
|
---|
| 35 | static const char sccsid[] = "@(#)random.c 8.2 (Berkeley) 5/19/95";
|
---|
| 36 | #endif /* LIBC_SCCS and not lint */
|
---|
| 37 |
|
---|
| 38 | #ifdef HAVE_CONFIG_H /* gawk addition */
|
---|
| 39 | #include <config.h>
|
---|
| 40 | #endif
|
---|
| 41 |
|
---|
| 42 | #ifdef HAVE_FCNTL_H
|
---|
| 43 | #include <fcntl.h>
|
---|
| 44 | #endif
|
---|
| 45 | #include <stdio.h>
|
---|
| 46 | #include <stdlib.h>
|
---|
| 47 | #ifdef HAVE_UNISTD_H
|
---|
| 48 | #include <unistd.h>
|
---|
| 49 | #endif
|
---|
| 50 |
|
---|
| 51 | #include "random.h" /* gawk addition */
|
---|
| 52 |
|
---|
| 53 | #ifdef HAVE_SYS_TIME_H /* gawk addition */
|
---|
| 54 | #include <sys/time.h>
|
---|
| 55 | #endif
|
---|
| 56 |
|
---|
| 57 | #if 0
|
---|
| 58 | #include <sys/cdefs.h>
|
---|
| 59 | __FBSDID("$FreeBSD: /repoman/r/ncvs/src/lib/libc/stdlib/random.c,v 1.24 2004/01/20 03:02:18 das Exp $");
|
---|
| 60 |
|
---|
| 61 | #include "namespace.h"
|
---|
| 62 | #include <sys/time.h> /* for srandomdev() */
|
---|
| 63 | #include <fcntl.h> /* for srandomdev() */
|
---|
| 64 | #include <stdint.h>
|
---|
| 65 | #include <stdio.h>
|
---|
| 66 | #include <stdlib.h>
|
---|
| 67 | #include <unistd.h> /* for srandomdev() */
|
---|
| 68 | #include "un-namespace.h"
|
---|
| 69 | #endif
|
---|
| 70 |
|
---|
| 71 | /*
|
---|
| 72 | * random.c:
|
---|
| 73 | *
|
---|
| 74 | * An improved random number generation package. In addition to the standard
|
---|
| 75 | * rand()/srand() like interface, this package also has a special state info
|
---|
| 76 | * interface. The initstate() routine is called with a seed, an array of
|
---|
| 77 | * bytes, and a count of how many bytes are being passed in; this array is
|
---|
| 78 | * then initialized to contain information for random number generation with
|
---|
| 79 | * that much state information. Good sizes for the amount of state
|
---|
| 80 | * information are 32, 64, 128, and 256 bytes. The state can be switched by
|
---|
| 81 | * calling the setstate() routine with the same array as was initiallized
|
---|
| 82 | * with initstate(). By default, the package runs with 128 bytes of state
|
---|
| 83 | * information and generates far better random numbers than a linear
|
---|
| 84 | * congruential generator. If the amount of state information is less than
|
---|
| 85 | * 32 bytes, a simple linear congruential R.N.G. is used.
|
---|
| 86 | *
|
---|
| 87 | * Internally, the state information is treated as an array of uint32_t's; the
|
---|
| 88 | * zeroeth element of the array is the type of R.N.G. being used (small
|
---|
| 89 | * integer); the remainder of the array is the state information for the
|
---|
| 90 | * R.N.G. Thus, 32 bytes of state information will give 7 ints worth of
|
---|
| 91 | * state information, which will allow a degree seven polynomial. (Note:
|
---|
| 92 | * the zeroeth word of state information also has some other information
|
---|
| 93 | * stored in it -- see setstate() for details).
