1 | /* dfa.c - deterministic extended regexp routines for GNU
|
---|
2 | Copyright 1988, 1998, 2000, 2002, 2004, 2005 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This program is free software; you can redistribute it and/or modify
|
---|
5 | it under the terms of the GNU General Public License as published by
|
---|
6 | the Free Software Foundation; either version 2, or (at your option)
|
---|
7 | any later version.
|
---|
8 |
|
---|
9 | This program is distributed in the hope that it will be useful,
|
---|
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
12 | GNU General Public License for more details.
|
---|
13 |
|
---|
14 | You should have received a copy of the GNU General Public License
|
---|
15 | along with this program; if not, write to the Free Software
|
---|
16 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */
|
---|
17 |
|
---|
18 | /* Written June, 1988 by Mike Haertel
|
---|
19 | Modified July, 1988 by Arthur David Olson to assist BMG speedups */
|
---|
20 |
|
---|
21 | #ifdef HAVE_CONFIG_H
|
---|
22 | #include <config.h>
|
---|
23 | #endif
|
---|
24 |
|
---|
25 | #include <assert.h>
|
---|
26 | #include <ctype.h>
|
---|
27 | #include <stdio.h>
|
---|
28 |
|
---|
29 | #ifndef VMS
|
---|
30 | #include <sys/types.h>
|
---|
31 | #else
|
---|
32 | #include <stddef.h>
|
---|
33 | #endif
|
---|
34 | #ifdef STDC_HEADERS
|
---|
35 | #include <stdlib.h>
|
---|
36 | #else
|
---|
37 | extern char *calloc(), *malloc(), *realloc();
|
---|
38 | extern void free();
|
---|
39 | #endif
|
---|
40 |
|
---|
41 | #if defined(HAVE_STRING_H) || defined(STDC_HEADERS)
|
---|
42 | #include <string.h>
|
---|
43 | #else
|
---|
44 | #include <strings.h>
|
---|
45 | #endif
|
---|
46 |
|
---|
47 | #if HAVE_SETLOCALE
|
---|
48 | # include <locale.h>
|
---|
49 | #endif
|
---|
50 |
|
---|
51 |
|
---|
52 | #ifndef DEBUG /* use the same approach as regex.c */
|
---|
53 | #undef assert
|
---|
54 | #define assert(e)
|
---|
55 | #endif /* DEBUG */
|
---|
56 |
|
---|
57 | #ifndef isgraph
|
---|
58 | #define isgraph(C) (isprint(C) && !isspace(C))
|
---|
59 | #endif
|
---|
60 |
|
---|
61 | #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
|
---|
62 | #define ISALPHA(C) isalpha(C)
|
---|
63 | #define ISUPPER(C) isupper(C)
|
---|
64 | #define ISLOWER(C) islower(C)
|
---|
65 | #define ISDIGIT(C) isdigit(C)
|
---|
66 | #define ISXDIGIT(C) isxdigit(C)
|
---|
67 | #define ISSPACE(C) isspace(C)
|
---|
68 | #define ISPUNCT(C) ispunct(C)
|
---|
69 | #define ISALNUM(C) isalnum(C)
|
---|
70 | #define ISPRINT(C) isprint(C)
|
---|
71 | #define ISGRAPH(C) isgraph(C)
|
---|
72 | #define ISCNTRL(C) iscntrl(C)
|
---|
73 | #else
|
---|
74 | #define ISALPHA(C) (isascii(C) && isalpha(C))
|
---|
75 | #define ISUPPER(C) (isascii(C) && isupper(C))
|
---|
76 | #define ISLOWER(C) (isascii(C) && islower(C))
|
---|
77 | #define ISDIGIT(C) (isascii(C) && isdigit(C))
|
---|
78 | #define ISXDIGIT(C) (isascii(C) && isxdigit(C))
|
---|
79 | #define ISSPACE(C) (isascii(C) && isspace(C))
|
---|
80 | #define ISPUNCT(C) (isascii(C) && ispunct(C))
|
---|
81 | #define ISALNUM(C) (isascii(C) && isalnum(C))
|
---|
82 | #define ISPRINT(C) (isascii(C) && isprint(C))
|
---|
83 | #define ISGRAPH(C) (isascii(C) && isgraph(C))
|
---|
84 | #define ISCNTRL(C) (isascii(C) && iscntrl(C))
|
---|
85 | #endif
|
---|
86 |
|
---|
87 | /* ISASCIIDIGIT differs from ISDIGIT, as follows:
|
---|
88 | - Its arg may be any int or unsigned int; it need not be an unsigned char.
|
---|
89 | - It's guaranteed to evaluate its argument exactly once.
|
---|
90 | - It's typically faster.
|
---|
91 | Posix 1003.2-1992 section 2.5.2.1 page 50 lines 1556-1558 says that
|
---|
92 | only '0' through '9' are digits. Prefer ISASCIIDIGIT to ISDIGIT unless
|
---|
93 | it's important to use the locale's definition of `digit' even when the
|
---|
94 | host does not conform to Posix. */
|
---|
95 | #define ISASCIIDIGIT(c) ((unsigned) (c) - '0' <= 9)
|
---|
96 |
|
---|
97 | /* gettext.h ensures that we don't use gettext if ENABLE_NLS is not defined */
|
---|
98 | #include "gettext.h"
|
---|
99 | #define _(str) gettext (str)
|
---|
100 |
|
---|
101 | #ifndef NO_MBSUPPORT
|
---|
102 | #include "mbsupport.h" /* defines MBS_SUPPORT if appropriate */
|
---|
103 | #endif
|
---|
104 | #ifdef MBS_SUPPORT
|
---|
105 | /* We can handle multibyte strings. */
|
---|
106 | # include <wchar.h>
|
---|
107 | # include <wctype.h>
|
---|
108 | #endif
|
---|
109 |
|
---|
110 | #include "regex.h"
|
---|
111 | #include "dfa.h"
|
---|
112 | #include "hard-locale.h"
|
---|
113 |
|
---|
114 | /* HPUX, define those as macros in sys/param.h */
|
---|
115 | #ifdef setbit
|
---|
116 | # undef setbit
|
---|
117 | #endif
|
---|
118 | #ifdef clrbit
|
---|
119 | # undef clrbit
|
---|
120 | #endif
|
---|
121 |
|
---|
122 | static void dfamust PARAMS ((struct dfa *dfa));
|
---|
123 |
|
---|
124 | static ptr_t xcalloc PARAMS ((size_t n, size_t s));
|
---|
125 | static ptr_t xmalloc PARAMS ((size_t n));
|
---|
126 | static ptr_t xrealloc PARAMS ((ptr_t p, size_t n));
|
---|
127 | #ifdef DEBUG
|
---|
128 | static void prtok PARAMS ((token t));
|
---|
129 | #endif
|
---|
130 | static int tstbit PARAMS ((unsigned b, charclass c));
|
---|
131 | static void setbit PARAMS ((unsigned b, charclass c));
|
---|
132 | static void clrbit PARAMS ((unsigned b, charclass c));
|
---|
133 | static void copyset PARAMS ((charclass src, charclass dst));
|
---|
134 | static void zeroset PARAMS ((charclass s));
|
---|
135 | static void notset PARAMS ((charclass s));
|
---|
136 | static int equal PARAMS ((charclass s1, charclass s2));
|
---|
137 | static int charclass_index PARAMS ((charclass s));
|
---|
138 | static int looking_at PARAMS ((const char *s));
|
---|
139 | static token lex PARAMS ((void));
|
---|
140 | static void addtok PARAMS ((token t));
|
---|
141 | static void atom PARAMS ((void));
|
---|
142 | static int nsubtoks PARAMS ((int tindex));
|
---|
143 | static void copytoks PARAMS ((int tindex, int ntokens));
|
---|
144 | static void closure PARAMS ((void));
|
---|
145 | static void branch PARAMS ((void));
|
---|
146 | static void regexp PARAMS ((int toplevel));
|
---|
147 | static void copy PARAMS ((position_set const *src, position_set *dst));
|
---|
148 | static void insert PARAMS ((position p, position_set *s));
|
---|
149 | static void merge PARAMS ((position_set const *s1, position_set const *s2, position_set *m));
|
---|
150 | static void delete PARAMS ((position p, position_set *s));
|
---|
151 | static int state_index PARAMS ((struct dfa *d, position_set const *s,
|
---|
152 | int newline, int letter));
|
---|
153 | static void build_state PARAMS ((int s, struct dfa *d));
|
---|
154 | static void build_state_zero PARAMS ((struct dfa *d));
|
---|
155 | static char *icatalloc PARAMS ((char *old, char *new));
|
---|
156 | static char *icpyalloc PARAMS ((char *string));
|
---|
157 | static char *istrstr PARAMS ((char *lookin, char *lookfor));
|
---|
158 | static void ifree PARAMS ((char *cp));
|
---|
159 | static void freelist PARAMS ((char **cpp));
|
---|
160 | static char **enlist PARAMS ((char **cpp, char *new, size_t len));
|
---|
161 | static char **comsubs PARAMS ((char *left, char *right));
|
---|
162 | static char **addlists PARAMS ((char **old, char **new));
|
---|
163 | static char **inboth PARAMS ((char **left, char **right));
|
---|
164 |
|
---|
165 | static ptr_t
|
---|
166 | xcalloc (size_t n, size_t s)
|
---|
167 | {
|
---|
168 | ptr_t r = calloc(n, s);
|
---|
169 |
|
---|
170 | if (!r)
|
---|
171 | dfaerror(_("Memory exhausted"));
|
---|
172 | return r;
|
---|
173 | }
|
---|
174 |
|
---|
175 | static ptr_t
|
---|
176 | xmalloc (size_t n)
|
---|
177 | {
|
---|
178 | ptr_t r = malloc(n);
|
---|
179 |
|
---|
180 | assert(n != 0);
|
---|
181 | if (!r)
|
---|
182 | dfaerror(_("Memory exhausted"));
|
---|
183 | return r;
|
---|
184 | }
|
---|
185 |
|
---|
186 | static ptr_t
|
---|
187 | xrealloc (ptr_t p, size_t n)
|
---|
188 | {
|
---|
189 | ptr_t r = realloc(p, n);
|
---|
190 |
|
---|
191 | assert(n != 0);
|
---|
192 | if (!r)
|
---|
193 | dfaerror(_("Memory exhausted"));
|
---|
194 | return r;
|
---|
195 | }
|
---|
196 |
|
---|
197 | #define CALLOC(p, t, n) ((p) = (t *) xcalloc((size_t)(n), sizeof (t)))
|
---|
198 | #define MALLOC(p, t, n) ((p) = (t *) xmalloc((n) * sizeof (t)))
|
---|
199 | #define REALLOC(p, t, n) ((p) = (t *) xrealloc((ptr_t) (p), (n) * sizeof (t)))
|
---|
200 |
|
---|
201 | /* Reallocate an array of type t if nalloc is too small for index. */
|
---|
202 | #define REALLOC_IF_NECESSARY(p, t, nalloc, index) \
|
---|
203 | if ((index) >= (nalloc)) \
|
---|
204 | { \
|
---|
205 | do \
|
---|
206 | (nalloc) *= 2; \
|
---|
207 | while ((index) >= (nalloc)); \
|
---|
208 | REALLOC(p, t, nalloc); \
|
---|
209 | }
|
---|
210 |
|
---|
211 | #ifdef DEBUG
|
---|
212 |
|
---|
213 | static void
|
---|
214 | prtok (token t)
|
---|
215 | {
|
---|
216 | char const *s;
|
---|
217 |
|
---|
218 | if (t < 0)
|
---|
219 | fprintf(stderr, "END");
|
---|
220 | else if (t < NOTCHAR)
|
---|
221 | fprintf(stderr, "%c", t);
|
---|
222 | else
|
---|
223 | {
|
---|
224 | switch (t)
|
---|
225 | {
|
---|
226 | case EMPTY: s = "EMPTY"; break;
|
---|
227 | case BACKREF: s = "BACKREF"; break;
|
---|
228 | case BEGLINE: s = "BEGLINE"; break;
|
---|
229 | case ENDLINE: s = "ENDLINE"; break;
|
---|
230 | case BEGWORD: s = "BEGWORD"; break;
|
---|
231 | case ENDWORD: s = "ENDWORD"; break;
|
---|
232 | case LIMWORD: s = "LIMWORD"; break;
|
---|
233 | case NOTLIMWORD: s = "NOTLIMWORD"; break;
|
---|
234 | case QMARK: s = "QMARK"; break;
|
---|
235 | case STAR: s = "STAR"; break;
|
---|
236 | case PLUS: s = "PLUS"; break;
|
---|
237 | case CAT: s = "CAT"; break;
|
---|
238 | case OR: s = "OR"; break;
|
---|
239 | case ORTOP: s = "ORTOP"; break;
|
---|
240 | case LPAREN: s = "LPAREN"; break;
|
---|
241 | case RPAREN: s = "RPAREN"; break;
|
---|
242 | case CRANGE: s = "CRANGE"; break;
|
---|
243 | #ifdef MBS_SUPPORT
|
---|
244 | case ANYCHAR: s = "ANYCHAR"; break;
|
---|
245 | case MBCSET: s = "MBCSET"; break;
|
---|
246 | #endif /* MBS_SUPPORT */
|
---|
247 | default: s = "CSET"; break;
|
---|
248 | }
|
---|
249 | fprintf(stderr, "%s", s);
|
---|
250 | }
|
---|
251 | }
|
---|
252 | #endif /* DEBUG */
|
---|
253 |
|
---|
254 | /* Stuff pertaining to charclasses. */
|
---|
255 |
|
---|
256 | static int
|
---|
257 | tstbit (unsigned b, charclass c)
|
---|
258 | {
|
---|
259 | return c[b / INTBITS] & 1 << b % INTBITS;
|
---|
260 | }
|
---|
261 |
|
---|
262 | static void
|
---|
263 | setbit (unsigned b, charclass c)
|
---|
264 | {
|
---|
265 | c[b / INTBITS] |= 1 << b % INTBITS;
|
---|
266 | }
|
---|
267 |
|
---|
268 | static void
|
---|
269 | clrbit (unsigned b, charclass c)
|
---|
270 | {
|
---|
271 | c[b / INTBITS] &= ~(1 << b % INTBITS);
|
---|
272 | }
|
---|
273 |
|
---|
274 | static void
|
---|
275 | copyset (charclass src, charclass dst)
|
---|
276 | {
|
---|
277 | memcpy (dst, src, sizeof (charclass));
|
---|
278 | }
|
---|
279 |
|
---|
280 | static void
|
---|
281 | zeroset (charclass s)
|
---|
282 | {
|
---|
283 | memset (s, 0, sizeof (charclass));
|
---|
284 | }
|
---|
285 |
|
---|
286 | static void
|
---|
287 | notset (charclass s)
|
---|
288 | {
|
---|
289 | int i;
|
---|
290 |
|
---|
291 | for (i = 0; i < CHARCLASS_INTS; ++i)
|
---|
292 | s[i] = ~s[i];
|
---|
293 | }
|
---|
294 |
|
---|
295 | static int
|
---|
296 | equal (charclass s1, charclass s2)
|
---|
297 | {
|
---|
298 | return memcmp (s1, s2, sizeof (charclass)) == 0;
|
---|
299 | }
|
---|
300 |
|
---|
301 | /* A pointer to the current dfa is kept here during parsing. */
|
---|
302 | static struct dfa *dfa;
|
---|
303 |
|
---|
304 | /* Find the index of charclass s in dfa->charclasses, or allocate a new charclass. */
|
---|
305 | static int
|
---|
306 | charclass_index (charclass s)
|
---|
307 | {
|
---|
308 | int i;
|
---|
309 |
|
---|
310 | for (i = 0; i < dfa->cindex; ++i)
|
---|
311 | if (equal(s, dfa->charclasses[i]))
|
---|
312 | return i;
|
---|
313 | REALLOC_IF_NECESSARY(dfa->charclasses, charclass, dfa->calloc, dfa->cindex);
|
---|
314 | ++dfa->cindex;
|
---|
315 | copyset(s, dfa->charclasses[i]);
|
---|
316 | return i;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /* Syntax bits controlling the behavior of the lexical analyzer. */
|
---|
320 | static reg_syntax_t syntax_bits, syntax_bits_set;
|
---|
321 |
|
---|
322 | /* Flag for case-folding letters into sets. */
|
---|
323 | static int case_fold;
|
---|
324 |
|
---|
325 | /* End-of-line byte in data. */
|
---|
326 | static unsigned char eolbyte;
|
---|
327 |
|
---|
328 | /* Entry point to set syntax options. */
|
---|
329 | void
|
---|
330 | dfasyntax (reg_syntax_t bits, int fold, unsigned char eol)
|
---|
331 | {
|
---|
332 | syntax_bits_set = 1;
|
---|
333 | syntax_bits = bits;
|
---|
334 | case_fold = fold;
|
---|
335 | eolbyte = eol;
|
---|
336 | }
|
---|
337 |
|
---|
338 | /* Like setbit, but if case is folded, set both cases of a letter. */
|
---|
339 | static void
|
---|
340 | setbit_case_fold (unsigned b, charclass c)
|
---|
341 | {
|
---|
342 | setbit (b, c);
|
---|
343 | if (case_fold)
|
---|
344 | {
|
---|
345 | if (ISUPPER (b))
|
---|
346 | setbit (tolower (b), c);
|
---|
347 | else if (ISLOWER (b))
|
---|
348 | setbit (toupper (b), c);
|
---|
349 | }
|
---|
350 | }
|
---|
351 |
|
---|
352 | /* Lexical analyzer. All the dross that deals with the obnoxious
|
---|
353 | GNU Regex syntax bits is located here. The poor, suffering
|
---|
354 | reader is referred to the GNU Regex documentation for the
|
---|
355 | meaning of the @#%!@#%^!@ syntax bits. */
|
---|
356 |
|
---|
357 | static char const *lexptr; /* Pointer to next input character. */
|
---|
358 | static int lexleft; /* Number of characters remaining. */
|
---|
359 | static token lasttok; /* Previous token returned; initially END. */
|
---|
360 | static int laststart; /* True if we're separated from beginning or (, |
|
---|
361 | only by zero-width characters. */
|
---|
362 | static int parens; /* Count of outstanding left parens. */
|
---|
363 | static int minrep, maxrep; /* Repeat counts for {m,n}. */
|
---|
364 | static int hard_LC_COLLATE; /* Nonzero if LC_COLLATE is hard. */
|
---|
365 |
|
---|
366 | #ifdef MBS_SUPPORT
|
---|
367 | /* These variables are used only if (MB_CUR_MAX > 1). */
|
---|
368 | static mbstate_t mbs; /* Mbstate for mbrlen(). */
|
---|
369 | static int cur_mb_len; /* Byte length of the current scanning
|
---|
370 | multibyte character. */
|
---|
371 | static int cur_mb_index; /* Byte index of the current scanning multibyte
|
---|
372 | character.
|
---|
373 |
|
---|
374 | single byte character : cur_mb_index = 0
|
---|
375 | multibyte character
|
---|
376 | 1st byte : cur_mb_index = 1
|
---|
377 | 2nd byte : cur_mb_index = 2
|
---|
378 | ...
|
---|
379 | nth byte : cur_mb_index = n */
|
---|
380 | static unsigned char *mblen_buf;/* Correspond to the input buffer in dfaexec().