|
---|
| 94 | *
|
---|
| 95 | * The random number generation technique is a linear feedback shift register
|
---|
| 96 | * approach, employing trinomials (since there are fewer terms to sum up that
|
---|
| 97 | * way). In this approach, the least significant bit of all the numbers in
|
---|
| 98 | * the state table will act as a linear feedback shift register, and will
|
---|
| 99 | * have period 2^deg - 1 (where deg is the degree of the polynomial being
|
---|
| 100 | * used, assuming that the polynomial is irreducible and primitive). The
|
---|
| 101 | * higher order bits will have longer periods, since their values are also
|
---|
| 102 | * influenced by pseudo-random carries out of the lower bits. The total
|
---|
| 103 | * period of the generator is approximately deg*(2**deg - 1); thus doubling
|
---|
| 104 | * the amount of state information has a vast influence on the period of the
|
---|
| 105 | * generator. Note: the deg*(2**deg - 1) is an approximation only good for
|
---|
| 106 | * large deg, when the period of the shift is the dominant factor.
|
---|
| 107 | * With deg equal to seven, the period is actually much longer than the
|
---|
| 108 | * 7*(2**7 - 1) predicted by this formula.
|
---|
| 109 | *
|
---|
| 110 | * Modified 28 December 1994 by Jacob S. Rosenberg.
|
---|
| 111 | * The following changes have been made:
|
---|
| 112 | * All references to the type u_int have been changed to unsigned long.
|
---|
| 113 | * All references to type int have been changed to type long. Other
|
---|
| 114 | * cleanups have been made as well. A warning for both initstate and
|
---|
| 115 | * setstate has been inserted to the effect that on Sparc platforms
|
---|
| 116 | * the 'arg_state' variable must be forced to begin on word boundaries.
|
---|
| 117 | * This can be easily done by casting a long integer array to char *.
|
---|
| 118 | * The overall logic has been left STRICTLY alone. This software was
|
---|
| 119 | * tested on both a VAX and Sun SpacsStation with exactly the same
|
---|
| 120 | * results. The new version and the original give IDENTICAL results.
|
---|
| 121 | * The new version is somewhat faster than the original. As the
|
---|
| 122 | * documentation says: "By default, the package runs with 128 bytes of
|
---|
| 123 | * state information and generates far better random numbers than a linear
|
---|
| 124 | * congruential generator. If the amount of state information is less than
|
---|
| 125 | * 32 bytes, a simple linear congruential R.N.G. is used." For a buffer of
|
---|
| 126 | * 128 bytes, this new version runs about 19 percent faster and for a 16
|
---|
| 127 | * byte buffer it is about 5 percent faster.
|
---|
| 128 | */
|
---|
| 129 |
|
---|
| 130 | /*
|
---|
| 131 | * For each of the currently supported random number generators, we have a
|
---|
| 132 | * break value on the amount of state information (you need at least this
|
---|
| 133 | * many bytes of state info to support this random number generator), a degree
|
---|
| 134 | * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
|
---|
| 135 | * the separation between the two lower order coefficients of the trinomial.
|
---|
| 136 | */
|
---|
| 137 | #define TYPE_0 0 /* linear congruential */
|
---|
| 138 | #define BREAK_0 8
|
---|
| 139 | #define DEG_0 0
|
---|
| 140 | #define SEP_0 0
|
---|
| 141 |
|
---|
| 142 | #define TYPE_1 1 /* x**7 + x**3 + 1 */
|
---|
| 143 | #define BREAK_1 32
|
---|
| 144 | #define DEG_1 7
|
---|
| 145 | #define SEP_1 3
|
---|
| 146 |
|
---|
| 147 | #define TYPE_2 2 /* x**15 + x + 1 */
|
---|
| 148 | #define BREAK_2 64
|
---|
| 149 | #define DEG_2 15
|
---|
| 150 | #define SEP_2 1
|
---|
| 151 |
|
---|
| 152 | #define TYPE_3 3 /* x**31 + x**3 + 1 */
|
---|
| 153 | #define BREAK_3 128
|
---|
| 154 | #define DEG_3 31
|
---|
| 155 | #define SEP_3 3
|
---|
| 156 |
|
---|
| 157 | #define TYPE_4 4 /* x**63 + x + 1 */
|
---|
| 158 | #define BREAK_4 256
|
---|
| 159 | #define DEG_4 63
|
---|
| 160 | #define SEP_4 1
|
---|
| 161 |
|
---|
| 162 | /*
|
---|
| 163 | * Array versions of the above information to make code run faster --
|
---|
| 164 | * relies on fact that TYPE_i == i.
|
---|
| 165 | */
|
---|
| 166 | #define MAX_TYPES 5 /* max number of types above */
|
---|
| 167 |
|
---|
| 168 | #ifdef USE_WEAK_SEEDING
|
---|
| 169 | #define NSHUFF 0
|
---|
| 170 | #else /* !USE_WEAK_SEEDING */
|
---|
| 171 | #define NSHUFF 50 /* to drop some "seed -> 1st value" linearity */
|
---|
| 172 | #endif /* !USE_WEAK_SEEDING */
|
---|
| 173 |
|
---|
| 174 | static const int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
|
---|
| 175 | static const int seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
|
---|
| 176 |
|
---|
| 177 | /*
|
---|
| 178 | * Initially, everything is set up as if from:
|
---|
| 179 | *
|
---|
| 180 | * initstate(1, randtbl, 128);
|
---|
| 181 | *
|
---|
| 182 | * Note that this initialization takes advantage of the fact that srandom()
|
---|
| 183 | * advances the front and rear pointers 10*rand_deg times, and hence the
|
---|
| 184 | * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
|
---|
| 185 | * element of the state information, which contains info about the current
|
---|
| 186 | * position of the rear pointer is just
|
---|
| 187 | *
|
---|
| 188 | * MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
|
---|
| 189 | */
|
---|
| 190 |
|
---|
| 191 | static uint32_t randtbl[DEG_3 + 1] = {
|
---|
| 192 | TYPE_3,
|
---|
| 193 | #ifdef USE_WEAK_SEEDING
|
---|
| 194 | /* Historic implementation compatibility */
|
---|
| 195 | /* The random sequences do not vary much with the seed */
|
---|
| 196 | 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
|
---|
| 197 | 0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
|
---|
| 198 | 0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
|
---|
| 199 | 0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
|
---|
| 200 | 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
|
---|
| 201 | 0x27fb47b9,
|
---|
| 202 | #else /* !USE_WEAK_SEEDING */
|
---|
| 203 | 0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
|
---|
| 204 | 0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
|
---|
| 205 | 0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
|
---|
| 206 | 0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
|
---|
| 207 | 0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
|
---|
| 208 | 0xf3bec5da
|
---|
| 209 | #endif /* !USE_WEAK_SEEDING */
|
---|
| 210 | };
|
---|
| 211 |
|
---|
| 212 | /*
|
---|
| 213 | * fptr and rptr are two pointers into the state info, a front and a rear
|
---|
| 214 | * pointer. These two pointers are always rand_sep places aparts, as they
|
---|
| 215 | * cycle cyclically through the state information. (Yes, this does mean we
|
---|
| 216 | * could get away with just one pointer, but the code for random() is more
|
---|
| 217 | * efficient this way). The pointers are left positioned as they would be
|
---|
| 218 | * from the call
|
---|
| 219 | *
|
---|
| 220 | * initstate(1, randtbl, 128);
|
---|
| 221 | *
|
---|
| 222 | * (The position of the rear pointer, rptr, is really 0 (as explained above
|
---|
| 223 | * in the initialization of randtbl) because the state table pointer is set
|
---|
| 224 | * to point to randtbl[1] (as explained below).