|
---|
381 | Each element store the amount of remain
|
---|
382 | byte of corresponding multibyte character
|
---|
383 | in the input string. A element's value
|
---|
384 | is 0 if corresponding character is a
|
---|
385 | single byte chracter.
|
---|
386 | e.g. input : 'a', <mb(0)>, <mb(1)>, <mb(2)>
|
---|
387 | mblen_buf : 0, 3, 2, 1
|
---|
388 | */
|
---|
389 | static wchar_t *inputwcs; /* Wide character representation of input
|
---|
390 | string in dfaexec().
|
---|
391 | The length of this array is same as
|
---|
392 | the length of input string(char array).
|
---|
393 | inputstring[i] is a single-byte char,
|
---|
394 | or 1st byte of a multibyte char.
|
---|
395 | And inputwcs[i] is the codepoint. */
|
---|
396 | static unsigned char const *buf_begin; /* reference to begin in dfaexec(). */
|
---|
397 | static unsigned char const *buf_end; /* reference to end in dfaexec(). */
|
---|
398 | #endif /* MBS_SUPPORT */
|
---|
399 |
|
---|
400 | #ifdef MBS_SUPPORT
|
---|
401 | /* This function update cur_mb_len, and cur_mb_index.
|
---|
402 | p points current lexptr, len is the remaining buffer length. */
|
---|
403 | static void
|
---|
404 | update_mb_len_index (unsigned char const *p, int len)
|
---|
405 | {
|
---|
406 | /* If last character is a part of a multibyte character,
|
---|
407 | we update cur_mb_index. */
|
---|
408 | if (cur_mb_index)
|
---|
409 | cur_mb_index = (cur_mb_index >= cur_mb_len)? 0
|
---|
410 | : cur_mb_index + 1;
|
---|
411 |
|
---|
412 | /* If last character is a single byte character, or the
|
---|
413 | last portion of a multibyte character, we check whether
|
---|
414 | next character is a multibyte character or not. */
|
---|
415 | if (! cur_mb_index)
|
---|
416 | {
|
---|
417 | cur_mb_len = mbrlen(p, len, &mbs);
|
---|
418 | if (cur_mb_len > 1)
|
---|
419 | /* It is a multibyte character.
|
---|
420 | cur_mb_len was already set by mbrlen(). */
|
---|
421 | cur_mb_index = 1;
|
---|
422 | else if (cur_mb_len < 1)
|
---|
423 | /* Invalid sequence. We treat it as a single byte character.
|
---|
424 | cur_mb_index is aleady 0. */
|
---|
425 | cur_mb_len = 1;
|
---|
426 | /* Otherwise, cur_mb_len == 1, it is a single byte character.
|
---|
427 | cur_mb_index is aleady 0. */
|
---|
428 | }
|
---|
429 | }
|
---|
430 | #endif /* MBS_SUPPORT */
|
---|
431 |
|
---|
432 | #ifdef MBS_SUPPORT
|
---|
433 | /* Note that characters become unsigned here. */
|
---|
434 | # define FETCH(c, eoferr) \
|
---|
435 | { \
|
---|
436 | if (! lexleft) \
|
---|
437 | { \
|
---|
438 | if (eoferr != 0) \
|
---|
439 | dfaerror (eoferr); \
|
---|
440 | else \
|
---|
441 | return lasttok = END; \
|
---|
442 | } \
|
---|
443 | if (MB_CUR_MAX > 1) \
|
---|
444 | update_mb_len_index(lexptr, lexleft); \
|
---|
445 | (c) = (unsigned char) *lexptr++; \
|
---|
446 | --lexleft; \
|
---|
447 | }
|
---|
448 |
|
---|
449 | /* This function fetch a wide character, and update cur_mb_len,
|
---|
450 | used only if the current locale is a multibyte environment. */
|
---|
451 | static wint_t
|
---|
452 | fetch_wc (char const *eoferr)
|
---|
453 | {
|
---|
454 | wchar_t wc;
|
---|
455 | if (! lexleft)
|
---|
456 | {
|
---|
457 | if (eoferr != 0)
|
---|
458 | dfaerror (eoferr);
|
---|
459 | else
|
---|
460 | return WEOF;
|
---|
461 | }
|
---|
462 |
|
---|
463 | cur_mb_len = mbrtowc(&wc, lexptr, lexleft, &mbs);
|
---|
464 | if (cur_mb_len <= 0)
|
---|
465 | {
|
---|
466 | cur_mb_len = 1;
|
---|
467 | wc = *lexptr;
|
---|
468 | }
|
---|
469 | lexptr += cur_mb_len;
|
---|
470 | lexleft -= cur_mb_len;
|
---|
471 | return wc;
|
---|
472 | }
|
---|
473 | #else
|
---|
474 | /* Note that characters become unsigned here. */
|
---|
475 | # define FETCH(c, eoferr) \
|
---|
476 | { \
|
---|
477 | if (! lexleft) \
|
---|
478 | { \
|
---|
479 | if (eoferr != 0) \
|
---|
480 | dfaerror (eoferr); \
|
---|
481 | else \
|
---|
482 | return lasttok = END; \
|
---|
483 | } \
|
---|
484 | (c) = (unsigned char) *lexptr++; \
|
---|
485 | --lexleft; \
|
---|
486 | }
|
---|
487 | #endif /* MBS_SUPPORT */
|
---|
488 |
|
---|
489 | #ifdef MBS_SUPPORT
|
---|
490 | /* Multibyte character handling sub-routine for lex.
|
---|
491 | This function parse a bracket expression and build a struct
|
---|
492 | mb_char_classes. */
|
---|
493 | static void
|
---|
494 | parse_bracket_exp_mb ()
|
---|
495 | {
|
---|
496 | wint_t wc, wc1, wc2;
|
---|
497 |
|
---|
498 | /* Work area to build a mb_char_classes. */
|
---|
499 | struct mb_char_classes *work_mbc;
|
---|
500 | int chars_al, range_sts_al, range_ends_al, ch_classes_al,
|
---|
501 | equivs_al, coll_elems_al;
|
---|
502 |
|
---|
503 | REALLOC_IF_NECESSARY(dfa->mbcsets, struct mb_char_classes,
|
---|
504 | dfa->mbcsets_alloc, dfa->nmbcsets + 1);
|
---|
505 | /* dfa->multibyte_prop[] hold the index of dfa->mbcsets.
|
---|
506 | We will update dfa->multibyte_prop[] in addtok(), because we can't
|
---|
507 | decide the index in dfa->tokens[]. */
|
---|
508 |
|
---|
509 | /* Initialize work are */
|
---|
510 | work_mbc = &(dfa->mbcsets[dfa->nmbcsets++]);
|
---|
511 |
|
---|
512 | chars_al = 1;
|
---|
513 | range_sts_al = range_ends_al = 0;
|
---|
514 | ch_classes_al = equivs_al = coll_elems_al = 0;
|
---|
515 | MALLOC(work_mbc->chars, wchar_t, chars_al);
|
---|
516 |
|
---|
517 | work_mbc->nchars = work_mbc->nranges = work_mbc->nch_classes = 0;
|
---|
518 | work_mbc->nequivs = work_mbc->ncoll_elems = 0;
|
---|
519 | work_mbc->chars = NULL;
|
---|
520 | work_mbc->ch_classes = NULL;
|
---|
521 | work_mbc->range_sts = work_mbc->range_ends = NULL;
|
---|
522 | work_mbc->equivs = work_mbc->coll_elems = NULL;
|
---|
523 |
|
---|
524 | wc = fetch_wc(_("Unbalanced ["));
|
---|
525 | if (wc == L'^')
|
---|
526 | {
|
---|
527 | wc = fetch_wc(_("Unbalanced ["));
|
---|
528 | work_mbc->invert = 1;
|
---|
529 | }
|
---|
530 | else
|
---|
531 | work_mbc->invert = 0;
|
---|
532 | do
|
---|
533 | {
|
---|
534 | wc1 = WEOF; /* mark wc1 is not initialized". */
|
---|
535 |
|
---|
536 | /* Note that if we're looking at some other [:...:] construct,
|
---|
537 | we just treat it as a bunch of ordinary characters. We can do
|
---|
538 | this because we assume regex has checked for syntax errors before
|
---|
539 | dfa is ever called. */
|
---|
540 | if (wc == L'[' && (syntax_bits & RE_CHAR_CLASSES))
|
---|
541 | {
|
---|
542 | #define BRACKET_BUFFER_SIZE 128
|
---|
543 | char str[BRACKET_BUFFER_SIZE];
|
---|
544 | wc1 = wc;
|
---|
545 | wc = fetch_wc(_("Unbalanced ["));
|
---|
546 |
|
---|
547 | /* If pattern contains `[[:', `[[.', or `[[='. */
|
---|
548 | if (cur_mb_len == 1 && (wc == L':' || wc == L'.' || wc == L'='))
|
---|
549 | {
|
---|
550 | unsigned char c;
|
---|
551 | unsigned char delim = (unsigned char)wc;
|
---|
552 | int len = 0;
|
---|
553 | for (;;)
|
---|
554 | {
|
---|
555 | if (! lexleft)
|
---|
556 | dfaerror (_("Unbalanced ["));
|
---|
557 | c = (unsigned char) *lexptr++;
|
---|
558 | --lexleft;
|
---|
559 |
|
---|
560 | if ((c == delim && *lexptr == ']') || lexleft == 0)
|
---|
561 | break;
|
---|
562 | if (len < BRACKET_BUFFER_SIZE)
|
---|
563 | str[len++] = c;
|
---|
564 | else
|
---|
565 | /* This is in any case an invalid class name. */
|
---|
566 | str[0] = '\0';
|
---|
567 | }
|
---|
568 | str[len] = '\0';
|
---|
569 |
|
---|
570 | if (lexleft == 0)
|
---|
571 | {
|
---|
572 | REALLOC_IF_NECESSARY(work_mbc->chars, wchar_t, chars_al,
|
---|
573 | work_mbc->nchars + 2);
|
---|
574 | work_mbc->chars[work_mbc->nchars++] = L'[';
|
---|
575 | work_mbc->chars[work_mbc->nchars++] = delim;
|
---|
576 | break;
|
---|
577 | }
|
---|
578 |
|
---|
579 | if (--lexleft, *lexptr++ != ']')
|
---|
580 | dfaerror (_("Unbalanced ["));
|
---|
581 | if (delim == ':')
|
---|
582 | /* build character class. */
|
---|
583 | {
|
---|
584 | wctype_t wt;
|
---|
585 | /* Query the character class as wctype_t. */
|
---|
586 | if (case_fold && (strcmp(str, "upper") == 0 || strcmp(str, "lower") == 0))
|
---|
587 | strcpy(str, "alpha");
|
---|
588 |
|
---|
589 | wt = wctype (str);
|
---|
590 |
|
---|
591 | if (ch_classes_al == 0)
|
---|
592 | MALLOC(work_mbc->ch_classes, wctype_t, ++ch_classes_al);
|
---|
593 | REALLOC_IF_NECESSARY(work_mbc->ch_classes, wctype_t,
|
---|
594 | ch_classes_al,
|
---|
595 | work_mbc->nch_classes + 1);
|
---|
596 | work_mbc->ch_classes[work_mbc->nch_classes++] = wt;
|
---|
597 |
|
---|
598 | }
|
---|
599 | else if (delim == '=' || delim == '.')
|
---|
600 | {
|
---|
601 | char *elem;
|
---|
602 | MALLOC(elem, char, len + 1);
|
---|
603 | strncpy(elem, str, len + 1);
|
---|
604 |
|
---|
605 | if (delim == '=')
|
---|
606 | /* build equivalent class. */
|
---|
607 | {
|
---|
608 | if (equivs_al == 0)
|
---|
609 | MALLOC(work_mbc->equivs, char*, ++equivs_al);
|
---|
610 | REALLOC_IF_NECESSARY(work_mbc->equivs, char*,
|
---|
611 | equivs_al,
|
---|
612 | work_mbc->nequivs + 1);
|
---|
613 | work_mbc->equivs[work_mbc->nequivs++] = elem;
|
---|
614 | }
|
---|
615 |
|
---|
616 | if (delim == '.')
|
---|
617 | /* build collating element. */
|
---|
618 | {
|
---|
619 | if (coll_elems_al == 0)
|
---|
620 | MALLOC(work_mbc->coll_elems, char*, ++coll_elems_al);
|
---|
621 | REALLOC_IF_NECESSARY(work_mbc->coll_elems, char*,
|
---|
622 | coll_elems_al,
|
---|
623 | work_mbc->ncoll_elems + 1);
|
---|
624 | work_mbc->coll_elems[work_mbc->ncoll_elems++] = elem;
|
---|
625 | }
|
---|
626 | }
|
---|
627 | wc = wc1 = WEOF;
|
---|
628 | }
|
---|
629 | else
|
---|
630 | /* We treat '[' as a normal character here. */
|
---|
631 | {
|
---|
632 | wc2 = wc1; wc1 = wc; wc = wc2; /* swap */
|
---|
633 | }
|
---|
634 | }
|
---|
635 | else
|
---|
636 | {
|
---|
637 | if (wc == L'\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
638 | wc = fetch_wc(("Unbalanced ["));
|
---|
639 | }
|
---|
640 |
|
---|
641 | if (wc1 == WEOF)
|
---|
642 | wc1 = fetch_wc(_("Unbalanced ["));
|
---|
643 |
|
---|
644 | if (wc1 == L'-')
|
---|
645 | /* build range characters. */
|
---|
646 | {
|
---|
647 | wc2 = fetch_wc(_("Unbalanced ["));
|
---|
648 | if (wc2 == L']')
|
---|
649 | {
|
---|
650 | /* In the case [x-], the - is an ordinary hyphen,
|
---|
651 | which is left in c1, the lookahead character. */
|
---|
652 | lexptr -= cur_mb_len;
|
---|
653 | lexleft += cur_mb_len;
|
---|
654 | wc2 = wc;
|
---|
655 | }
|
---|
656 | else
|
---|
657 | {
|
---|
658 | if (wc2 == L'\\'
|
---|
659 | && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
660 | wc2 = fetch_wc(_("Unbalanced ["));
|
---|
661 | wc1 = fetch_wc(_("Unbalanced ["));
|
---|
662 | }
|
---|
663 |
|
---|
664 | if (range_sts_al == 0)
|
---|
665 | {
|
---|
666 | MALLOC(work_mbc->range_sts, wchar_t, ++range_sts_al);
|
---|
667 | MALLOC(work_mbc->range_ends, wchar_t, ++range_ends_al);
|
---|
668 | }
|
---|
669 | REALLOC_IF_NECESSARY(work_mbc->range_sts, wchar_t,
|
---|
670 | range_sts_al, work_mbc->nranges + 1);
|
---|
671 | work_mbc->range_sts[work_mbc->nranges] = (wchar_t)wc;
|
---|
672 | REALLOC_IF_NECESSARY(work_mbc->range_ends, wchar_t,
|
---|
673 | range_ends_al, work_mbc->nranges + 1);
|
---|
674 | work_mbc->range_ends[work_mbc->nranges++] = (wchar_t)wc2;
|
---|
675 | if (case_fold && (iswlower((wint_t)wc) || iswupper((wint_t)wc))
|
---|
676 | && (iswlower((wint_t)wc2) || iswupper((wint_t)wc2)))
|
---|
677 | {
|
---|
678 | wint_t altcase;
|
---|
679 | altcase = wc;
|
---|
680 | if (iswlower((wint_t)wc))
|
---|
681 | altcase = towupper((wint_t)wc);
|
---|
682 | else
|
---|
683 | altcase = towlower((wint_t)wc);
|
---|
684 | REALLOC_IF_NECESSARY(work_mbc->range_sts, wchar_t,
|
---|
685 | range_sts_al, work_mbc->nranges + 1);
|
---|
686 | work_mbc->range_sts[work_mbc->nranges] = (wchar_t)altcase;
|
---|
687 |
|
---|
688 | altcase = wc2;
|
---|
689 | if (iswlower((wint_t)wc2))
|
---|
690 | altcase = towupper((wint_t)wc2);
|
---|
691 | else
|
---|
692 | altcase = towlower((wint_t)wc2);
|
---|
693 | REALLOC_IF_NECESSARY(work_mbc->range_ends, wchar_t,
|
---|
694 | range_ends_al, work_mbc->nranges + 1);
|
---|
695 | work_mbc->range_ends[work_mbc->nranges++] = (wchar_t)altcase;
|
---|
696 | }
|
---|
697 | }
|
---|
698 | else if (wc != WEOF)
|
---|
699 | /* build normal characters. */
|
---|
700 | {
|
---|
701 | REALLOC_IF_NECESSARY(work_mbc->chars, wchar_t, chars_al,
|
---|
702 | work_mbc->nchars + 1);
|
---|
703 | work_mbc->chars[work_mbc->nchars++] = (wchar_t)wc;
|
---|
704 | if (case_fold && (iswlower(wc) || iswupper(wc)))
|
---|
705 | {
|
---|
706 | REALLOC_IF_NECESSARY(work_mbc->chars, wchar_t, chars_al,
|
---|
707 | work_mbc->nchars + 1);
|
---|
708 | work_mbc->chars[work_mbc->nchars++] =
|
---|
709 | (wchar_t) (iswlower(wc) ? towupper(wc) : towlower(wc));
|
---|
710 | }
|
---|
711 | }
|
---|
712 | }
|
---|
713 | while ((wc = wc1) != L']');
|
---|
714 | }
|
---|
715 | #endif /* MBS_SUPPORT */
|
---|
716 |
|
---|
717 | #ifdef __STDC__
|
---|
718 | #define FUNC(F, P) static int F(int c) { return P(c); }
|
---|
719 | #else
|
---|
720 | #define FUNC(F, P) static int F(c) int c; { return P(c); }
|
---|
721 | #endif
|
---|
722 |
|
---|
723 | FUNC(is_alpha, ISALPHA)
|
---|
724 | FUNC(is_upper, ISUPPER)
|
---|
725 | FUNC(is_lower, ISLOWER)
|
---|
726 | FUNC(is_digit, ISDIGIT)
|
---|
727 | FUNC(is_xdigit, ISXDIGIT)
|
---|
728 | FUNC(is_space, ISSPACE)
|
---|
729 | FUNC(is_punct, ISPUNCT)
|
---|
730 | FUNC(is_alnum, ISALNUM)
|
---|
731 | FUNC(is_print, ISPRINT)
|
---|
732 | FUNC(is_graph, ISGRAPH)
|
---|
733 | FUNC(is_cntrl, ISCNTRL)
|
---|
734 |
|
---|
735 | static int
|
---|
736 | is_blank (int c)
|
---|
737 | {
|
---|
738 | return (c == ' ' || c == '\t');
|
---|
739 | }
|
---|
740 |
|
---|
741 | /* The following list maps the names of the Posix named character classes
|
---|
742 | to predicate functions that determine whether a given character is in
|
---|
743 | the class. The leading [ has already been eaten by the lexical analyzer. */
|
---|
744 | static struct {
|
---|
745 | const char *name;
|
---|
746 | int (*pred) PARAMS ((int));
|
---|
747 | } const prednames[] = {
|
---|
748 | { ":alpha:]", is_alpha },
|
---|
749 | { ":upper:]", is_upper },
|
---|
750 | { ":lower:]", is_lower },
|
---|
751 | { ":digit:]", is_digit },
|
---|
752 | { ":xdigit:]", is_xdigit },
|
---|
753 | { ":space:]", is_space },
|
---|
754 | { ":punct:]", is_punct },
|
---|
755 | { ":alnum:]", is_alnum },
|
---|
756 | { ":print:]", is_print },
|
---|
757 | { ":graph:]", is_graph },
|
---|
758 | { ":cntrl:]", is_cntrl },
|
---|
759 | { ":blank:]", is_blank },
|
---|
760 | { 0 }
|
---|
761 | };
|
---|
762 |
|
---|
763 | /* Return non-zero if C is a `word-constituent' byte; zero otherwise. */
|
---|
764 | #define IS_WORD_CONSTITUENT(C) (ISALNUM(C) || (C) == '_')
|
---|
765 |
|
---|
766 | static int
|
---|
767 | looking_at (char const *s)
|
---|
768 | {
|
---|
769 | size_t len;
|
---|
770 |
|
---|
771 | len = strlen(s);
|
---|
772 | if (lexleft < len)
|
---|
773 | return 0;
|
---|
774 | return strncmp(s, lexptr, len) == 0;
|
---|
775 | }
|
---|
776 |
|
---|
777 | static token
|
---|
778 | lex (void)
|
---|
779 | {
|
---|
780 | unsigned c, c1, c2;
|
---|
781 | int backslash = 0, invert;
|
---|
782 | charclass ccl;
|
---|
783 | int i;
|
---|
784 |
|
---|
785 | /* Basic plan: We fetch a character. If it's a backslash,
|
---|
786 | we set the backslash flag and go through the loop again.