|
---|
| 225 | */
|
---|
| 226 | static uint32_t *fptr = &randtbl[SEP_3 + 1];
|
---|
| 227 | static uint32_t *rptr = &randtbl[1];
|
---|
| 228 |
|
---|
| 229 | /*
|
---|
| 230 | * The following things are the pointer to the state information table, the
|
---|
| 231 | * type of the current generator, the degree of the current polynomial being
|
---|
| 232 | * used, and the separation between the two pointers. Note that for efficiency
|
---|
| 233 | * of random(), we remember the first location of the state information, not
|
---|
| 234 | * the zeroeth. Hence it is valid to access state[-1], which is used to
|
---|
| 235 | * store the type of the R.N.G. Also, we remember the last location, since
|
---|
| 236 | * this is more efficient than indexing every time to find the address of
|
---|
| 237 | * the last element to see if the front and rear pointers have wrapped.
|
---|
| 238 | */
|
---|
| 239 | static uint32_t *state = &randtbl[1];
|
---|
| 240 | static int rand_type = TYPE_3;
|
---|
| 241 | static int rand_deg = DEG_3;
|
---|
| 242 | static int rand_sep = SEP_3;
|
---|
| 243 | static uint32_t *end_ptr = &randtbl[DEG_3 + 1];
|
---|
| 244 |
|
---|
| 245 | static inline uint32_t good_rand(int32_t);
|
---|
| 246 |
|
---|
| 247 | static inline uint32_t good_rand (x)
|
---|
| 248 | int32_t x;
|
---|
| 249 | {
|
---|
| 250 | #ifdef USE_WEAK_SEEDING
|
---|
| 251 | /*
|
---|
| 252 | * Historic implementation compatibility.
|
---|
| 253 | * The random sequences do not vary much with the seed,
|
---|
| 254 | * even with overflowing.
|
---|
| 255 | */
|
---|
| 256 | return (1103515245 * x + 12345);
|
---|
| 257 | #else /* !USE_WEAK_SEEDING */
|
---|
| 258 | /*
|
---|
| 259 | * Compute x = (7^5 * x) mod (2^31 - 1)
|
---|
| 260 | * wihout overflowing 31 bits:
|
---|
| 261 | * (2^31 - 1) = 127773 * (7^5) + 2836
|
---|
| 262 | * From "Random number generators: good ones are hard to find",
|
---|
| 263 | * Park and Miller, Communications of the ACM, vol. 31, no. 10,
|
---|
| 264 | * October 1988, p. 1195.
|
---|
| 265 | */
|
---|
| 266 | int32_t hi, lo;
|
---|
| 267 |
|
---|
| 268 | /* Can't be initialized with 0, so use another value. */
|
---|
| 269 | if (x == 0)
|
---|
| 270 | x = 123459876;
|
---|
| 271 | hi = x / 127773;
|
---|
| 272 | lo = x % 127773;
|
---|
| 273 | x = 16807 * lo - 2836 * hi;
|
---|
| 274 | if (x < 0)
|
---|
| 275 | x += 0x7fffffff;
|
---|
| 276 | return (x);
|
---|
| 277 | #endif /* !USE_WEAK_SEEDING */
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | /*
|
---|
| 281 | * srandom:
|
---|
| 282 | *
|
---|
| 283 | * Initialize the random number generator based on the given seed. If the
|
---|
| 284 | * type is the trivial no-state-information type, just remember the seed.
|
---|
| 285 | * Otherwise, initializes state[] based on the given "seed" via a linear
|
---|
| 286 | * congruential generator. Then, the pointers are set to known locations
|
---|
| 287 | * that are exactly rand_sep places apart. Lastly, it cycles the state
|
---|
| 288 | * information a given number of times to get rid of any initial dependencies
|
---|
| 289 | * introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
---|
| 290 | * for default usage relies on values produced by this routine.