|
---|
787 | On the plus side, this avoids having a duplicate of the
|
---|
788 | main switch inside the backslash case. On the minus side,
|
---|
789 | it means that just about every case begins with
|
---|
790 | "if (backslash) ...". */
|
---|
791 | for (i = 0; i < 2; ++i)
|
---|
792 | {
|
---|
793 | FETCH(c, 0);
|
---|
794 | #ifdef MBS_SUPPORT
|
---|
795 | if (MB_CUR_MAX > 1 && cur_mb_index)
|
---|
796 | /* If this is a part of a multi-byte character, we must treat
|
---|
797 | this byte data as a normal character.
|
---|
798 | e.g. In case of SJIS encoding, some character contains '\',
|
---|
799 | but they must not be backslash. */
|
---|
800 | goto normal_char;
|
---|
801 | #endif /* MBS_SUPPORT */
|
---|
802 | switch (c)
|
---|
803 | {
|
---|
804 | case '\\':
|
---|
805 | if (backslash)
|
---|
806 | goto normal_char;
|
---|
807 | if (lexleft == 0)
|
---|
808 | dfaerror(_("Unfinished \\ escape"));
|
---|
809 | backslash = 1;
|
---|
810 | break;
|
---|
811 |
|
---|
812 | case '^':
|
---|
813 | if (backslash)
|
---|
814 | goto normal_char;
|
---|
815 | if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|
---|
816 | || lasttok == END
|
---|
817 | || lasttok == LPAREN
|
---|
818 | || lasttok == OR)
|
---|
819 | return lasttok = BEGLINE;
|
---|
820 | goto normal_char;
|
---|
821 |
|
---|
822 | case '$':
|
---|
823 | if (backslash)
|
---|
824 | goto normal_char;
|
---|
825 | if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|
---|
826 | || lexleft == 0
|
---|
827 | || (syntax_bits & RE_NO_BK_PARENS
|
---|
828 | ? lexleft > 0 && *lexptr == ')'
|
---|
829 | : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == ')')
|
---|
830 | || (syntax_bits & RE_NO_BK_VBAR
|
---|
831 | ? lexleft > 0 && *lexptr == '|'
|
---|
832 | : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == '|')
|
---|
833 | || ((syntax_bits & RE_NEWLINE_ALT)
|
---|
834 | && lexleft > 0 && *lexptr == '\n'))
|
---|
835 | return lasttok = ENDLINE;
|
---|
836 | goto normal_char;
|
---|
837 |
|
---|
838 | case '1':
|
---|
839 | case '2':
|
---|
840 | case '3':
|
---|
841 | case '4':
|
---|
842 | case '5':
|
---|
843 | case '6':
|
---|
844 | case '7':
|
---|
845 | case '8':
|
---|
846 | case '9':
|
---|
847 | if (backslash && !(syntax_bits & RE_NO_BK_REFS))
|
---|
848 | {
|
---|
849 | laststart = 0;
|
---|
850 | return lasttok = BACKREF;
|
---|
851 | }
|
---|
852 | goto normal_char;
|
---|
853 |
|
---|
854 | case '`':
|
---|
855 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
856 | return lasttok = BEGLINE; /* FIXME: should be beginning of string */
|
---|
857 | goto normal_char;
|
---|
858 |
|
---|
859 | case '\'':
|
---|
860 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
861 | return lasttok = ENDLINE; /* FIXME: should be end of string */
|
---|
862 | goto normal_char;
|
---|
863 |
|
---|
864 | case '<':
|
---|
865 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
866 | return lasttok = BEGWORD;
|
---|
867 | goto normal_char;
|
---|
868 |
|
---|
869 | case '>':
|
---|
870 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
871 | return lasttok = ENDWORD;
|
---|
872 | goto normal_char;
|
---|
873 |
|
---|
874 | case 'b':
|
---|
875 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
876 | return lasttok = LIMWORD;
|
---|
877 | goto normal_char;
|
---|
878 |
|
---|
879 | case 'B':
|
---|
880 | if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
|
---|
881 | return lasttok = NOTLIMWORD;
|
---|
882 | goto normal_char;
|
---|
883 |
|
---|
884 | case '?':
|
---|
885 | if (syntax_bits & RE_LIMITED_OPS)
|
---|
886 | goto normal_char;
|
---|
887 | if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
|
---|
888 | goto normal_char;
|
---|
889 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
890 | goto normal_char;
|
---|
891 | return lasttok = QMARK;
|
---|
892 |
|
---|
893 | case '*':
|
---|
894 | if (backslash)
|
---|
895 | goto normal_char;
|
---|
896 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
897 | goto normal_char;
|
---|
898 | return lasttok = STAR;
|
---|
899 |
|
---|
900 | case '+':
|
---|
901 | if (syntax_bits & RE_LIMITED_OPS)
|
---|
902 | goto normal_char;
|
---|
903 | if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
|
---|
904 | goto normal_char;
|
---|
905 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
906 | goto normal_char;
|
---|
907 | return lasttok = PLUS;
|
---|
908 |
|
---|
909 | case '{':
|
---|
910 | if (!(syntax_bits & RE_INTERVALS))
|
---|
911 | goto normal_char;
|
---|
912 | if (backslash != ((syntax_bits & RE_NO_BK_BRACES) == 0))
|
---|
913 | goto normal_char;
|
---|
914 | if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
|
---|
915 | goto normal_char;
|
---|
916 |
|
---|
917 | if (syntax_bits & RE_NO_BK_BRACES)
|
---|
918 | {
|
---|
919 | /* Scan ahead for a valid interval; if it's not valid,
|
---|
920 | treat it as a literal '{'. */
|
---|
921 | int lo = -1, hi = -1;
|
---|
922 | char const *p = lexptr;
|
---|
923 | char const *lim = p + lexleft;
|
---|
924 | for (; p != lim && ISASCIIDIGIT (*p); p++)
|
---|
925 | lo = (lo < 0 ? 0 : lo * 10) + *p - '0';
|
---|
926 | if (p != lim && *p == ',')
|
---|
927 | while (++p != lim && ISASCIIDIGIT (*p))
|
---|
928 | hi = (hi < 0 ? 0 : hi * 10) + *p - '0';
|
---|
929 | else
|
---|
930 | hi = lo;
|
---|
931 | if (p == lim || *p != '}'
|
---|
932 | || lo < 0 || RE_DUP_MAX < hi || (0 <= hi && hi < lo))
|
---|
933 | goto normal_char;
|
---|
934 | }
|
---|
935 |
|
---|
936 | minrep = 0;
|
---|
937 | /* Cases:
|
---|
938 | {M} - exact count
|
---|
939 | {M,} - minimum count, maximum is infinity
|
---|
940 | {M,N} - M through N */
|
---|
941 | FETCH(c, _("unfinished repeat count"));
|
---|
942 | if (ISASCIIDIGIT (c))
|
---|
943 | {
|
---|
944 | minrep = c - '0';
|
---|
945 | for (;;)
|
---|
946 | {
|
---|
947 | FETCH(c, _("unfinished repeat count"));
|
---|
948 | if (! ISASCIIDIGIT (c))
|
---|
949 | break;
|
---|
950 | minrep = 10 * minrep + c - '0';
|
---|
951 | }
|
---|
952 | }
|
---|
953 | else
|
---|
954 | dfaerror(_("malformed repeat count"));
|
---|
955 | if (c == ',')
|
---|
956 | {
|
---|
957 | FETCH (c, _("unfinished repeat count"));
|
---|
958 | if (! ISASCIIDIGIT (c))
|
---|
959 | maxrep = -1;
|
---|
960 | else
|
---|
961 | {
|
---|
962 | maxrep = c - '0';
|
---|
963 | for (;;)
|
---|
964 | {
|
---|
965 | FETCH (c, _("unfinished repeat count"));
|
---|
966 | if (! ISASCIIDIGIT (c))
|
---|
967 | break;
|
---|
968 | maxrep = 10 * maxrep + c - '0';
|
---|
969 | }
|
---|
970 | if (0 <= maxrep && maxrep < minrep)
|
---|
971 | dfaerror (_("malformed repeat count"));
|
---|
972 | }
|
---|
973 | }
|
---|
974 | else
|
---|
975 | maxrep = minrep;
|
---|
976 | if (!(syntax_bits & RE_NO_BK_BRACES))
|
---|
977 | {
|
---|
978 | if (c != '\\')
|
---|
979 | dfaerror(_("malformed repeat count"));
|
---|
980 | FETCH(c, _("unfinished repeat count"));
|
---|
981 | }
|
---|
982 | if (c != '}')
|
---|
983 | dfaerror(_("malformed repeat count"));
|
---|
984 | laststart = 0;
|
---|
985 | return lasttok = REPMN;
|
---|
986 |
|
---|
987 | case '|':
|
---|
988 | if (syntax_bits & RE_LIMITED_OPS)
|
---|
989 | goto normal_char;
|
---|
990 | if (backslash != ((syntax_bits & RE_NO_BK_VBAR) == 0))
|
---|
991 | goto normal_char;
|
---|
992 | laststart = 1;
|
---|
993 | return lasttok = OR;
|
---|
994 |
|
---|
995 | case '\n':
|
---|
996 | if (syntax_bits & RE_LIMITED_OPS
|
---|
997 | || backslash
|
---|
998 | || !(syntax_bits & RE_NEWLINE_ALT))
|
---|
999 | goto normal_char;
|
---|
1000 | laststart = 1;
|
---|
1001 | return lasttok = OR;
|
---|
1002 |
|
---|
1003 | case '(':
|
---|
1004 | if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
|
---|
1005 | goto normal_char;
|
---|
1006 | ++parens;
|
---|
1007 | laststart = 1;
|
---|
1008 | return lasttok = LPAREN;
|
---|
1009 |
|
---|
1010 | case ')':
|
---|
1011 | if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
|
---|
1012 | goto normal_char;
|
---|
1013 | if (parens == 0 && syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
---|
1014 | goto normal_char;
|
---|
1015 | --parens;
|
---|
1016 | laststart = 0;
|
---|
1017 | return lasttok = RPAREN;
|
---|
1018 |
|
---|
1019 | case '.':
|
---|
1020 | if (backslash)
|
---|
1021 | goto normal_char;
|
---|
1022 | #ifdef MBS_SUPPORT
|
---|
1023 | if (MB_CUR_MAX > 1)
|
---|
1024 | {
|
---|
1025 | /* In multibyte environment period must match with a single
|
---|
1026 | character not a byte. So we use ANYCHAR. */
|
---|
1027 | laststart = 0;
|
---|
1028 | return lasttok = ANYCHAR;
|
---|
1029 | }
|
---|
1030 | #endif /* MBS_SUPPORT */
|
---|
1031 | zeroset(ccl);
|
---|
1032 | notset(ccl);
|
---|
1033 | if (!(syntax_bits & RE_DOT_NEWLINE))
|
---|
1034 | clrbit(eolbyte, ccl);
|
---|
1035 | if (syntax_bits & RE_DOT_NOT_NULL)
|
---|
1036 | clrbit('\0', ccl);
|
---|
1037 | laststart = 0;
|
---|
1038 | return lasttok = CSET + charclass_index(ccl);
|
---|
1039 |
|
---|
1040 | #ifndef GAWK
|
---|
1041 | case 's':
|
---|
1042 | case 'S':
|
---|
1043 | if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
|
---|
1044 | goto normal_char;
|
---|
1045 | zeroset(ccl);
|
---|
1046 | for (c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
1047 | if (ISSPACE(c2))
|
---|
1048 | setbit(c2, ccl);
|
---|
1049 | if (c == 'S')
|
---|
1050 | notset(ccl);
|
---|
1051 | laststart = 0;
|
---|
1052 | return lasttok = CSET + charclass_index(ccl);
|
---|
1053 | #endif
|
---|
1054 |
|
---|
1055 | case 'w':
|
---|
1056 | case 'W':
|
---|
1057 | if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
|
---|
1058 | goto normal_char;
|
---|
1059 | zeroset(ccl);
|
---|
1060 | for (c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
1061 | if (IS_WORD_CONSTITUENT(c2))
|
---|
1062 | setbit(c2, ccl);
|
---|
1063 | if (c == 'W')
|
---|
1064 | notset(ccl);
|
---|
1065 | laststart = 0;
|
---|
1066 | return lasttok = CSET + charclass_index(ccl);
|
---|
1067 |
|
---|
1068 | case '[':
|
---|
1069 | if (backslash)
|
---|
1070 | goto normal_char;
|
---|
1071 | laststart = 0;
|
---|
1072 | #ifdef MBS_SUPPORT
|
---|
1073 | if (MB_CUR_MAX > 1)
|
---|
1074 | {
|
---|
1075 | /* In multibyte environment a bracket expression may contain
|
---|
1076 | multibyte characters, which must be treated as characters
|
---|
1077 | (not bytes). So we parse it by parse_bracket_exp_mb(). */
|
---|
1078 | parse_bracket_exp_mb();
|
---|
1079 | return lasttok = MBCSET;
|
---|
1080 | }
|
---|
1081 | #endif
|
---|
1082 | zeroset(ccl);
|
---|
1083 | FETCH(c, _("Unbalanced ["));
|
---|
1084 | if (c == '^')
|
---|
1085 | {
|
---|
1086 | FETCH(c, _("Unbalanced ["));
|
---|
1087 | invert = 1;
|
---|
1088 | }
|
---|
1089 | else
|
---|
1090 | invert = 0;
|
---|
1091 | do
|
---|
1092 | {
|
---|
1093 | /* Nobody ever said this had to be fast. :-)
|
---|
1094 | Note that if we're looking at some other [:...:]
|
---|
1095 | construct, we just treat it as a bunch of ordinary
|
---|
1096 | characters. We can do this because we assume
|
---|
1097 | regex has checked for syntax errors before
|
---|
1098 | dfa is ever called. */
|
---|
1099 | if (c == '[' && (syntax_bits & RE_CHAR_CLASSES))
|
---|
1100 | for (c1 = 0; prednames[c1].name; ++c1)
|
---|
1101 | if (looking_at(prednames[c1].name))
|
---|
1102 | {
|
---|
1103 | int (*pred) PARAMS ((int)) = prednames[c1].pred;
|
---|
1104 |
|
---|
1105 | for (c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
1106 | if ((*pred)(c2))
|
---|
1107 | setbit_case_fold (c2, ccl);
|
---|
1108 | lexptr += strlen(prednames[c1].name);
|
---|
1109 | lexleft -= strlen(prednames[c1].name);
|
---|
1110 | FETCH(c1, _("Unbalanced ["));
|
---|
1111 | goto skip;
|
---|
1112 | }
|
---|
1113 | if (c == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
1114 | FETCH(c, _("Unbalanced ["));
|
---|
1115 | FETCH(c1, _("Unbalanced ["));
|
---|
1116 | if (c1 == '-')
|
---|
1117 | {
|
---|
1118 | FETCH(c2, _("Unbalanced ["));
|
---|
1119 | if (c2 == ']')
|
---|
1120 | {
|
---|
1121 | /* In the case [x-], the - is an ordinary hyphen,
|
---|
1122 | which is left in c1, the lookahead character. */
|
---|
1123 | --lexptr;
|
---|
1124 | ++lexleft;
|
---|
1125 | }
|
---|
1126 | else
|
---|
1127 | {
|
---|
1128 | if (c2 == '\\'
|
---|
1129 | && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
1130 | FETCH(c2, _("Unbalanced ["));
|
---|
1131 | FETCH(c1, _("Unbalanced ["));
|
---|
1132 | if (!hard_LC_COLLATE) {
|
---|
1133 | for (; c <= c2; c++)
|
---|
1134 | setbit_case_fold (c, ccl);
|
---|
1135 | } else {
|
---|
1136 | /* POSIX locales are painful - leave the decision to libc */
|
---|
1137 | regex_t re;
|
---|
1138 | char expr[6]; /* = { '[', c, '-', c2, ']', '\0' }; */
|
---|
1139 |
|
---|
1140 | expr[0] = '['; expr[1] = c; expr[2] = '-';
|
---|
1141 | expr[3] = c2; expr[4] = ']'; expr[5] = '\0';
|
---|
1142 | if (regcomp (&re, expr, case_fold ? REG_ICASE : 0) == REG_NOERROR) {
|
---|
1143 | for (c = 0; c < NOTCHAR; ++c) {
|
---|
1144 | regmatch_t mat;
|
---|
1145 | char buf[2]; /* = { c, '\0' }; */
|
---|
1146 |
|
---|
1147 | buf[0] = c; buf[1] = '\0';
|
---|
1148 | if (regexec (&re, buf, 1, &mat, 0) == REG_NOERROR
|
---|
1149 | && mat.rm_so == 0 && mat.rm_eo == 1)
|
---|
1150 | setbit_case_fold (c, ccl);
|
---|
1151 | }
|
---|
1152 | regfree (&re);
|
---|
1153 | }
|
---|
1154 | }
|
---|
1155 | continue;
|
---|
1156 | }
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | setbit_case_fold (c, ccl);
|
---|
1160 |
|
---|
1161 | skip:
|
---|
1162 | ;
|
---|
1163 | }
|
---|
1164 | while ((c = c1) != ']');
|
---|
1165 | if (invert)
|
---|
1166 | {
|
---|
1167 | notset(ccl);
|
---|
1168 | if (syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
|
---|
1169 | clrbit(eolbyte, ccl);
|
---|
1170 | }
|
---|
1171 | return lasttok = CSET + charclass_index(ccl);
|
---|
1172 |
|
---|
1173 | default:
|
---|
1174 | normal_char:
|
---|
1175 | laststart = 0;
|
---|
1176 | if (case_fold && ISALPHA(c))
|
---|
1177 | {
|
---|
1178 | zeroset(ccl);
|
---|
1179 | setbit_case_fold (c, ccl);
|
---|
1180 | return lasttok = CSET + charclass_index(ccl);
|
---|
1181 | }
|
---|
1182 | return lasttok = c;
|
---|
1183 | }
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | /* The above loop should consume at most a backslash
|
---|
1187 | and some other character. */
|
---|
1188 | abort();
|
---|
1189 | return END; /* keeps pedantic compilers happy. */
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | /* Recursive descent parser for regular expressions. */
|
---|
1193 |
|
---|
1194 | static token tok; /* Lookahead token. */
|
---|
1195 | static int depth; /* Current depth of a hypothetical stack
|
---|
1196 | holding deferred productions. This is
|
---|
1197 | used to determine the depth that will be
|
---|
1198 | required of the real stack later on in
|
---|
1199 | dfaanalyze(). */
|
---|
1200 |
|
---|
1201 | /* Add the given token to the parse tree, maintaining the depth count and
|
---|
1202 | updating the maximum depth if necessary. */
|
---|
1203 | static void
|
---|
1204 | addtok (token t)
|
---|
1205 | {
|
---|
1206 | #ifdef MBS_SUPPORT
|
---|
1207 | if (MB_CUR_MAX > 1)
|
---|
1208 | {
|
---|
1209 | REALLOC_IF_NECESSARY(dfa->multibyte_prop, int, dfa->nmultibyte_prop,
|
---|
1210 | dfa->tindex);
|
---|
1211 | /* Set dfa->multibyte_prop. See struct dfa in dfa.h. */
|
---|
1212 | if (t == MBCSET)
|
---|
1213 | dfa->multibyte_prop[dfa->tindex] = ((dfa->nmbcsets - 1) << 2) + 3;
|
---|
1214 | else if (t < NOTCHAR)
|
---|
1215 | dfa->multibyte_prop[dfa->tindex]
|
---|
1216 | = (cur_mb_len == 1)? 3 /* single-byte char */
|
---|
1217 | : (((cur_mb_index == 1)? 1 : 0) /* 1st-byte of multibyte char */
|
---|
1218 | + ((cur_mb_index == cur_mb_len)? 2 : 0)); /* last-byte */
|
---|
1219 | else
|
---|
1220 | /* It may be unnecessary, but it is safer to treat other
|
---|
1221 | symbols as single byte characters. */
|
---|
1222 | dfa->multibyte_prop[dfa->tindex] = 3;
|
---|
1223 | }
|
---|
1224 | #endif
|
---|
1225 |
|
---|
1226 | REALLOC_IF_NECESSARY(dfa->tokens, token, dfa->talloc, dfa->tindex);
|
---|
1227 | dfa->tokens[dfa->tindex++] = t;
|
---|
1228 |
|
---|
1229 | switch (t)
|
---|
1230 | {
|
---|
1231 | case QMARK:
|
---|
1232 | case STAR:
|
---|
1233 | case PLUS:
|
---|
1234 | break;
|
---|
1235 |
|
---|
1236 | case CAT:
|
---|
1237 | case OR:
|
---|
1238 | case ORTOP:
|
---|
1239 | --depth;
|
---|
1240 | break;
|
---|
1241 |
|
---|
1242 | default:
|
---|
1243 | ++dfa->nleaves;
|
---|
1244 | case EMPTY:
|
---|
1245 | ++depth;
|
---|
1246 | break;
|
---|
1247 | }
|
---|
1248 | if (depth > dfa->depth)
|
---|
1249 | dfa->depth = depth;
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 | /* The grammar understood by the parser is as follows.
|
---|
1253 |
|
---|
1254 | regexp:
|
---|
1255 | regexp OR branch
|
---|
1256 | branch
|
---|
1257 |
|
---|
1258 | branch:
|
---|
1259 | branch closure
|
---|
1260 | closure
|
---|
1261 |
|
---|
1262 | closure:
|
---|
1263 | closure QMARK
|
---|
1264 | closure STAR
|
---|
1265 | closure PLUS
|
---|
1266 | closure REPMN
|
---|
1267 | atom
|
---|
1268 |
|
---|
1269 | atom:
|
---|
1270 | <normal character>
|
---|
1271 | <multibyte character>
|
---|
1272 | ANYCHAR
|
---|
1273 | MBCSET
|
---|
1274 | CSET
|
---|
1275 | BACKREF
|
---|
1276 | BEGLINE
|
---|
1277 | ENDLINE
|
---|
1278 | BEGWORD
|
---|
1279 | ENDWORD
|
---|
1280 | LIMWORD
|
---|
1281 | NOTLIMWORD
|
---|
1282 | CRANGE
|
---|
1283 | LPAREN regexp RPAREN
|
---|
1284 | <empty>
|
---|
1285 |
|
---|
1286 | The parser builds a parse tree in postfix form in an array of tokens. */
|
---|
1287 |
|
---|
1288 | static void
|
---|
1289 | atom (void)
|
---|
1290 | {
|
---|
1291 | if ((tok >= 0 && tok < NOTCHAR) || tok >= CSET || tok == BACKREF
|
---|
1292 | || tok == BEGLINE || tok == ENDLINE || tok == BEGWORD
|
---|
1293 | #ifdef MBS_SUPPORT
|
---|
1294 | || tok == ANYCHAR || tok == MBCSET /* MB_CUR_MAX > 1 */
|
---|
1295 | #endif /* MBS_SUPPORT */
|
---|
1296 | || tok == ENDWORD || tok == LIMWORD || tok == NOTLIMWORD)
|
---|
1297 | {
|
---|
1298 | addtok(tok);
|
---|
1299 | tok = lex();
|
---|
1300 | #ifdef MBS_SUPPORT
|
---|
1301 | /* We treat a multibyte character as a single atom, so that DFA
|
---|
1302 | can treat a multibyte character as a single expression.
|
---|
1303 |
|
---|
1304 | e.g. We construct following tree from "<mb1><mb2>".
|
---|
1305 | <mb1(1st-byte)><mb1(2nd-byte)><CAT><mb1(3rd-byte)><CAT>
|
---|
1306 | <mb2(1st-byte)><mb2(2nd-byte)><CAT><mb2(3rd-byte)><CAT><CAT>
|
---|
1307 | */
|
---|
1308 | if (MB_CUR_MAX > 1)
|
---|
1309 | {
|
---|
1310 | while (cur_mb_index > 1 && tok >= 0 && tok < NOTCHAR)
|
---|
1311 | {
|
---|
1312 | addtok(tok);
|
---|
1313 | addtok(CAT);
|
---|
1314 | tok = lex();
|
---|
1315 | }
|
---|
1316 | }
|
---|
1317 | #endif /* MBS_SUPPORT */
|
---|
1318 | }
|
---|
1319 | else if (tok == CRANGE)
|
---|
1320 | {
|
---|
1321 | /* A character range like "[a-z]" in a locale other than "C" or
|
---|
1322 | "POSIX". This range might any sequence of one or more
|
---|
1323 | characters. Unfortunately the POSIX locale primitives give
|
---|
1324 | us no practical way to find what character sequences might be
|
---|
1325 | matched. Treat this approximately like "(.\1)" -- i.e. match
|
---|
1326 | one character, and then punt to the full matcher. */
|
---|
1327 | charclass ccl;
|
---|
1328 | zeroset (ccl);
|
---|
1329 | notset (ccl);
|
---|
1330 | addtok (CSET + charclass_index (ccl));
|
---|
1331 | addtok (BACKREF);
|
---|
1332 | addtok (CAT);
|
---|
1333 | tok = lex ();
|
---|
1334 | }
|
---|
1335 | else if (tok == LPAREN)
|
---|
1336 | {
|
---|
1337 | tok = lex();
|
---|
1338 | regexp(0);
|
---|
1339 | if (tok != RPAREN)
|
---|
1340 | dfaerror(_("Unbalanced ("));
|
---|
1341 | tok = lex();
|
---|
1342 | }
|
---|
1343 | else
|
---|
1344 | addtok(EMPTY);
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | /* Return the number of tokens in the given subexpression. */
|
---|
1348 | static int
|
---|
1349 | nsubtoks (int tindex)
|
---|
1350 | {
|
---|
1351 | int ntoks1;
|
---|
1352 |
|
---|
1353 | switch (dfa->tokens[tindex - 1])
|
---|
1354 | {
|
---|
1355 | default:
|
---|
1356 | return 1;
|
---|
1357 | case QMARK:
|
---|
1358 | case STAR:
|
---|
1359 | case PLUS:
|
---|
1360 | return 1 + nsubtoks(tindex - 1);
|
---|
1361 | case CAT:
|
---|
1362 | case OR:
|
---|
1363 | case ORTOP:
|
---|
1364 | ntoks1 = nsubtoks(tindex - 1);
|
---|
1365 | return 1 + ntoks1 + nsubtoks(tindex - 1 - ntoks1);
|
---|
1366 | }
|
---|
1367 | }
|
---|
1368 |
|
---|
1369 | /* Copy the given subexpression to the top of the tree. */
|
---|
1370 | static void
|
---|
1371 | copytoks (int tindex, int ntokens)
|
---|
1372 | {
|
---|
1373 | int i;
|
---|
1374 |
|
---|
1375 | for (i = 0; i < ntokens; ++i)
|
---|
1376 | addtok(dfa->tokens[tindex + i]);
|
---|
1377 | }
|
---|
1378 |
|
---|
1379 | static void
|
---|
1380 | closure (void)
|
---|
1381 | {
|
---|
1382 | int tindex, ntokens, i;
|
---|
1383 |
|
---|
1384 | atom();
|
---|
1385 | while (tok == QMARK || tok == STAR || tok == PLUS || tok == REPMN)
|
---|
1386 | if (tok == REPMN)
|
---|
1387 | {
|
---|
1388 | ntokens = nsubtoks(dfa->tindex);
|
---|
1389 | tindex = dfa->tindex - ntokens;
|
---|
1390 | if (maxrep < 0)
|
---|
1391 | addtok(PLUS);
|
---|
1392 | if (minrep == 0)
|
---|
1393 | addtok(QMARK);
|
---|
1394 | for (i = 1; i < minrep; ++i)
|
---|
1395 | {
|
---|
1396 | copytoks(tindex, ntokens);
|
---|
1397 | addtok(CAT);
|
---|
1398 | }
|
---|
1399 | for (; i < maxrep; ++i)
|
---|
1400 | {
|
---|
1401 | copytoks(tindex, ntokens);
|
---|
1402 | addtok(QMARK);
|
---|
1403 | addtok(CAT);
|
---|
1404 | }
|
---|
1405 | tok = lex();
|
---|
1406 | }
|
---|
1407 | else
|
---|
1408 | {
|
---|
1409 | addtok(tok);
|
---|
1410 | tok = lex();
|
---|
1411 | }
|
---|
1412 | }
|
---|
1413 |
|
---|
1414 | static void
|
---|
1415 | branch (void)
|
---|
1416 | {
|
---|
1417 | closure();
|
---|
1418 | while (tok != RPAREN && tok != OR && tok >= 0)
|
---|
1419 | {
|
---|
1420 | closure();
|
---|
1421 | addtok(CAT);
|
---|
1422 | }
|
---|
1423 | }
|
---|
1424 |
|
---|
1425 | static void
|
---|
1426 | regexp (int toplevel)
|
---|
1427 | {
|
---|
1428 | branch();
|
---|
1429 | while (tok == OR)
|
---|
1430 | {
|
---|
1431 | tok = lex();
|
---|
1432 | branch();
|
---|
1433 | if (toplevel)
|
---|
1434 | addtok(ORTOP);
|
---|
1435 | else
|
---|
1436 | addtok(OR);
|
---|
1437 | }
|
---|
1438 | }
|
---|
1439 |
|
---|
1440 | /* Main entry point for the parser. S is a string to be parsed, len is the
|
---|
1441 | length of the string, so s can include NUL characters. D is a pointer to
|
---|
1442 | the struct dfa to parse into. */
|
---|
1443 | void
|
---|
1444 | dfaparse (char const *s, size_t len, struct dfa *d)
|
---|
1445 | {
|
---|
1446 | dfa = d;
|
---|
1447 | lexptr = s;
|
---|
1448 | lexleft = len;
|
---|
1449 | lasttok = END;
|
---|
1450 | laststart = 1;
|
---|
1451 | parens = 0;
|
---|
1452 | #ifdef LC_COLLATE
|
---|
1453 | hard_LC_COLLATE = hard_locale (LC_COLLATE);
|
---|
1454 | #endif
|
---|
1455 | #ifdef MBS_SUPPORT
|
---|
1456 | if (MB_CUR_MAX > 1)
|
---|
1457 | {
|
---|
1458 | cur_mb_index = 0;
|
---|
1459 | cur_mb_len = 0;
|
---|
1460 | memset(&mbs, 0, sizeof(mbstate_t));
|
---|
1461 | }
|
---|
1462 | #endif /* MBS_SUPPORT */
|
---|
1463 |
|
---|
1464 | if (! syntax_bits_set)
|
---|
1465 | dfaerror(_("No syntax specified"));
|
---|
1466 |
|
---|
1467 | tok = lex();
|
---|
1468 | depth = d->depth;
|
---|
1469 |
|
---|
1470 | regexp(1);
|
---|
1471 |
|
---|
1472 | if (tok != END)
|
---|
1473 | dfaerror(_("Unbalanced )"));
|
---|
1474 |
|
---|
1475 | addtok(END - d->nregexps);
|
---|
1476 | addtok(CAT);
|
---|
1477 |
|
---|
1478 | if (d->nregexps)
|
---|
1479 | addtok(ORTOP);
|
---|
1480 |
|
---|
1481 | ++d->nregexps;
|
---|
1482 | }
|
---|
1483 |
|
---|
1484 | /* Some primitives for operating on sets of positions. */
|
---|
1485 |
|
---|
1486 | /* Copy one set to another; the destination must be large enough. */
|
---|
1487 | static void
|
---|
1488 | copy (position_set const *src, position_set *dst)
|
---|
1489 | {
|
---|
1490 | int i;
|
---|
1491 |
|
---|
1492 | for (i = 0; i < src->nelem; ++i)
|
---|
1493 | dst->elems[i] = src->elems[i];
|
---|
1494 | dst->nelem = src->nelem;
|
---|
1495 | }
|
---|
1496 |
|
---|
1497 | /* Insert a position in a set. Position sets are maintained in sorted
|
---|
1498 | order according to index. If position already exists in the set with
|
---|
1499 | the same index then their constraints are logically or'd together.
|
---|
1500 | S->elems must point to an array large enough to hold the resulting set. */
|
---|
1501 | static void
|
---|
1502 | insert (position p, position_set *s)
|
---|
1503 | {
|
---|
1504 | int i;
|
---|
1505 | position t1, t2;
|
---|
1506 |
|
---|
1507 | for (i = 0; i < s->nelem && p.index < s->elems[i].index; ++i)
|
---|
1508 | continue;
|
---|
1509 | if (i < s->nelem && p.index == s->elems[i].index)
|
---|
1510 | s->elems[i].constraint |= p.constraint;
|
---|
1511 | else
|
---|
1512 | {
|
---|
1513 | t1 = p;
|
---|
1514 | ++s->nelem;
|
---|
1515 | while (i < s->nelem)
|
---|
1516 | {
|
---|
1517 | t2 = s->elems[i];
|
---|
1518 | s->elems[i++] = t1;
|
---|
1519 | t1 = t2;
|
---|
1520 | }
|
---|
1521 | }
|
---|
1522 | }
|
---|
1523 |
|
---|
1524 | /* Merge two sets of positions into a third. The result is exactly as if
|
---|
1525 | the positions of both sets were inserted into an initially empty set. */
|
---|
1526 | static void
|
---|
1527 | merge (position_set const *s1, position_set const *s2, position_set *m)
|
---|
1528 | {
|
---|
1529 | int i = 0, j = 0;
|
---|
1530 |
|
---|
1531 | m->nelem = 0;
|
---|
1532 | while (i < s1->nelem && j < s2->nelem)
|
---|
1533 | if (s1->elems[i].index > s2->elems[j].index)
|
---|
1534 | m->elems[m->nelem++] = s1->elems[i++];
|
---|
1535 | else if (s1->elems[i].index < s2->elems[j].index)
|
---|
1536 | m->elems[m->nelem++] = s2->elems[j++];
|
---|
1537 | else
|
---|
1538 | {
|
---|
1539 | m->elems[m->nelem] = s1->elems[i++];
|
---|
1540 | m->elems[m->nelem++].constraint |= s2->elems[j++].constraint;
|
---|
1541 | }
|
---|
1542 | while (i < s1->nelem)
|
---|
1543 | m->elems[m->nelem++] = s1->elems[i++];
|
---|
1544 | while (j < s2->nelem)
|
---|
1545 | m->elems[m->nelem++] = s2->elems[j++];
|
---|
1546 | }
|
---|
1547 |
|
---|
1548 | /* Delete a position from a set. */
|
---|
1549 | static void
|
---|
1550 | delete (position p, position_set *s)
|
---|
1551 | {
|
---|
1552 | int i;
|
---|
1553 |
|
---|
1554 | for (i = 0; i < s->nelem; ++i)
|
---|
1555 | if (p.index == s->elems[i].index)
|
---|
1556 | break;
|
---|
1557 | if (i < s->nelem)
|
---|
1558 | for (--s->nelem; i < s->nelem; ++i)
|
---|
1559 | s->elems[i] = s->elems[i + 1];
|
---|
1560 | }
|
---|
1561 |
|
---|
1562 | /* Find the index of the state corresponding to the given position set with
|
---|
1563 | the given preceding context, or create a new state if there is no such
|
---|
1564 | state. Newline and letter tell whether we got here on a newline or
|
---|
1565 | letter, respectively. */
|
---|
1566 | static int
|
---|
1567 | state_index (struct dfa *d, position_set const *s, int newline, int letter)
|
---|
1568 | {
|
---|
1569 | int hash = 0;
|
---|
1570 | int constraint;
|
---|
1571 | int i, j;
|
---|
1572 |
|
---|
1573 | newline = newline ? 1 : 0;
|
---|
1574 | letter = letter ? 1 : 0;
|
---|
1575 |
|
---|
1576 | for (i = 0; i < s->nelem; ++i)
|
---|
1577 | hash ^= s->elems[i].index + s->elems[i].constraint;
|
---|
1578 |
|
---|
1579 | /* Try to find a state that exactly matches the proposed one. */
|
---|
1580 | for (i = 0; i < d->sindex; ++i)
|
---|
1581 | {
|
---|
1582 | if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
|
---|
1583 | || newline != d->states[i].newline || letter != d->states[i].letter)
|
---|
1584 | continue;
|
---|
1585 | for (j = 0; j < s->nelem; ++j)
|
---|
1586 | if (s->elems[j].constraint
|
---|
1587 | != d->states[i].elems.elems[j].constraint
|
---|
1588 | || s->elems[j].index != d->states[i].elems.elems[j].index)
|
---|
1589 | break;
|
---|
1590 | if (j == s->nelem)
|
---|
1591 | return i;
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 | /* We'll have to create a new state. */
|
---|
1595 | REALLOC_IF_NECESSARY(d->states, dfa_state, d->salloc, d->sindex);
|
---|
1596 | d->states[i].hash = hash;
|
---|
1597 | MALLOC(d->states[i].elems.elems, position, s->nelem);
|
---|
1598 | copy(s, &d->states[i].elems);
|
---|
1599 | d->states[i].newline = newline;
|
---|
1600 | d->states[i].letter = letter;
|
---|
1601 | d->states[i].backref = 0;
|
---|
1602 | d->states[i].constraint = 0;
|
---|
1603 | d->states[i].first_end = 0;
|
---|
1604 | #ifdef MBS_SUPPORT
|
---|
1605 | if (MB_CUR_MAX > 1)
|
---|
1606 | d->states[i].mbps.nelem = 0;
|
---|
1607 | #endif
|
---|
1608 | for (j = 0; j < s->nelem; ++j)
|
---|
1609 | if (d->tokens[s->elems[j].index] < 0)
|
---|
1610 | {
|
---|
1611 | constraint = s->elems[j].constraint;
|
---|
1612 | if (SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 0)
|
---|
1613 | || SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 1)
|
---|
1614 | || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 0)
|
---|
1615 | || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 1))
|
---|
1616 | d->states[i].constraint |= constraint;
|
---|
1617 | if (! d->states[i].first_end)
|
---|
1618 | d->states[i].first_end = d->tokens[s->elems[j].index];
|
---|
1619 | }
|
---|
1620 | else if (d->tokens[s->elems[j].index] == BACKREF)
|
---|
1621 | {
|
---|
1622 | d->states[i].constraint = NO_CONSTRAINT;
|
---|
1623 | d->states[i].backref = 1;
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | ++d->sindex;
|
---|
1627 |
|
---|
1628 | return i;
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | /* Find the epsilon closure of a set of positions. If any position of the set
|
---|
1632 | contains a symbol that matches the empty string in some context, replace
|
---|
1633 | that position with the elements of its follow labeled with an appropriate
|
---|
1634 | constraint. Repeat exhaustively until no funny positions are left.