|
---|
| 291 | */
|
---|
| 292 | void
|
---|
| 293 | srandom(x)
|
---|
| 294 | unsigned long x;
|
---|
| 295 | {
|
---|
| 296 | int i, lim;
|
---|
| 297 |
|
---|
| 298 | state[0] = (uint32_t)x;
|
---|
| 299 | if (rand_type == TYPE_0)
|
---|
| 300 | lim = NSHUFF;
|
---|
| 301 | else {
|
---|
| 302 | for (i = 1; i < rand_deg; i++)
|
---|
| 303 | state[i] = good_rand(state[i - 1]);
|
---|
| 304 | fptr = &state[rand_sep];
|
---|
| 305 | rptr = &state[0];
|
---|
| 306 | lim = 10 * rand_deg;
|
---|
| 307 | }
|
---|
| 308 | for (i = 0; i < lim; i++)
|
---|
| 309 | (void)random();
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | #if 0 /* gawk doesn't use this */
|
---|
| 313 | /*
|
---|
| 314 | * srandomdev:
|
---|
| 315 | *
|
---|
| 316 | * Many programs choose the seed value in a totally predictable manner.
|
---|
| 317 | * This often causes problems. We seed the generator using the much more
|
---|
| 318 | * secure random(4) interface. Note that this particular seeding
|
---|
| 319 | * procedure can generate states which are impossible to reproduce by
|
---|
| 320 | * calling srandom() with any value, since the succeeding terms in the
|
---|
| 321 | * state buffer are no longer derived from the LC algorithm applied to
|
---|
| 322 | * a fixed seed.
|
---|
| 323 | */
|
---|
| 324 | void
|
---|
| 325 | srandomdev()
|
---|
| 326 | {
|
---|
| 327 | int fd, done;
|
---|
| 328 | size_t len;
|
---|
| 329 |
|
---|
| 330 | if (rand_type == TYPE_0)
|
---|
| 331 | len = sizeof state[0];
|
---|
| 332 | else
|
---|
| 333 | len = rand_deg * sizeof state[0];
|
---|
| 334 |
|
---|
| 335 | done = 0;
|
---|
| 336 | fd = open("/dev/random", O_RDONLY, 0);
|
---|
| 337 | if (fd >= 0) {
|
---|
| 338 | if (read(fd, (void *) state, len) == (ssize_t) len)
|
---|
| 339 | done = 1;
|
---|
| 340 | close(fd);
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | if (!done) {
|
---|
| 344 | struct timeval tv;
|
---|
| 345 | unsigned long junk;
|
---|
| 346 |
|
---|
| 347 | gettimeofday(&tv, NULL);
|
---|
| 348 | srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
|
---|
| 349 | return;
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | if (rand_type != TYPE_0) {
|
---|
| 353 | fptr = &state[rand_sep];
|
---|
| 354 | rptr = &state[0];
|
---|
| 355 | }
|
---|
| 356 | }
|
---|
| 357 | #endif
|
---|
| 358 |
|
---|
| 359 | /*
|
---|
| 360 | * initstate:
|
---|
| 361 | *
|
---|
| 362 | * Initialize the state information in the given array of n bytes for future
|
---|
| 363 | * random number generation. Based on the number of bytes we are given, and
|
---|
| 364 | * the break values for the different R.N.G.'s, we choose the best (largest)
|
---|
| 365 | * one we can and set things up for it. srandom() is then called to
|
---|
| 366 | * initialize the state information.
|
---|
| 367 | *
|
---|
| 368 | * Note that on return from srandom(), we set state[-1] to be the type
|
---|
| 369 | * multiplexed with the current value of the rear pointer; this is so
|
---|
| 370 | * successive calls to initstate() won't lose this information and will be
|
---|
| 371 | * able to restart with setstate().
|
---|
| 372 | *
|
---|
| 373 | * Note: the first thing we do is save the current state, if any, just like
|
---|
| 374 | * setstate() so that it doesn't matter when initstate is called.
|
---|
| 375 | *
|
---|
| 376 | * Returns a pointer to the old state.
|
---|
| 377 | *
|
---|
| 378 | * Note: The Sparc platform requires that arg_state begin on an int
|
---|
| 379 | * word boundary; otherwise a bus error will occur. Even so, lint will
|
---|
| 380 | * complain about mis-alignment, but you should disregard these messages.