|
---|
1635 | S->elems must be large enough to hold the result. */
|
---|
1636 | static void
|
---|
1637 | epsclosure (position_set *s, struct dfa const *d)
|
---|
1638 | {
|
---|
1639 | int i, j;
|
---|
1640 | int *visited;
|
---|
1641 | position p, old;
|
---|
1642 |
|
---|
1643 | MALLOC(visited, int, d->tindex);
|
---|
1644 | for (i = 0; i < d->tindex; ++i)
|
---|
1645 | visited[i] = 0;
|
---|
1646 |
|
---|
1647 | for (i = 0; i < s->nelem; ++i)
|
---|
1648 | if (d->tokens[s->elems[i].index] >= NOTCHAR
|
---|
1649 | && d->tokens[s->elems[i].index] != BACKREF
|
---|
1650 | #ifdef MBS_SUPPORT
|
---|
1651 | && d->tokens[s->elems[i].index] != ANYCHAR
|
---|
1652 | && d->tokens[s->elems[i].index] != MBCSET
|
---|
1653 | #endif
|
---|
1654 | && d->tokens[s->elems[i].index] < CSET)
|
---|
1655 | {
|
---|
1656 | old = s->elems[i];
|
---|
1657 | p.constraint = old.constraint;
|
---|
1658 | delete(s->elems[i], s);
|
---|
1659 | if (visited[old.index])
|
---|
1660 | {
|
---|
1661 | --i;
|
---|
1662 | continue;
|
---|
1663 | }
|
---|
1664 | visited[old.index] = 1;
|
---|
1665 | switch (d->tokens[old.index])
|
---|
1666 | {
|
---|
1667 | case BEGLINE:
|
---|
1668 | p.constraint &= BEGLINE_CONSTRAINT;
|
---|
1669 | break;
|
---|
1670 | case ENDLINE:
|
---|
1671 | p.constraint &= ENDLINE_CONSTRAINT;
|
---|
1672 | break;
|
---|
1673 | case BEGWORD:
|
---|
1674 | p.constraint &= BEGWORD_CONSTRAINT;
|
---|
1675 | break;
|
---|
1676 | case ENDWORD:
|
---|
1677 | p.constraint &= ENDWORD_CONSTRAINT;
|
---|
1678 | break;
|
---|
1679 | case LIMWORD:
|
---|
1680 | p.constraint &= LIMWORD_CONSTRAINT;
|
---|
1681 | break;
|
---|
1682 | case NOTLIMWORD:
|
---|
1683 | p.constraint &= NOTLIMWORD_CONSTRAINT;
|
---|
1684 | break;
|
---|
1685 | default:
|
---|
1686 | break;
|
---|
1687 | }
|
---|
1688 | for (j = 0; j < d->follows[old.index].nelem; ++j)
|
---|
1689 | {
|
---|
1690 | p.index = d->follows[old.index].elems[j].index;
|
---|
1691 | insert(p, s);
|
---|
1692 | }
|
---|
1693 | /* Force rescan to start at the beginning. */
|
---|
1694 | i = -1;
|
---|
1695 | }
|
---|
1696 |
|
---|
1697 | free(visited);
|
---|
1698 | }
|
---|
1699 |
|
---|
1700 | /* Perform bottom-up analysis on the parse tree, computing various functions.
|
---|
1701 | Note that at this point, we're pretending constructs like \< are real
|
---|
1702 | characters rather than constraints on what can follow them.
|
---|
1703 |
|
---|
1704 | Nullable: A node is nullable if it is at the root of a regexp that can
|
---|
1705 | match the empty string.
|
---|
1706 | * EMPTY leaves are nullable.
|
---|
1707 | * No other leaf is nullable.
|
---|
1708 | * A QMARK or STAR node is nullable.
|
---|
1709 | * A PLUS node is nullable if its argument is nullable.
|
---|
1710 | * A CAT node is nullable if both its arguments are nullable.
|
---|
1711 | * An OR node is nullable if either argument is nullable.
|
---|
1712 |
|
---|
1713 | Firstpos: The firstpos of a node is the set of positions (nonempty leaves)
|
---|
1714 | that could correspond to the first character of a string matching the
|
---|
1715 | regexp rooted at the given node.
|
---|
1716 | * EMPTY leaves have empty firstpos.
|
---|
1717 | * The firstpos of a nonempty leaf is that leaf itself.
|
---|
1718 | * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
|
---|
1719 | argument.
|
---|
1720 | * The firstpos of a CAT node is the firstpos of the left argument, union
|
---|
1721 | the firstpos of the right if the left argument is nullable.
|
---|
1722 | * The firstpos of an OR node is the union of firstpos of each argument.
|
---|
1723 |
|
---|
1724 | Lastpos: The lastpos of a node is the set of positions that could
|
---|
1725 | correspond to the last character of a string matching the regexp at
|
---|
1726 | the given node.
|
---|
1727 | * EMPTY leaves have empty lastpos.
|
---|
1728 | * The lastpos of a nonempty leaf is that leaf itself.
|
---|
1729 | * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
|
---|
1730 | argument.
|
---|
1731 | * The lastpos of a CAT node is the lastpos of its right argument, union
|
---|
1732 | the lastpos of the left if the right argument is nullable.
|
---|
1733 | * The lastpos of an OR node is the union of the lastpos of each argument.
|
---|
1734 |
|
---|
1735 | Follow: The follow of a position is the set of positions that could
|
---|
1736 | correspond to the character following a character matching the node in
|
---|
1737 | a string matching the regexp. At this point we consider special symbols
|
---|
1738 | that match the empty string in some context to be just normal characters.
|
---|
1739 | Later, if we find that a special symbol is in a follow set, we will
|
---|
1740 | replace it with the elements of its follow, labeled with an appropriate
|
---|
1741 | constraint.
|
---|
1742 | * Every node in the firstpos of the argument of a STAR or PLUS node is in
|
---|
1743 | the follow of every node in the lastpos.
|
---|
1744 | * Every node in the firstpos of the second argument of a CAT node is in
|
---|
1745 | the follow of every node in the lastpos of the first argument.
|
---|
1746 |
|
---|
1747 | Because of the postfix representation of the parse tree, the depth-first
|
---|
1748 | analysis is conveniently done by a linear scan with the aid of a stack.
|
---|
1749 | Sets are stored as arrays of the elements, obeying a stack-like allocation
|
---|
1750 | scheme; the number of elements in each set deeper in the stack can be
|
---|
1751 | used to determine the address of a particular set's array. */
|
---|
1752 | void
|
---|
1753 | dfaanalyze (struct dfa *d, int searchflag)
|
---|
1754 | {
|
---|
1755 | int *nullable; /* Nullable stack. */
|
---|
1756 | int *nfirstpos; /* Element count stack for firstpos sets. */
|
---|
1757 | position *firstpos; /* Array where firstpos elements are stored. */
|
---|
1758 | int *nlastpos; /* Element count stack for lastpos sets. */
|
---|
1759 | position *lastpos; /* Array where lastpos elements are stored. */
|
---|
1760 | int *nalloc; /* Sizes of arrays allocated to follow sets. */
|
---|
1761 | position_set tmp; /* Temporary set for merging sets. */
|
---|
1762 | position_set merged; /* Result of merging sets. */
|
---|
1763 | int wants_newline; /* True if some position wants newline info. */
|
---|
1764 | int *o_nullable;
|
---|
1765 | int *o_nfirst, *o_nlast;
|
---|
1766 | position *o_firstpos, *o_lastpos;
|
---|
1767 | int i, j;
|
---|
1768 | position *pos;
|
---|
1769 |
|
---|
1770 | #ifdef DEBUG
|
---|
1771 | fprintf(stderr, "dfaanalyze:\n");
|
---|
1772 | for (i = 0; i < d->tindex; ++i)
|
---|
1773 | {
|
---|
1774 | fprintf(stderr, " %d:", i);
|
---|
1775 | prtok(d->tokens[i]);
|
---|
1776 | }
|
---|
1777 | putc('\n', stderr);
|
---|
1778 | #endif
|
---|
1779 |
|
---|
1780 | d->searchflag = searchflag;
|
---|
1781 |
|
---|
1782 | MALLOC(nullable, int, d->depth);
|
---|
1783 | o_nullable = nullable;
|
---|
1784 | MALLOC(nfirstpos, int, d->depth);
|
---|
1785 | o_nfirst = nfirstpos;
|
---|
1786 | MALLOC(firstpos, position, d->nleaves);
|
---|
1787 | o_firstpos = firstpos, firstpos += d->nleaves;
|
---|
1788 | MALLOC(nlastpos, int, d->depth);
|
---|
1789 | o_nlast = nlastpos;
|
---|
1790 | MALLOC(lastpos, position, d->nleaves);
|
---|
1791 | o_lastpos = lastpos, lastpos += d->nleaves;
|
---|
1792 | MALLOC(nalloc, int, d->tindex);
|
---|
1793 | for (i = 0; i < d->tindex; ++i)
|
---|
1794 | nalloc[i] = 0;
|
---|
1795 | MALLOC(merged.elems, position, d->nleaves);
|
---|
1796 |
|
---|
1797 | CALLOC(d->follows, position_set, d->tindex);
|
---|
1798 |
|
---|
1799 | for (i = 0; i < d->tindex; ++i)
|
---|
1800 | #ifdef DEBUG
|
---|
1801 | { /* Nonsyntactic #ifdef goo... */
|
---|
1802 | #endif
|
---|
1803 | switch (d->tokens[i])
|
---|
1804 | {
|
---|
1805 | case EMPTY:
|
---|
1806 | /* The empty set is nullable. */
|
---|
1807 | *nullable++ = 1;
|
---|
1808 |
|
---|
1809 | /* The firstpos and lastpos of the empty leaf are both empty. */
|
---|
1810 | *nfirstpos++ = *nlastpos++ = 0;
|
---|
1811 | break;
|
---|
1812 |
|
---|
1813 | case STAR:
|
---|
1814 | case PLUS:
|
---|
1815 | /* Every element in the firstpos of the argument is in the follow
|
---|
1816 | of every element in the lastpos. */
|
---|
1817 | tmp.nelem = nfirstpos[-1];
|
---|
1818 | tmp.elems = firstpos;
|
---|
1819 | pos = lastpos;
|
---|
1820 | for (j = 0; j < nlastpos[-1]; ++j)
|
---|
1821 | {
|
---|
1822 | merge(&tmp, &d->follows[pos[j].index], &merged);
|
---|
1823 | REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position,
|
---|
1824 | nalloc[pos[j].index], merged.nelem - 1);
|
---|
1825 | copy(&merged, &d->follows[pos[j].index]);
|
---|
1826 | }
|
---|
1827 |
|
---|
1828 | case QMARK:
|
---|
1829 | /* A QMARK or STAR node is automatically nullable. */
|
---|
1830 | if (d->tokens[i] != PLUS)
|
---|
1831 | nullable[-1] = 1;
|
---|
1832 | break;
|
---|
1833 |
|
---|
1834 | case CAT:
|
---|
1835 | /* Every element in the firstpos of the second argument is in the
|
---|
1836 | follow of every element in the lastpos of the first argument. */
|
---|
1837 | tmp.nelem = nfirstpos[-1];
|
---|
1838 | tmp.elems = firstpos;
|
---|
1839 | pos = lastpos + nlastpos[-1];
|
---|
1840 | for (j = 0; j < nlastpos[-2]; ++j)
|
---|
1841 | {
|
---|
1842 | merge(&tmp, &d->follows[pos[j].index], &merged);
|
---|
1843 | REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position,
|
---|
1844 | nalloc[pos[j].index], merged.nelem - 1);
|
---|
1845 | copy(&merged, &d->follows[pos[j].index]);
|
---|
1846 | }
|
---|
1847 |
|
---|
1848 | /* The firstpos of a CAT node is the firstpos of the first argument,
|
---|
1849 | union that of the second argument if the first is nullable. */
|
---|
1850 | if (nullable[-2])
|
---|
1851 | nfirstpos[-2] += nfirstpos[-1];
|
---|
1852 | else
|
---|
1853 | firstpos += nfirstpos[-1];
|
---|
1854 | --nfirstpos;
|
---|
1855 |
|
---|
1856 | /* The lastpos of a CAT node is the lastpos of the second argument,
|
---|
1857 | union that of the first argument if the second is nullable. */
|
---|
1858 | if (nullable[-1])
|
---|
1859 | nlastpos[-2] += nlastpos[-1];
|
---|
1860 | else
|
---|
1861 | {
|
---|
1862 | pos = lastpos + nlastpos[-2];
|
---|
1863 | for (j = nlastpos[-1] - 1; j >= 0; --j)
|
---|
1864 | pos[j] = lastpos[j];
|
---|
1865 | lastpos += nlastpos[-2];
|
---|
1866 | nlastpos[-2] = nlastpos[-1];
|
---|
1867 | }
|
---|
1868 | --nlastpos;
|
---|
1869 |
|
---|
1870 | /* A CAT node is nullable if both arguments are nullable. */
|
---|
1871 | nullable[-2] = nullable[-1] && nullable[-2];
|
---|
1872 | --nullable;
|
---|
1873 | break;
|
---|
1874 |
|
---|
1875 | case OR:
|
---|
1876 | case ORTOP:
|
---|
1877 | /* The firstpos is the union of the firstpos of each argument. */
|
---|
1878 | nfirstpos[-2] += nfirstpos[-1];
|
---|
1879 | --nfirstpos;
|
---|
1880 |
|
---|
1881 | /* The lastpos is the union of the lastpos of each argument. */
|
---|
1882 | nlastpos[-2] += nlastpos[-1];
|
---|
1883 | --nlastpos;
|
---|
1884 |
|
---|
1885 | /* An OR node is nullable if either argument is nullable. */
|
---|
1886 | nullable[-2] = nullable[-1] || nullable[-2];
|
---|
1887 | --nullable;
|
---|
1888 | break;
|
---|
1889 |
|
---|
1890 | default:
|
---|
1891 | /* Anything else is a nonempty position. (Note that special
|
---|
1892 | constructs like \< are treated as nonempty strings here;
|
---|
1893 | an "epsilon closure" effectively makes them nullable later.
|
---|
1894 | Backreferences have to get a real position so we can detect
|
---|
1895 | transitions on them later. But they are nullable. */
|
---|
1896 | *nullable++ = d->tokens[i] == BACKREF;
|
---|
1897 |
|
---|
1898 | /* This position is in its own firstpos and lastpos. */
|
---|
1899 | *nfirstpos++ = *nlastpos++ = 1;
|
---|
1900 | --firstpos, --lastpos;
|
---|
1901 | firstpos->index = lastpos->index = i;
|
---|
1902 | firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;
|
---|
1903 |
|
---|
1904 | /* Allocate the follow set for this position. */
|
---|
1905 | nalloc[i] = 1;
|
---|
1906 | MALLOC(d->follows[i].elems, position, nalloc[i]);
|
---|
1907 | break;
|
---|
1908 | }
|
---|
1909 | #ifdef DEBUG
|
---|
1910 | /* ... balance the above nonsyntactic #ifdef goo... */
|
---|
1911 | fprintf(stderr, "node %d:", i);
|
---|
1912 | prtok(d->tokens[i]);
|
---|
1913 | putc('\n', stderr);
|
---|
1914 | fprintf(stderr, nullable[-1] ? " nullable: yes\n" : " nullable: no\n");
|
---|
1915 | fprintf(stderr, " firstpos:");
|
---|
1916 | for (j = nfirstpos[-1] - 1; j >= 0; --j)
|
---|
1917 | {
|
---|
1918 | fprintf(stderr, " %d:", firstpos[j].index);
|
---|
1919 | prtok(d->tokens[firstpos[j].index]);
|
---|
1920 | }
|
---|
1921 | fprintf(stderr, "\n lastpos:");
|
---|
1922 | for (j = nlastpos[-1] - 1; j >= 0; --j)
|
---|
1923 | {
|
---|
1924 | fprintf(stderr, " %d:", lastpos[j].index);
|
---|
1925 | prtok(d->tokens[lastpos[j].index]);
|
---|
1926 | }
|
---|
1927 | putc('\n', stderr);
|
---|
1928 | }
|
---|
1929 | #endif
|
---|
1930 |
|
---|
1931 | /* For each follow set that is the follow set of a real position, replace
|
---|
1932 | it with its epsilon closure. */
|
---|
1933 | for (i = 0; i < d->tindex; ++i)
|
---|
1934 | if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF
|
---|
1935 | #ifdef MBS_SUPPORT
|
---|
1936 | || d->tokens[i] == ANYCHAR
|
---|
1937 | || d->tokens[i] == MBCSET
|
---|
1938 | #endif
|
---|
1939 | || d->tokens[i] >= CSET)
|
---|
1940 | {
|
---|
1941 | #ifdef DEBUG
|
---|
1942 | fprintf(stderr, "follows(%d:", i);
|
---|
1943 | prtok(d->tokens[i]);
|
---|
1944 | fprintf(stderr, "):");
|
---|
1945 | for (j = d->follows[i].nelem - 1; j >= 0; --j)
|
---|
1946 | {
|
---|
1947 | fprintf(stderr, " %d:", d->follows[i].elems[j].index);
|
---|
1948 | prtok(d->tokens[d->follows[i].elems[j].index]);
|
---|
1949 | }
|
---|
1950 | putc('\n', stderr);
|
---|
1951 | #endif
|
---|
1952 | copy(&d->follows[i], &merged);
|
---|
1953 | epsclosure(&merged, d);
|
---|
1954 | if (d->follows[i].nelem < merged.nelem)
|
---|
1955 | REALLOC(d->follows[i].elems, position, merged.nelem);
|
---|
1956 | copy(&merged, &d->follows[i]);
|
---|
1957 | }
|
---|
1958 |
|
---|
1959 | /* Get the epsilon closure of the firstpos of the regexp. The result will
|
---|
1960 | be the set of positions of state 0. */
|
---|
1961 | merged.nelem = 0;
|
---|
1962 | for (i = 0; i < nfirstpos[-1]; ++i)
|
---|
1963 | insert(firstpos[i], &merged);
|
---|
1964 | epsclosure(&merged, d);
|
---|
1965 |
|
---|
1966 | /* Check if any of the positions of state 0 will want newline context. */
|
---|
1967 | wants_newline = 0;
|
---|
1968 | for (i = 0; i < merged.nelem; ++i)
|
---|
1969 | if (PREV_NEWLINE_DEPENDENT(merged.elems[i].constraint))
|
---|
1970 | wants_newline = 1;
|
---|
1971 |
|
---|
1972 | /* Build the initial state. */
|
---|
1973 | d->salloc = 1;
|
---|
1974 | d->sindex = 0;
|
---|
1975 | MALLOC(d->states, dfa_state, d->salloc);
|
---|
1976 | state_index(d, &merged, wants_newline, 0);
|
---|
1977 |
|
---|
1978 | free(o_nullable);
|
---|
1979 | free(o_nfirst);
|
---|
1980 | free(o_firstpos);
|
---|
1981 | free(o_nlast);
|
---|
1982 | free(o_lastpos);
|
---|
1983 | free(nalloc);
|
---|
1984 | free(merged.elems);
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 | /* Find, for each character, the transition out of state s of d, and store
|
---|
1988 | it in the appropriate slot of trans.