|
---|
| 381 | */
|
---|
| 382 | char *
|
---|
| 383 | initstate(seed, arg_state, n)
|
---|
| 384 | unsigned long seed; /* seed for R.N.G. */
|
---|
| 385 | char *arg_state; /* pointer to state array */
|
---|
| 386 | long n; /* # bytes of state info */
|
---|
| 387 | {
|
---|
| 388 | char *ostate = (char *)(&state[-1]);
|
---|
| 389 | uint32_t *int_arg_state = (uint32_t *)arg_state;
|
---|
| 390 |
|
---|
| 391 | if (rand_type == TYPE_0)
|
---|
| 392 | state[-1] = rand_type;
|
---|
| 393 | else
|
---|
| 394 | state[-1] = MAX_TYPES * (rptr - state) + rand_type;
|
---|
| 395 | if (n < BREAK_0) {
|
---|
| 396 | (void)fprintf(stderr,
|
---|
| 397 | "random: not enough state (%ld bytes); ignored.\n", n);
|
---|
| 398 | return(0);
|
---|
| 399 | }
|
---|
| 400 | if (n < BREAK_1) {
|
---|
| 401 | rand_type = TYPE_0;
|
---|
| 402 | rand_deg = DEG_0;
|
---|
| 403 | rand_sep = SEP_0;
|
---|
| 404 | } else if (n < BREAK_2) {
|
---|
| 405 | rand_type = TYPE_1;
|
---|
| 406 | rand_deg = DEG_1;
|
---|
| 407 | rand_sep = SEP_1;
|
---|
| 408 | } else if (n < BREAK_3) {
|
---|
| 409 | rand_type = TYPE_2;
|
---|
| 410 | rand_deg = DEG_2;
|
---|
| 411 | rand_sep = SEP_2;
|
---|
| 412 | } else if (n < BREAK_4) {
|
---|
| 413 | rand_type = TYPE_3;
|
---|
| 414 | rand_deg = DEG_3;
|
---|
| 415 | rand_sep = SEP_3;
|
---|
| 416 | } else {
|
---|
| 417 | rand_type = TYPE_4;
|
---|
| 418 | rand_deg = DEG_4;
|
---|
| 419 | rand_sep = SEP_4;
|
---|
| 420 | }
|
---|
| 421 | state = int_arg_state + 1; /* first location */
|
---|
| 422 | end_ptr = &state[rand_deg]; /* must set end_ptr before srandom */
|
---|
| 423 | srandom(seed);
|
---|
| 424 | if (rand_type == TYPE_0)
|
---|
| 425 | int_arg_state[0] = rand_type;
|
---|
| 426 | else
|
---|
| 427 | int_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
|
---|
| 428 | return(ostate);
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | /*
|
---|
| 432 | * setstate:
|
---|
| 433 | *
|
---|
| 434 | * Restore the state from the given state array.
|
---|
| 435 | *
|
---|
| 436 | * Note: it is important that we also remember the locations of the pointers
|
---|
| 437 | * in the current state information, and restore the locations of the pointers
|
---|
| 438 | * from the old state information. This is done by multiplexing the pointer
|
---|
| 439 | * location into the zeroeth word of the state information.
|
---|
| 440 | *
|
---|
| 441 | * Note that due to the order in which things are done, it is OK to call
|
---|
| 442 | * setstate() with the same state as the current state.
|
---|
| 443 | *
|
---|
| 444 | * Returns a pointer to the old state information.
|
---|
| 445 | *
|
---|
| 446 | * Note: The Sparc platform requires that arg_state begin on an int
|
---|
| 447 | * word boundary; otherwise a bus error will occur. Even so, lint will
|
---|
| 448 | * complain about mis-alignment, but you should disregard these messages.