|
---|
1989 |
|
---|
1990 | We divide the positions of s into groups (positions can appear in more
|
---|
1991 | than one group). Each group is labeled with a set of characters that
|
---|
1992 | every position in the group matches (taking into account, if necessary,
|
---|
1993 | preceding context information of s). For each group, find the union
|
---|
1994 | of the its elements' follows. This set is the set of positions of the
|
---|
1995 | new state. For each character in the group's label, set the transition
|
---|
1996 | on this character to be to a state corresponding to the set's positions,
|
---|
1997 | and its associated backward context information, if necessary.
|
---|
1998 |
|
---|
1999 | If we are building a searching matcher, we include the positions of state
|
---|
2000 | 0 in every state.
|
---|
2001 |
|
---|
2002 | The collection of groups is constructed by building an equivalence-class
|
---|
2003 | partition of the positions of s.
|
---|
2004 |
|
---|
2005 | For each position, find the set of characters C that it matches. Eliminate
|
---|
2006 | any characters from C that fail on grounds of backward context.
|
---|
2007 |
|
---|
2008 | Search through the groups, looking for a group whose label L has nonempty
|
---|
2009 | intersection with C. If L - C is nonempty, create a new group labeled
|
---|
2010 | L - C and having the same positions as the current group, and set L to
|
---|
2011 | the intersection of L and C. Insert the position in this group, set
|
---|
2012 | C = C - L, and resume scanning.
|
---|
2013 |
|
---|
2014 | If after comparing with every group there are characters remaining in C,
|
---|
2015 | create a new group labeled with the characters of C and insert this
|
---|
2016 | position in that group. */
|
---|
2017 | void
|
---|
2018 | dfastate (int s, struct dfa *d, int trans[])
|
---|
2019 | {
|
---|
2020 | position_set grps[NOTCHAR]; /* As many as will ever be needed. */
|
---|
2021 | charclass labels[NOTCHAR]; /* Labels corresponding to the groups. */
|
---|
2022 | int ngrps = 0; /* Number of groups actually used. */
|
---|
2023 | position pos; /* Current position being considered. */
|
---|
2024 | charclass matches; /* Set of matching characters. */
|
---|
2025 | int matchesf; /* True if matches is nonempty. */
|
---|
2026 | charclass intersect; /* Intersection with some label set. */
|
---|
2027 | int intersectf; /* True if intersect is nonempty. */
|
---|
2028 | charclass leftovers; /* Stuff in the label that didn't match. */
|
---|
2029 | int leftoversf; /* True if leftovers is nonempty. */
|
---|
2030 | static charclass letters; /* Set of characters considered letters. */
|
---|
2031 | static charclass newline; /* Set of characters that aren't newline. */
|
---|
2032 | position_set follows; /* Union of the follows of some group. */
|
---|
2033 | position_set tmp; /* Temporary space for merging sets. */
|
---|
2034 | int state; /* New state. */
|
---|
2035 | int wants_newline; /* New state wants to know newline context. */
|
---|
2036 | int state_newline; /* New state on a newline transition. */
|
---|
2037 | int wants_letter; /* New state wants to know letter context. */
|
---|
2038 | int state_letter; /* New state on a letter transition. */
|
---|
2039 | static int initialized; /* Flag for static initialization. */
|
---|
2040 | #ifdef MBS_SUPPORT
|
---|
2041 | int next_isnt_1st_byte = 0; /* Flag if we can't add state0. */
|
---|
2042 | #endif
|
---|
2043 | int i, j, k;
|
---|
2044 |
|
---|
2045 | /* Initialize the set of letters, if necessary. */
|
---|
2046 | if (! initialized)
|
---|
2047 | {
|
---|
2048 | initialized = 1;
|
---|
2049 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2050 | if (IS_WORD_CONSTITUENT(i))
|
---|
2051 | setbit(i, letters);
|
---|
2052 | setbit(eolbyte, newline);
|
---|
2053 | }
|
---|
2054 |
|
---|
2055 | zeroset(matches);
|
---|
2056 |
|
---|
2057 | for (i = 0; i < d->states[s].elems.nelem; ++i)
|
---|
2058 | {
|
---|
2059 | pos = d->states[s].elems.elems[i];
|
---|
2060 | if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
|
---|
2061 | setbit(d->tokens[pos.index], matches);
|
---|
2062 | else if (d->tokens[pos.index] >= CSET)
|
---|
2063 | copyset(d->charclasses[d->tokens[pos.index] - CSET], matches);
|
---|
2064 | #ifdef MBS_SUPPORT
|
---|
2065 | else if (d->tokens[pos.index] == ANYCHAR
|
---|
2066 | || d->tokens[pos.index] == MBCSET)
|
---|
2067 | /* MB_CUR_MAX > 1 */
|
---|
2068 | {
|
---|
2069 | /* ANYCHAR and MBCSET must match with a single character, so we
|
---|
2070 | must put it to d->states[s].mbps, which contains the positions
|
---|
2071 | which can match with a single character not a byte. */
|
---|
2072 | if (d->states[s].mbps.nelem == 0)
|
---|
2073 | {
|
---|
2074 | MALLOC(d->states[s].mbps.elems, position,
|
---|
2075 | d->states[s].elems.nelem);
|
---|
2076 | }
|
---|
2077 | insert(pos, &(d->states[s].mbps));
|
---|
2078 | continue;
|
---|
2079 | }
|
---|
2080 | #endif /* MBS_SUPPORT */
|
---|
2081 | else
|
---|
2082 | continue;
|
---|
2083 |
|
---|
2084 | /* Some characters may need to be eliminated from matches because
|
---|
2085 | they fail in the current context. */
|
---|
2086 | if (pos.constraint != 0xFF)
|
---|
2087 | {
|
---|
2088 | if (! MATCHES_NEWLINE_CONTEXT(pos.constraint,
|
---|
2089 | d->states[s].newline, 1))
|
---|
2090 | clrbit(eolbyte, matches);
|
---|
2091 | if (! MATCHES_NEWLINE_CONTEXT(pos.constraint,
|
---|
2092 | d->states[s].newline, 0))
|
---|
2093 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2094 | matches[j] &= newline[j];
|
---|
2095 | if (! MATCHES_LETTER_CONTEXT(pos.constraint,
|
---|
2096 | d->states[s].letter, 1))
|
---|
2097 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2098 | matches[j] &= ~letters[j];
|
---|
2099 | if (! MATCHES_LETTER_CONTEXT(pos.constraint,
|
---|
2100 | d->states[s].letter, 0))
|
---|
2101 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2102 | matches[j] &= letters[j];
|
---|
2103 |
|
---|
2104 | /* If there are no characters left, there's no point in going on. */
|
---|
2105 | for (j = 0; j < CHARCLASS_INTS && !matches[j]; ++j)
|
---|
2106 | continue;
|
---|
2107 | if (j == CHARCLASS_INTS)
|
---|
2108 | continue;
|
---|
2109 | }
|
---|
2110 |
|
---|
2111 | for (j = 0; j < ngrps; ++j)
|
---|
2112 | {
|
---|
2113 | /* If matches contains a single character only, and the current
|
---|
2114 | group's label doesn't contain that character, go on to the
|
---|
2115 | next group. */
|
---|
2116 | if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR
|
---|
2117 | && !tstbit(d->tokens[pos.index], labels[j]))
|
---|
2118 | continue;
|
---|
2119 |
|
---|
2120 | /* Check if this group's label has a nonempty intersection with
|
---|
2121 | matches. */
|
---|
2122 | intersectf = 0;
|
---|
2123 | for (k = 0; k < CHARCLASS_INTS; ++k)
|
---|
2124 | (intersect[k] = matches[k] & labels[j][k]) ? (intersectf = 1) : 0;
|
---|
2125 | if (! intersectf)
|
---|
2126 | continue;
|
---|
2127 |
|
---|
2128 | /* It does; now find the set differences both ways. */
|
---|
2129 | leftoversf = matchesf = 0;
|
---|
2130 | for (k = 0; k < CHARCLASS_INTS; ++k)
|
---|
2131 | {
|
---|
2132 | /* Even an optimizing compiler can't know this for sure. */
|
---|
2133 | int match = matches[k], label = labels[j][k];
|
---|
2134 |
|
---|
2135 | (leftovers[k] = ~match & label) ? (leftoversf = 1) : 0;
|
---|
2136 | (matches[k] = match & ~label) ? (matchesf = 1) : 0;
|
---|
2137 | }
|
---|
2138 |
|
---|
2139 | /* If there were leftovers, create a new group labeled with them. */
|
---|
2140 | if (leftoversf)
|
---|
2141 | {
|
---|
2142 | copyset(leftovers, labels[ngrps]);
|
---|
2143 | copyset(intersect, labels[j]);
|
---|
2144 | MALLOC(grps[ngrps].elems, position, d->nleaves);
|
---|
2145 | copy(&grps[j], &grps[ngrps]);
|
---|
2146 | ++ngrps;
|
---|
2147 | }
|
---|
2148 |
|
---|
2149 | /* Put the position in the current group. Note that there is no
|
---|
2150 | reason to call insert() here. */
|
---|
2151 | grps[j].elems[grps[j].nelem++] = pos;
|
---|
2152 |
|
---|
2153 | /* If every character matching the current position has been
|
---|
2154 | accounted for, we're done. */
|
---|
2155 | if (! matchesf)
|
---|
2156 | break;
|
---|
2157 | }
|
---|
2158 |
|
---|
2159 | /* If we've passed the last group, and there are still characters
|
---|
2160 | unaccounted for, then we'll have to create a new group. */
|
---|
2161 | if (j == ngrps)
|
---|
2162 | {
|
---|
2163 | copyset(matches, labels[ngrps]);
|
---|
2164 | zeroset(matches);
|
---|
2165 | MALLOC(grps[ngrps].elems, position, d->nleaves);
|
---|
2166 | grps[ngrps].nelem = 1;
|
---|
2167 | grps[ngrps].elems[0] = pos;
|
---|
2168 | ++ngrps;
|
---|
2169 | }
|
---|
2170 | }
|
---|
2171 |
|
---|
2172 | MALLOC(follows.elems, position, d->nleaves);
|
---|
2173 | MALLOC(tmp.elems, position, d->nleaves);
|
---|
2174 |
|
---|
2175 | /* If we are a searching matcher, the default transition is to a state
|
---|
2176 | containing the positions of state 0, otherwise the default transition
|
---|
2177 | is to fail miserably. */
|
---|
2178 | if (d->searchflag)
|
---|
2179 | {
|
---|
2180 | wants_newline = 0;
|
---|
2181 | wants_letter = 0;
|
---|
2182 | for (i = 0; i < d->states[0].elems.nelem; ++i)
|
---|
2183 | {
|
---|
2184 | if (PREV_NEWLINE_DEPENDENT(d->states[0].elems.elems[i].constraint))
|
---|
2185 | wants_newline = 1;
|
---|
2186 | if (PREV_LETTER_DEPENDENT(d->states[0].elems.elems[i].constraint))
|
---|
2187 | wants_letter = 1;
|
---|
2188 | }
|
---|
2189 | copy(&d->states[0].elems, &follows);
|
---|
2190 | state = state_index(d, &follows, 0, 0);
|
---|
2191 | if (wants_newline)
|
---|
2192 | state_newline = state_index(d, &follows, 1, 0);
|
---|
2193 | else
|
---|
2194 | state_newline = state;
|
---|
2195 | if (wants_letter)
|
---|
2196 | state_letter = state_index(d, &follows, 0, 1);
|
---|
2197 | else
|
---|
2198 | state_letter = state;
|
---|
2199 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2200 | trans[i] = (IS_WORD_CONSTITUENT(i)) ? state_letter : state;
|
---|
2201 | trans[eolbyte] = state_newline;
|
---|
2202 | }
|
---|
2203 | else
|
---|
2204 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2205 | trans[i] = -1;
|
---|
2206 |
|
---|
2207 | for (i = 0; i < ngrps; ++i)
|
---|
2208 | {
|
---|
2209 | follows.nelem = 0;
|
---|
2210 |
|
---|
2211 | /* Find the union of the follows of the positions of the group.
|
---|
2212 | This is a hideously inefficient loop. Fix it someday. */
|
---|
2213 | for (j = 0; j < grps[i].nelem; ++j)
|
---|
2214 | for (k = 0; k < d->follows[grps[i].elems[j].index].nelem; ++k)
|
---|
2215 | insert(d->follows[grps[i].elems[j].index].elems[k], &follows);
|
---|
2216 |
|
---|
2217 | #ifdef MBS_SUPPORT
|
---|
2218 | if (MB_CUR_MAX > 1)
|
---|
2219 | {
|
---|
2220 | /* If a token in follows.elems is not 1st byte of a multibyte
|
---|
2221 | character, or the states of follows must accept the bytes
|
---|
2222 | which are not 1st byte of the multibyte character.
|
---|
2223 | Then, if a state of follows encounter a byte, it must not be
|
---|
2224 | a 1st byte of a multibyte character nor single byte character.
|
---|
2225 | We cansel to add state[0].follows to next state, because
|
---|
2226 | state[0] must accept 1st-byte
|
---|
2227 |
|
---|
2228 | For example, we assume <sb a> is a certain single byte
|
---|
2229 | character, <mb A> is a certain multibyte character, and the
|
---|
2230 | codepoint of <sb a> equals the 2nd byte of the codepoint of
|
---|
2231 | <mb A>.
|
---|
2232 | When state[0] accepts <sb a>, state[i] transit to state[i+1]
|
---|
2233 | by accepting accepts 1st byte of <mb A>, and state[i+1]
|
---|
2234 | accepts 2nd byte of <mb A>, if state[i+1] encounter the
|
---|
2235 | codepoint of <sb a>, it must not be <sb a> but 2nd byte of
|
---|
2236 | <mb A>, so we can not add state[0]. */
|
---|
2237 |
|
---|
2238 | next_isnt_1st_byte = 0;
|
---|
2239 | for (j = 0; j < follows.nelem; ++j)
|
---|
2240 | {
|
---|
2241 | if (!(d->multibyte_prop[follows.elems[j].index] & 1))
|
---|
2242 | {
|
---|
2243 | next_isnt_1st_byte = 1;
|
---|
2244 | break;
|
---|
2245 | }
|
---|
2246 | }
|
---|
2247 | }
|
---|
2248 | #endif
|
---|
2249 |
|
---|
2250 | /* If we are building a searching matcher, throw in the positions
|
---|
2251 | of state 0 as well. */
|
---|
2252 | #ifdef MBS_SUPPORT
|
---|
2253 | if (d->searchflag && (MB_CUR_MAX == 1 || !next_isnt_1st_byte))
|
---|
2254 | #else
|
---|
2255 | if (d->searchflag)
|
---|
2256 | #endif
|
---|
2257 | for (j = 0; j < d->states[0].elems.nelem; ++j)
|
---|
2258 | insert(d->states[0].elems.elems[j], &follows);
|
---|
2259 |
|
---|
2260 | /* Find out if the new state will want any context information. */
|
---|
2261 | wants_newline = 0;
|
---|
2262 | if (tstbit(eolbyte, labels[i]))
|
---|
2263 | for (j = 0; j < follows.nelem; ++j)
|
---|
2264 | if (PREV_NEWLINE_DEPENDENT(follows.elems[j].constraint))
|
---|
2265 | wants_newline = 1;
|
---|
2266 |
|
---|
2267 | wants_letter = 0;
|
---|
2268 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2269 | if (labels[i][j] & letters[j])
|
---|
2270 | break;
|
---|
2271 | if (j < CHARCLASS_INTS)
|
---|
2272 | for (j = 0; j < follows.nelem; ++j)
|
---|
2273 | if (PREV_LETTER_DEPENDENT(follows.elems[j].constraint))
|
---|
2274 | wants_letter = 1;
|
---|
2275 |
|
---|
2276 | /* Find the state(s) corresponding to the union of the follows. */
|
---|
2277 | state = state_index(d, &follows, 0, 0);
|
---|
2278 | if (wants_newline)
|
---|
2279 | state_newline = state_index(d, &follows, 1, 0);
|
---|
2280 | else
|
---|
2281 | state_newline = state;
|
---|
2282 | if (wants_letter)
|
---|
2283 | state_letter = state_index(d, &follows, 0, 1);
|
---|
2284 | else
|
---|
2285 | state_letter = state;
|
---|
2286 |
|
---|
2287 | /* Set the transitions for each character in the current label. */
|
---|
2288 | for (j = 0; j < CHARCLASS_INTS; ++j)
|
---|
2289 | for (k = 0; k < INTBITS; ++k)
|
---|
2290 | if (labels[i][j] & 1 << k)
|
---|
2291 | {
|
---|
2292 | int c = j * INTBITS + k;
|
---|
2293 |
|
---|
2294 | if (c == eolbyte)
|
---|
2295 | trans[c] = state_newline;
|
---|
2296 | else if (IS_WORD_CONSTITUENT(c))
|
---|
2297 | trans[c] = state_letter;
|
---|
2298 | else if (c < NOTCHAR)
|
---|
2299 | trans[c] = state;
|
---|
2300 | }
|
---|
2301 | }
|
---|
2302 |
|
---|
2303 | for (i = 0; i < ngrps; ++i)
|
---|
2304 | free(grps[i].elems);
|
---|
2305 | free(follows.elems);
|
---|
2306 | free(tmp.elems);
|
---|
2307 | }
|
---|
2308 |
|
---|
2309 | /* Some routines for manipulating a compiled dfa's transition tables.
|
---|
2310 | Each state may or may not have a transition table; if it does, and it
|
---|
2311 | is a non-accepting state, then d->trans[state] points to its table.
|
---|
2312 | If it is an accepting state then d->fails[state] points to its table.
|
---|
2313 | If it has no table at all, then d->trans[state] is NULL.
|
---|
2314 | TODO: Improve this comment, get rid of the unnecessary redundancy. */
|
---|
2315 |
|
---|
2316 | static void
|
---|
2317 | build_state (int s, struct dfa *d)
|
---|
2318 | {
|
---|
2319 | int *trans; /* The new transition table. */
|
---|
2320 | int i;
|
---|
2321 |
|
---|
2322 | /* Set an upper limit on the number of transition tables that will ever
|
---|
2323 | exist at once. 1024 is arbitrary. The idea is that the frequently
|
---|
2324 | used transition tables will be quickly rebuilt, whereas the ones that
|
---|
2325 | were only needed once or twice will be cleared away. */
|
---|
2326 | if (d->trcount >= 1024)
|
---|
2327 | {
|
---|
2328 | for (i = 0; i < d->tralloc; ++i)
|
---|
2329 | if (d->trans[i])
|
---|
2330 | {
|
---|
2331 | free((ptr_t) d->trans[i]);
|
---|
2332 | d->trans[i] = NULL;
|
---|
2333 | }
|
---|
2334 | else if (d->fails[i])
|
---|
2335 | {
|
---|
2336 | free((ptr_t) d->fails[i]);
|
---|
2337 | d->fails[i] = NULL;
|
---|
2338 | }
|
---|
2339 | d->trcount = 0;
|
---|
2340 | }
|
---|
2341 |
|
---|
2342 | ++d->trcount;
|
---|
2343 |
|
---|
2344 | /* Set up the success bits for this state. */
|
---|
2345 | d->success[s] = 0;
|
---|
2346 | if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 1, d->states[s].letter, 0,
|
---|
2347 | s, *d))
|
---|
2348 | d->success[s] |= 4;
|
---|
2349 | if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 1,
|
---|
2350 | s, *d))
|
---|
2351 | d->success[s] |= 2;
|
---|
2352 | if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 0,
|
---|
2353 | s, *d))
|
---|
2354 | d->success[s] |= 1;
|
---|
2355 |
|
---|
2356 | MALLOC(trans, int, NOTCHAR);
|
---|
2357 | dfastate(s, d, trans);
|
---|
2358 |
|
---|
2359 | /* Now go through the new transition table, and make sure that the trans
|
---|
2360 | and fail arrays are allocated large enough to hold a pointer for the
|
---|
2361 | largest state mentioned in the table. */
|
---|
2362 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2363 | if (trans[i] >= d->tralloc)
|
---|
2364 | {
|
---|
2365 | int oldalloc = d->tralloc;
|
---|
2366 |
|
---|
2367 | while (trans[i] >= d->tralloc)
|
---|
2368 | d->tralloc *= 2;
|
---|
2369 | REALLOC(d->realtrans, int *, d->tralloc + 1);
|
---|
2370 | d->trans = d->realtrans + 1;
|
---|
2371 | REALLOC(d->fails, int *, d->tralloc);
|
---|
2372 | REALLOC(d->success, int, d->tralloc);
|
---|
2373 | REALLOC(d->newlines, int, d->tralloc);
|
---|
2374 | while (oldalloc < d->tralloc)
|
---|
2375 | {
|
---|
2376 | d->trans[oldalloc] = NULL;
|
---|
2377 | d->fails[oldalloc++] = NULL;
|
---|
2378 | }
|
---|
2379 | }
|
---|
2380 |
|
---|
2381 | /* Keep the newline transition in a special place so we can use it as
|
---|
2382 | a sentinel. */
|
---|
2383 | d->newlines[s] = trans[eolbyte];
|
---|
2384 | trans[eolbyte] = -1;
|
---|
2385 |
|
---|
2386 | if (ACCEPTING(s, *d))
|
---|
2387 | d->fails[s] = trans;
|
---|
2388 | else
|
---|
2389 | d->trans[s] = trans;
|
---|
2390 | }
|
---|
2391 |
|
---|
2392 | static void
|
---|
2393 | build_state_zero (struct dfa *d)
|
---|
2394 | {
|
---|
2395 | d->tralloc = 1;
|
---|
2396 | d->trcount = 0;
|
---|
2397 | CALLOC(d->realtrans, int *, d->tralloc + 1);
|
---|
2398 | d->trans = d->realtrans + 1;
|
---|
2399 | CALLOC(d->fails, int *, d->tralloc);
|
---|
2400 | MALLOC(d->success, int, d->tralloc);
|
---|
2401 | MALLOC(d->newlines, int, d->tralloc);
|
---|
2402 | build_state(0, d);
|
---|
2403 | }
|
---|
2404 |
|
---|
2405 | #ifdef MBS_SUPPORT
|
---|
2406 | /* Multibyte character handling sub-routines for dfaexec. */
|
---|
2407 |
|
---|
2408 | /* Initial state may encounter the byte which is not a single byte character
|
---|
2409 | nor 1st byte of a multibyte character. But it is incorrect for initial
|
---|
2410 | state to accept such a byte.
|
---|
2411 | For example, in sjis encoding the regular expression like "\\" accepts
|
---|
2412 | the codepoint 0x5c, but should not accept the 2nd byte of the codepoint
|
---|
2413 | 0x815c. Then Initial state must skip the bytes which are not a single byte
|
---|
2414 | character nor 1st byte of a multibyte character. */
|
---|
2415 | #define SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p) \
|
---|
2416 | if (s == 0) \
|
---|
2417 | { \
|
---|
2418 | while (inputwcs[p - buf_begin] == 0 \
|
---|
2419 | && mblen_buf[p - buf_begin] > 0 \
|
---|
2420 | && (unsigned char const *)p < buf_end) \
|
---|
2421 | ++p; \
|
---|
2422 | if ((char *)p >= end) \
|
---|
2423 | { \
|
---|
2424 | free(mblen_buf); \
|
---|
2425 | free(inputwcs); \
|
---|
2426 | return NULL; \
|
---|
2427 | } \
|
---|
2428 | }
|
---|
2429 |
|
---|
2430 | static void
|
---|
2431 | realloc_trans_if_necessary(struct dfa *d, int new_state)
|
---|
2432 | {
|
---|
2433 | /* Make sure that the trans and fail arrays are allocated large enough
|
---|
2434 | to hold a pointer for the new state. */
|
---|
2435 | if (new_state >= d->tralloc)
|
---|
2436 | {
|
---|
2437 | int oldalloc = d->tralloc;
|
---|
2438 |
|
---|
2439 | while (new_state >= d->tralloc)
|
---|
2440 | d->tralloc *= 2;
|
---|
2441 | REALLOC(d->realtrans, int *, d->tralloc + 1);
|
---|
2442 | d->trans = d->realtrans + 1;
|
---|
2443 | REALLOC(d->fails, int *, d->tralloc);
|
---|
2444 | REALLOC(d->success, int, d->tralloc);
|
---|
2445 | REALLOC(d->newlines, int, d->tralloc);
|
---|
2446 | while (oldalloc < d->tralloc)
|
---|
2447 | {
|
---|
2448 | d->trans[oldalloc] = NULL;
|
---|
2449 | d->fails[oldalloc++] = NULL;
|
---|
2450 | }
|
---|
2451 | }
|
---|
2452 | }
|
---|
2453 |
|
---|
2454 | /* Return values of transit_state_singlebyte(), and
|
---|
2455 | transit_state_consume_1char. */
|
---|
2456 | typedef enum
|
---|
2457 | {
|
---|
2458 | TRANSIT_STATE_IN_PROGRESS, /* State transition has not finished. */
|
---|
2459 | TRANSIT_STATE_DONE, /* State transition has finished. */
|
---|
2460 | TRANSIT_STATE_END_BUFFER /* Reach the end of the buffer. */
|
---|
2461 | } status_transit_state;
|
---|
2462 |
|
---|
2463 | /* Consume a single byte and transit state from 's' to '*next_state'.
|
---|
2464 | This function is almost same as the state transition routin in dfaexec().
|
---|
2465 | But state transition is done just once, otherwise matching succeed or
|
---|
2466 | reach the end of the buffer. */
|
---|
2467 | static status_transit_state
|
---|
2468 | transit_state_singlebyte (struct dfa *d, int s, unsigned char const *p,
|
---|
2469 | int *next_state)
|
---|
2470 | {
|
---|
2471 | int *t;
|
---|
2472 | int works = s;
|
---|
2473 |
|
---|
2474 | status_transit_state rval = TRANSIT_STATE_IN_PROGRESS;
|
---|
2475 |
|
---|
2476 | while (rval == TRANSIT_STATE_IN_PROGRESS)
|
---|
2477 | {
|
---|
2478 | if ((t = d->trans[works]) != NULL)
|
---|
2479 | {
|
---|
2480 | works = t[*p];
|
---|
2481 | rval = TRANSIT_STATE_DONE;
|
---|
2482 | if (works < 0)
|
---|
2483 | works = 0;
|
---|
2484 | }
|
---|
2485 | else if (works < 0)
|
---|
2486 | {
|
---|
2487 | if (p == buf_end)
|
---|
2488 | /* At the moment, it must not happen. */
|
---|
2489 | return TRANSIT_STATE_END_BUFFER;
|
---|
2490 | works = 0;
|
---|
2491 | }
|
---|
2492 | else if (d->fails[works])
|
---|
2493 | {
|
---|
2494 | works = d->fails[works][*p];
|
---|
2495 | rval = TRANSIT_STATE_DONE;
|
---|
2496 | }
|
---|
2497 | else
|
---|
2498 | {
|
---|
2499 | build_state(works, d);
|
---|
2500 | }
|
---|
2501 | }
|
---|
2502 | *next_state = works;
|
---|
2503 | return rval;
|
---|
2504 | }
|
---|
2505 |
|
---|
2506 | /* Check whether period can match or not in the current context. If it can,
|
---|
2507 | return the amount of the bytes with which period can match, otherwise
|
---|
2508 | return 0.
|
---|
2509 | `pos' is the position of the period. `index' is the index from the
|
---|
2510 | buf_begin, and it is the current position in the buffer. */
|
---|
2511 | static int
|
---|
2512 | match_anychar (struct dfa *d, int s, position pos, int index)
|
---|
2513 | {
|
---|
2514 | int newline = 0;
|
---|
2515 | int letter = 0;
|
---|
2516 | wchar_t wc;
|
---|
2517 | int mbclen;
|
---|
2518 |
|
---|
2519 | wc = inputwcs[index];
|
---|
2520 | mbclen = (mblen_buf[index] == 0)? 1 : mblen_buf[index];
|
---|
2521 |
|
---|
2522 | /* Check context. */
|
---|
2523 | if (wc == (wchar_t)eolbyte)
|
---|
2524 | {
|
---|
2525 | if (!(syntax_bits & RE_DOT_NEWLINE))
|
---|
2526 | return 0;
|
---|
2527 | newline = 1;
|
---|
2528 | }
|
---|
2529 | else if (wc == (wchar_t)'\0')
|
---|
2530 | {
|
---|
2531 | if (syntax_bits & RE_DOT_NOT_NULL)
|
---|
2532 | return 0;
|
---|
2533 | newline = 1;
|
---|
2534 | }
|
---|
2535 |
|
---|
2536 | if (iswalnum(wc) || wc == L'_')
|
---|
2537 | letter = 1;
|
---|
2538 |
|
---|
2539 | if (!SUCCEEDS_IN_CONTEXT(pos.constraint, d->states[s].newline,
|
---|
2540 | newline, d->states[s].letter, letter))
|
---|
2541 | return 0;
|
---|
2542 |
|
---|
2543 | return mbclen;
|
---|
2544 | }
|
---|
2545 |
|
---|
2546 | /* Check whether bracket expression can match or not in the current context.
|
---|
2547 | If it can, return the amount of the bytes with which expression can match,
|
---|
2548 | otherwise return 0.
|
---|
2549 | `pos' is the position of the bracket expression. `index' is the index
|
---|
2550 | from the buf_begin, and it is the current position in the buffer. */
|
---|
2551 | int
|
---|
2552 | match_mb_charset (struct dfa *d, int s, position pos, int index)
|
---|
2553 | {
|
---|
2554 | int i;
|
---|
2555 | int match; /* Flag which represent that matching succeed. */
|
---|
2556 | int match_len; /* Length of the character (or collating element)
|
---|
2557 | with which this operator match. */
|
---|
2558 | int op_len; /* Length of the operator. */
|
---|
2559 | char buffer[128];
|
---|
2560 | wchar_t wcbuf[6];
|
---|
2561 |
|
---|
2562 | /* Pointer to the structure to which we are currently refering. */
|
---|
2563 | struct mb_char_classes *work_mbc;
|
---|
2564 |
|
---|
2565 | int newline = 0;
|
---|
2566 | int letter = 0;
|
---|
2567 | wchar_t wc; /* Current refering character. */
|
---|
2568 |
|
---|
2569 | wc = inputwcs[index];
|
---|
2570 |
|
---|
2571 | /* Check context. */
|
---|
2572 | if (wc == (wchar_t)eolbyte)
|
---|
2573 | {
|
---|
2574 | if (!(syntax_bits & RE_DOT_NEWLINE))
|
---|
2575 | return 0;
|
---|
2576 | newline = 1;
|
---|
2577 | }
|
---|
2578 | else if (wc == (wchar_t)'\0')
|
---|
2579 | {
|
---|
2580 | if (syntax_bits & RE_DOT_NOT_NULL)
|
---|
2581 | return 0;
|
---|
2582 | newline = 1;
|
---|
2583 | }
|
---|
2584 | if (iswalnum(wc) || wc == L'_')
|
---|
2585 | letter = 1;
|
---|
2586 | if (!SUCCEEDS_IN_CONTEXT(pos.constraint, d->states[s].newline,
|
---|
2587 | newline, d->states[s].letter, letter))
|
---|
2588 | return 0;
|
---|
2589 |
|
---|
2590 | /* Assign the current refering operator to work_mbc. */
|
---|
2591 | work_mbc = &(d->mbcsets[(d->multibyte_prop[pos.index]) >> 2]);
|
---|
2592 | match = !work_mbc->invert;
|
---|
2593 | match_len = (mblen_buf[index] == 0)? 1 : mblen_buf[index];
|
---|
2594 |
|
---|
2595 | /* match with a character class? */
|
---|
2596 | for (i = 0; i<work_mbc->nch_classes; i++)
|
---|
2597 | {
|
---|
2598 | if (iswctype((wint_t)wc, work_mbc->ch_classes[i]))
|
---|
2599 | goto charset_matched;
|
---|
2600 | }
|
---|
2601 |
|
---|
2602 | strncpy(buffer, buf_begin + index, match_len);
|
---|
2603 | buffer[match_len] = '\0';
|
---|
2604 |
|
---|
2605 | /* match with an equivalent class? */
|
---|
2606 | for (i = 0; i<work_mbc->nequivs; i++)
|
---|
2607 | {
|
---|
2608 | op_len = strlen(work_mbc->equivs[i]);
|
---|
2609 | strncpy(buffer, buf_begin + index, op_len);
|
---|
2610 | buffer[op_len] = '\0';
|
---|
2611 | if (strcoll(work_mbc->equivs[i], buffer) == 0)
|
---|
2612 | {
|
---|
2613 | match_len = op_len;
|
---|
2614 | goto charset_matched;
|
---|
2615 | }
|
---|
2616 | }
|
---|
2617 |
|
---|
2618 | /* match with a collating element? */
|
---|
2619 | for (i = 0; i<work_mbc->ncoll_elems; i++)
|
---|
2620 | {
|
---|
2621 | op_len = strlen(work_mbc->coll_elems[i]);
|
---|
2622 | strncpy(buffer, buf_begin + index, op_len);
|
---|
2623 | buffer[op_len] = '\0';
|
---|
2624 |
|
---|
2625 | if (strcoll(work_mbc->coll_elems[i], buffer) == 0)
|
---|
2626 | {
|
---|
2627 | match_len = op_len;
|
---|
2628 | goto charset_matched;
|
---|
2629 | }
|
---|
2630 | }
|
---|
2631 |
|
---|
2632 | wcbuf[0] = wc;
|
---|
2633 | wcbuf[1] = wcbuf[3] = wcbuf[5] = '\0';
|
---|
2634 |
|
---|
2635 | /* match with a range? */
|
---|
2636 | for (i = 0; i<work_mbc->nranges; i++)
|
---|
2637 | {
|
---|
2638 | wcbuf[2] = work_mbc->range_sts[i];
|
---|
2639 | wcbuf[4] = work_mbc->range_ends[i];
|
---|
2640 |
|
---|
2641 | if (wcscoll(wcbuf, wcbuf+2) >= 0 &&
|
---|
2642 | wcscoll(wcbuf+4, wcbuf) >= 0)
|
---|
2643 | goto charset_matched;
|
---|
2644 | }
|
---|
2645 |
|
---|
2646 | /* match with a character? */
|
---|
2647 | for (i = 0; i<work_mbc->nchars; i++)
|
---|
2648 | {
|
---|
2649 | if (wc == work_mbc->chars[i])
|
---|
2650 | goto charset_matched;
|
---|
2651 | }
|
---|
2652 |
|
---|
2653 | match = !match;
|
---|
2654 |
|
---|
2655 | charset_matched:
|
---|
2656 | return match ? match_len : 0;
|
---|
2657 | }
|
---|
2658 |
|
---|
2659 | /* Check each of `d->states[s].mbps.elem' can match or not. Then return the
|
---|
2660 | array which corresponds to `d->states[s].mbps.elem' and each element of
|
---|
2661 | the array contains the amount of the bytes with which the element can
|
---|
2662 | match.
|
---|
2663 | `index' is the index from the buf_begin, and it is the current position
|
---|
2664 | in the buffer.
|
---|
2665 | Caller MUST free the array which this function return. */
|
---|
2666 | static int*
|
---|
2667 | check_matching_with_multibyte_ops (struct dfa *d, int s, int index)
|
---|
2668 | {
|
---|
2669 | int i;
|
---|
2670 | int* rarray;
|
---|
2671 |
|
---|
2672 | MALLOC(rarray, int, d->states[s].mbps.nelem);
|
---|
2673 | for (i = 0; i < d->states[s].mbps.nelem; ++i)
|
---|
2674 | {
|
---|
2675 | position pos = d->states[s].mbps.elems[i];
|
---|
2676 | switch(d->tokens[pos.index])
|
---|
2677 | {
|
---|
2678 | case ANYCHAR:
|
---|
2679 | rarray[i] = match_anychar(d, s, pos, index);
|
---|
2680 | break;
|
---|
2681 | case MBCSET:
|
---|
2682 | rarray[i] = match_mb_charset(d, s, pos, index);
|
---|
2683 | break;
|
---|
2684 | default:
|
---|
2685 | break; /* can not happen. */
|
---|
2686 | }
|
---|
2687 | }
|
---|
2688 | return rarray;
|
---|
2689 | }
|
---|
2690 |
|
---|
2691 | /* Consume a single character and enumerate all of the positions which can
|
---|
2692 | be next position from the state `s'.
|
---|
2693 | `match_lens' is the input. It can be NULL, but it can also be the output
|
---|
2694 | of check_matching_with_multibyte_ops() for optimization.