|
---|
| 449 | */
|
---|
| 450 | char *
|
---|
| 451 | setstate(arg_state)
|
---|
| 452 | char *arg_state; /* pointer to state array */
|
---|
| 453 | {
|
---|
| 454 | uint32_t *new_state = (uint32_t *)arg_state;
|
---|
| 455 | uint32_t type = new_state[0] % MAX_TYPES;
|
---|
| 456 | uint32_t rear = new_state[0] / MAX_TYPES;
|
---|
| 457 | char *ostate = (char *)(&state[-1]);
|
---|
| 458 |
|
---|
| 459 | if (rand_type == TYPE_0)
|
---|
| 460 | state[-1] = rand_type;
|
---|
| 461 | else
|
---|
| 462 | state[-1] = MAX_TYPES * (rptr - state) + rand_type;
|
---|
| 463 | switch(type) {
|
---|
| 464 | case TYPE_0:
|
---|
| 465 | case TYPE_1:
|
---|
| 466 | case TYPE_2:
|
---|
| 467 | case TYPE_3:
|
---|
| 468 | case TYPE_4:
|
---|
| 469 | rand_type = type;
|
---|
| 470 | rand_deg = degrees[type];
|
---|
| 471 | rand_sep = seps[type];
|
---|
| 472 | break;
|
---|
| 473 | default:
|
---|
| 474 | (void)fprintf(stderr,
|
---|
| 475 | "random: state info corrupted; not changed.\n");
|
---|
| 476 | }
|
---|
| 477 | state = new_state + 1;
|
---|
| 478 | if (rand_type != TYPE_0) {
|
---|
| 479 | rptr = &state[rear];
|
---|
| 480 | fptr = &state[(rear + rand_sep) % rand_deg];
|
---|
| 481 | }
|
---|
| 482 | end_ptr = &state[rand_deg]; /* set end_ptr too */
|
---|
| 483 | return(ostate);
|
---|
| 484 | }
|
---|
| 485 |
|
---|
| 486 | /*
|
---|
| 487 | * random:
|
---|
| 488 | *
|
---|
| 489 | * If we are using the trivial TYPE_0 R.N.G., just do the old linear
|
---|
| 490 | * congruential bit. Otherwise, we do our fancy trinomial stuff, which is
|
---|
| 491 | * the same in all the other cases due to all the global variables that have
|
---|
| 492 | * been set up. The basic operation is to add the number at the rear pointer
|
---|
| 493 | * into the one at the front pointer. Then both pointers are advanced to
|
---|
| 494 | * the next location cyclically in the table. The value returned is the sum
|
---|
| 495 | * generated, reduced to 31 bits by throwing away the "least random" low bit.
|
---|
| 496 | *
|
---|
| 497 | * Note: the code takes advantage of the fact that both the front and
|
---|
| 498 | * rear pointers can't wrap on the same call by not testing the rear
|
---|
| 499 | * pointer if the front one has wrapped.
|
---|
| 500 | *
|
---|
| 501 | * Returns a 31-bit random number.
|
---|
| 502 | */
|
---|
| 503 | long
|
---|
| 504 | random()
|
---|
| 505 | {
|
---|
| 506 | uint32_t i;
|
---|
| 507 | uint32_t *f, *r;
|
---|
| 508 |
|
---|
| 509 | if (rand_type == TYPE_0) {
|
---|
| 510 | i = state[0];
|
---|
| 511 | state[0] = i = (good_rand(i)) & 0x7fffffff;
|
---|
| 512 | } else {
|
---|
| 513 | /*
|
---|
| 514 | * Use local variables rather than static variables for speed.
|
---|
| 515 | */
|
---|
| 516 | f = fptr; r = rptr;
|
---|
| 517 | *f += *r;
|
---|
| 518 | i = (*f >> 1) & 0x7fffffff; /* chucking least random bit */
|
---|
| 519 | if (++f >= end_ptr) {
|
---|
| 520 | f = state;
|
---|
| 521 | ++r;
|
---|
| 522 | }
|
---|
| 523 | else if (++r >= end_ptr) {
|
---|
| 524 | r = state;
|
---|
| 525 | }
|
---|
| 526 |
|
---|
| 527 | fptr = f; rptr = r;
|
---|
| 528 | }
|
---|
| 529 | return((long)i);
|
---|
| 530 | }
|
---|