|
---|
2695 | `mbclen' and `pps' are the output. `mbclen' is the length of the
|
---|
2696 | character consumed, and `pps' is the set this function enumerate. */
|
---|
2697 | static status_transit_state
|
---|
2698 | transit_state_consume_1char (struct dfa *d, int s, unsigned char const **pp,
|
---|
2699 | int *match_lens, int *mbclen, position_set *pps)
|
---|
2700 | {
|
---|
2701 | int i, j;
|
---|
2702 | int s1, s2;
|
---|
2703 | int* work_mbls;
|
---|
2704 | status_transit_state rs = TRANSIT_STATE_DONE;
|
---|
2705 |
|
---|
2706 | /* Calculate the length of the (single/multi byte) character
|
---|
2707 | to which p points. */
|
---|
2708 | *mbclen = (mblen_buf[*pp - buf_begin] == 0)? 1
|
---|
2709 | : mblen_buf[*pp - buf_begin];
|
---|
2710 |
|
---|
2711 | /* Calculate the state which can be reached from the state `s' by
|
---|
2712 | consuming `*mbclen' single bytes from the buffer. */
|
---|
2713 | s1 = s;
|
---|
2714 | for (i = 0; i < *mbclen; i++)
|
---|
2715 | {
|
---|
2716 | s2 = s1;
|
---|
2717 | rs = transit_state_singlebyte(d, s2, (*pp)++, &s1);
|
---|
2718 | }
|
---|
2719 | /* Copy the positions contained by `s1' to the set `pps'. */
|
---|
2720 | copy(&(d->states[s1].elems), pps);
|
---|
2721 |
|
---|
2722 | /* Check (inputed)match_lens, and initialize if it is NULL. */
|
---|
2723 | if (match_lens == NULL && d->states[s].mbps.nelem != 0)
|
---|
2724 | work_mbls = check_matching_with_multibyte_ops(d, s, *pp - buf_begin);
|
---|
2725 | else
|
---|
2726 | work_mbls = match_lens;
|
---|
2727 |
|
---|
2728 | /* Add all of the positions which can be reached from `s' by consuming
|
---|
2729 | a single character. */
|
---|
2730 | for (i = 0; i < d->states[s].mbps.nelem ; i++)
|
---|
2731 | {
|
---|
2732 | if (work_mbls[i] == *mbclen)
|
---|
2733 | for (j = 0; j < d->follows[d->states[s].mbps.elems[i].index].nelem;
|
---|
2734 | j++)
|
---|
2735 | insert(d->follows[d->states[s].mbps.elems[i].index].elems[j],
|
---|
2736 | pps);
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | if (match_lens == NULL && work_mbls != NULL)
|
---|
2740 | free(work_mbls);
|
---|
2741 | return rs;
|
---|
2742 | }
|
---|
2743 |
|
---|
2744 | /* Transit state from s, then return new state and update the pointer of the
|
---|
2745 | buffer. This function is for some operator which can match with a multi-
|
---|
2746 | byte character or a collating element (which may be multi characters). */
|
---|
2747 | static int
|
---|
2748 | transit_state (struct dfa *d, int s, unsigned char const **pp)
|
---|
2749 | {
|
---|
2750 | int s1;
|
---|
2751 | int mbclen; /* The length of current input multibyte character. */
|
---|
2752 | int maxlen = 0;
|
---|
2753 | int i, j;
|
---|
2754 | int *match_lens = NULL;
|
---|
2755 | int nelem = d->states[s].mbps.nelem; /* Just a alias. */
|
---|
2756 | position_set follows;
|
---|
2757 | unsigned char const *p1 = *pp;
|
---|
2758 | status_transit_state rs;
|
---|
2759 | wchar_t wc;
|
---|
2760 |
|
---|
2761 | if (nelem > 0)
|
---|
2762 | /* This state has (a) multibyte operator(s).
|
---|
2763 | We check whether each of them can match or not. */
|
---|
2764 | {
|
---|
2765 | /* Note: caller must free the return value of this function. */
|
---|
2766 | match_lens = check_matching_with_multibyte_ops(d, s, *pp - buf_begin);
|
---|
2767 |
|
---|
2768 | for (i = 0; i < nelem; i++)
|
---|
2769 | /* Search the operator which match the longest string,
|
---|
2770 | in this state. */
|
---|
2771 | {
|
---|
2772 | if (match_lens[i] > maxlen)
|
---|
2773 | maxlen = match_lens[i];
|
---|
2774 | }
|
---|
2775 | }
|
---|
2776 |
|
---|
2777 | if (nelem == 0 || maxlen == 0)
|
---|
2778 | /* This state has no multibyte operator which can match.
|
---|
2779 | We need to check only one single byte character. */
|
---|
2780 | {
|
---|
2781 | status_transit_state rs;
|
---|
2782 | rs = transit_state_singlebyte(d, s, *pp, &s1);
|
---|
2783 |
|
---|
2784 | /* We must update the pointer if state transition succeeded. */
|
---|
2785 | if (rs == TRANSIT_STATE_DONE)
|
---|
2786 | ++*pp;
|
---|
2787 |
|
---|
2788 | if (match_lens != NULL)
|
---|
2789 | free(match_lens);
|
---|
2790 | return s1;
|
---|
2791 | }
|
---|
2792 |
|
---|
2793 | /* This state has some operators which can match a multibyte character. */
|
---|
2794 | follows.nelem = 0;
|
---|
2795 | MALLOC(follows.elems, position, d->nleaves);
|
---|
2796 |
|
---|
2797 | /* `maxlen' may be longer than the length of a character, because it may
|
---|
2798 | not be a character but a (multi character) collating element.
|
---|
2799 | We enumerate all of the positions which `s' can reach by consuming
|
---|
2800 | `maxlen' bytes. */
|
---|
2801 | rs = transit_state_consume_1char(d, s, pp, match_lens, &mbclen, &follows);
|
---|
2802 |
|
---|
2803 | wc = inputwcs[*pp - mbclen - buf_begin];
|
---|
2804 | s1 = state_index(d, &follows, wc == L'\n', iswalnum(wc));
|
---|
2805 | realloc_trans_if_necessary(d, s1);
|
---|
2806 |
|
---|
2807 | while (*pp - p1 < maxlen)
|
---|
2808 | {
|
---|
2809 | follows.nelem = 0;
|
---|
2810 | rs = transit_state_consume_1char(d, s1, pp, NULL, &mbclen, &follows);
|
---|
2811 |
|
---|
2812 | for (i = 0; i < nelem ; i++)
|
---|
2813 | {
|
---|
2814 | if (match_lens[i] == *pp - p1)
|
---|
2815 | for (j = 0;
|
---|
2816 | j < d->follows[d->states[s1].mbps.elems[i].index].nelem; j++)
|
---|
2817 | insert(d->follows[d->states[s1].mbps.elems[i].index].elems[j],
|
---|
2818 | &follows);
|
---|
2819 | }
|
---|
2820 |
|
---|
2821 | wc = inputwcs[*pp - mbclen - buf_begin];
|
---|
2822 | s1 = state_index(d, &follows, wc == L'\n', iswalnum(wc));
|
---|
2823 | realloc_trans_if_necessary(d, s1);
|
---|
2824 | }
|
---|
2825 | free(match_lens);
|
---|
2826 | free(follows.elems);
|
---|
2827 | return s1;
|
---|
2828 | }
|
---|
2829 |
|
---|
2830 | #endif /* MBS_SUPPORT */
|
---|
2831 |
|
---|
2832 | /* Search through a buffer looking for a match to the given struct dfa.
|
---|
2833 | Find the first occurrence of a string matching the regexp in the buffer,
|
---|
2834 | and the shortest possible version thereof. Return a pointer to the first
|
---|
2835 | character after the match, or NULL if none is found. Begin points to
|
---|
2836 | the beginning of the buffer, and end points to the first character after
|
---|
2837 | its end. We store a newline in *end to act as a sentinel, so end had
|
---|
2838 | better point somewhere valid. Newline is a flag indicating whether to
|
---|
2839 | allow newlines to be in the matching string. If count is non-
|
---|
2840 | NULL it points to a place we're supposed to increment every time we
|
---|
2841 | see a newline. Finally, if backref is non-NULL it points to a place
|
---|
2842 | where we're supposed to store a 1 if backreferencing happened and the
|
---|
2843 | match needs to be verified by a backtracking matcher. Otherwise
|
---|
2844 | we store a 0 in *backref. */
|
---|
2845 | char *
|
---|
2846 | dfaexec (struct dfa *d, char const *begin, char *end,
|
---|
2847 | int newline, int *count, int *backref)
|
---|
2848 | {
|
---|
2849 | register int s, s1, tmp; /* Current state. */
|
---|
2850 | register unsigned char const *p; /* Current input character. */
|
---|
2851 | register int **trans, *t; /* Copy of d->trans so it can be optimized
|
---|
2852 | into a register. */
|
---|
2853 | register unsigned char eol = eolbyte; /* Likewise for eolbyte. */
|
---|
2854 | static int sbit[NOTCHAR]; /* Table for anding with d->success. */
|
---|
2855 | static int sbit_init;
|
---|
2856 |
|
---|
2857 | if (! sbit_init)
|
---|
2858 | {
|
---|
2859 | int i;
|
---|
2860 |
|
---|
2861 | sbit_init = 1;
|
---|
2862 | for (i = 0; i < NOTCHAR; ++i)
|
---|
2863 | sbit[i] = (IS_WORD_CONSTITUENT(i)) ? 2 : 1;
|
---|
2864 | sbit[eol] = 4;
|
---|
2865 | }
|
---|
2866 |
|
---|
2867 | if (! d->tralloc)
|
---|
2868 | build_state_zero(d);
|
---|
2869 |
|
---|
2870 | s = s1 = 0;
|
---|
2871 | p = (unsigned char const *) begin;
|
---|
2872 | trans = d->trans;
|
---|
2873 | *end = eol;
|
---|
2874 |
|
---|
2875 | #ifdef MBS_SUPPORT
|
---|
2876 | if (MB_CUR_MAX > 1)
|
---|
2877 | {
|
---|
2878 | int remain_bytes, i;
|
---|
2879 | buf_begin = begin;
|
---|
2880 | buf_end = end;
|
---|
2881 |
|
---|
2882 | /* initialize mblen_buf, and inputwcs. */
|
---|
2883 | MALLOC(mblen_buf, unsigned char, end - begin + 2);
|
---|
2884 | MALLOC(inputwcs, wchar_t, end - begin + 2);
|
---|
2885 | memset(&mbs, 0, sizeof(mbstate_t));
|
---|
2886 | remain_bytes = 0;
|
---|
2887 | for (i = 0; i < end - begin + 1; i++)
|
---|
2888 | {
|
---|
2889 | if (remain_bytes == 0)
|
---|
2890 | {
|
---|
2891 | remain_bytes
|
---|
2892 | = mbrtowc(inputwcs + i, begin + i, end - begin - i + 1, &mbs);
|
---|
2893 | if (remain_bytes <= 1)
|
---|
2894 | {
|
---|
2895 | remain_bytes = 0;
|
---|
2896 | inputwcs[i] = (wchar_t)begin[i];
|
---|
2897 | mblen_buf[i] = 0;
|
---|
2898 | }
|
---|
2899 | else
|
---|
2900 | {
|
---|
2901 | mblen_buf[i] = remain_bytes;
|
---|
2902 | remain_bytes--;
|
---|
2903 | }
|
---|
2904 | }
|
---|
2905 | else
|
---|
2906 | {
|
---|
2907 | mblen_buf[i] = remain_bytes;
|
---|
2908 | inputwcs[i] = 0;
|
---|
2909 | remain_bytes--;
|
---|
2910 | }
|
---|
2911 | }
|
---|
2912 | mblen_buf[i] = 0;
|
---|
2913 | inputwcs[i] = 0; /* sentinel */
|
---|
2914 | }
|
---|
2915 | #endif /* MBS_SUPPORT */
|
---|
2916 |
|
---|
2917 | for (;;)
|
---|
2918 | {
|
---|
2919 | #ifdef MBS_SUPPORT
|
---|
2920 | if (MB_CUR_MAX > 1)
|
---|
2921 | while ((t = trans[s]))
|
---|
2922 | {
|
---|
2923 | if ((char *) p > end)
|
---|
2924 | break;
|
---|
2925 | s1 = s;
|
---|
2926 | if (d->states[s].mbps.nelem != 0)
|
---|
2927 | {
|
---|
2928 | /* Can match with a multibyte character (and multi character
|
---|
2929 | collating element). */
|
---|
2930 | unsigned char const *nextp;
|
---|
2931 |
|
---|
2932 | SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p);
|
---|
2933 |
|
---|
2934 | nextp = p;
|
---|
2935 | s = transit_state(d, s, &nextp);
|
---|
2936 | p = (unsigned char *)nextp;
|
---|
2937 |
|
---|
2938 | /* Trans table might be updated. */
|
---|
2939 | trans = d->trans;
|
---|
2940 | }
|
---|
2941 | else
|
---|
2942 | {
|
---|
2943 | SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p);
|
---|
2944 | s = t[*p++];
|
---|
2945 | }
|
---|
2946 | }
|
---|
2947 | else
|
---|
2948 | #endif /* MBS_SUPPORT */
|
---|
2949 | while ((t = trans[s]) != 0) { /* hand-optimized loop */
|
---|
2950 | s1 = t[*p++];
|
---|
2951 | if ((t = trans[s1]) == 0) {
|
---|
2952 | tmp = s ; s = s1 ; s1 = tmp ; /* swap */
|
---|
2953 | break;
|
---|
2954 | }
|
---|
2955 | s = t[*p++];
|
---|
2956 | }
|
---|
2957 |
|
---|
2958 | if (s >= 0 && p <= (unsigned char *) end && d->fails[s])
|
---|
2959 | {
|
---|
2960 | if (d->success[s] & sbit[*p])
|
---|
2961 | {
|
---|
2962 | if (backref)
|
---|
2963 | *backref = (d->states[s].backref != 0);
|
---|
2964 | #ifdef MBS_SUPPORT
|
---|
2965 | if (MB_CUR_MAX > 1)
|
---|
2966 | {
|
---|
2967 | free(mblen_buf);
|
---|
2968 | free(inputwcs);
|
---|
2969 | }
|
---|
2970 | #endif /* MBS_SUPPORT */
|
---|
2971 | return (char *) p;
|
---|
2972 | }
|
---|
2973 |
|
---|
2974 | s1 = s;
|
---|
2975 | #ifdef MBS_SUPPORT
|
---|
2976 | if (MB_CUR_MAX > 1)
|
---|
2977 | {
|
---|
2978 | unsigned char const *nextp;
|
---|
2979 | nextp = p;
|
---|
2980 | s = transit_state(d, s, &nextp);
|
---|
2981 | p = (unsigned char *)nextp;
|
---|
2982 |
|
---|
2983 | /* Trans table might be updated. */
|
---|
2984 | trans = d->trans;
|
---|
2985 | }
|
---|
2986 | else
|
---|
2987 | #endif /* MBS_SUPPORT */
|
---|
2988 | s = d->fails[s][*p++];
|
---|
2989 | continue;
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 | /* If the previous character was a newline, count it. */
|
---|
2993 | if (count && (char *) p <= end && p[-1] == eol)
|
---|
2994 | ++*count;
|
---|
2995 |
|
---|
2996 | /* Check if we've run off the end of the buffer. */
|
---|
2997 | if ((char *) p > end)
|
---|
2998 | {
|
---|
2999 | #ifdef MBS_SUPPORT
|
---|
3000 | if (MB_CUR_MAX > 1)
|
---|
3001 | {
|
---|
3002 | free(mblen_buf);
|
---|
3003 | free(inputwcs);
|
---|
3004 | }
|
---|
3005 | #endif /* MBS_SUPPORT */
|
---|
3006 | return NULL;
|
---|
3007 | }
|
---|
3008 |
|
---|
3009 | if (s >= 0)
|
---|
3010 | {
|
---|
3011 | build_state(s, d);
|
---|
3012 | trans = d->trans;
|
---|
3013 | continue;
|
---|
3014 | }
|
---|
3015 |
|
---|
3016 | if (p[-1] == eol && newline)
|
---|
3017 | {
|
---|
3018 | s = d->newlines[s1];
|
---|
3019 | continue;
|
---|
3020 | }
|
---|
3021 |
|
---|
3022 | s = 0;
|
---|
3023 | }
|
---|
3024 | }
|
---|
3025 |
|
---|
3026 | /* Initialize the components of a dfa that the other routines don't
|
---|
3027 | initialize for themselves. */
|
---|
3028 | void
|
---|
3029 | dfainit (struct dfa *d)
|
---|
3030 | {
|
---|
3031 | d->calloc = 1;
|
---|
3032 | MALLOC(d->charclasses, charclass, d->calloc);
|
---|
3033 | d->cindex = 0;
|
---|
3034 |
|
---|
3035 | d->talloc = 1;
|
---|
3036 | MALLOC(d->tokens, token, d->talloc);
|
---|
3037 | d->tindex = d->depth = d->nleaves = d->nregexps = 0;
|
---|
3038 | #ifdef MBS_SUPPORT
|
---|
3039 | if (MB_CUR_MAX > 1)
|
---|
3040 | {
|
---|
3041 | d->nmultibyte_prop = 1;
|
---|
3042 | MALLOC(d->multibyte_prop, int, d->nmultibyte_prop);
|
---|
3043 | d->nmbcsets = 0;
|
---|
3044 | d->mbcsets_alloc = 1;
|
---|
3045 | MALLOC(d->mbcsets, struct mb_char_classes, d->mbcsets_alloc);
|
---|
3046 | }
|
---|
3047 | #endif
|
---|
3048 |
|
---|
3049 | d->searchflag = 0;
|
---|
3050 | d->tralloc = 0;
|
---|
3051 |
|
---|
3052 | d->musts = 0;
|
---|
3053 | d->realtrans = 0;
|
---|
3054 | d->fails = 0;
|
---|
3055 | d->newlines = 0;
|
---|
3056 | d->success = 0;
|
---|
3057 | }
|
---|
3058 |
|
---|
3059 | /* Parse and analyze a single string of the given length. */
|
---|
3060 | void
|
---|
3061 | dfacomp (char const *s, size_t len, struct dfa *d, int searchflag)
|
---|
3062 | {
|
---|
3063 | if (case_fold) /* dummy folding in service of dfamust() */
|
---|
3064 | {
|
---|
3065 | char *lcopy;
|
---|
3066 | int i;
|
---|
3067 |
|
---|
3068 | lcopy = malloc(len);
|
---|
3069 | if (!lcopy)
|
---|
3070 | dfaerror(_("memory exhausted"));
|
---|
3071 |
|
---|
3072 | /* This is a kludge. */
|
---|
3073 | case_fold = 0;
|
---|
3074 | for (i = 0; i < len; ++i)
|
---|
3075 | if (ISUPPER ((unsigned char) s[i]))
|
---|
3076 | lcopy[i] = tolower ((unsigned char) s[i]);
|
---|
3077 | else
|
---|
3078 | lcopy[i] = s[i];
|
---|
3079 |
|
---|
3080 | dfainit(d);
|
---|
3081 | dfaparse(lcopy, len, d);
|
---|
3082 | free(lcopy);
|
---|
3083 | dfamust(d);
|
---|
3084 | d->cindex = d->tindex = d->depth = d->nleaves = d->nregexps = 0;
|
---|
3085 | case_fold = 1;
|
---|
3086 | dfaparse(s, len, d);
|
---|
3087 | dfaanalyze(d, searchflag);
|
---|
3088 | }
|
---|
3089 | else
|
---|
3090 | {
|
---|
3091 | dfainit(d);
|
---|
3092 | dfaparse(s, len, d);
|
---|
3093 | dfamust(d);
|
---|
3094 | dfaanalyze(d, searchflag);
|
---|
3095 | }
|
---|
3096 | }
|
---|
3097 |
|
---|
3098 | /* Free the storage held by the components of a dfa. */
|
---|
3099 | void
|
---|
3100 | dfafree (struct dfa *d)
|
---|
3101 | {
|
---|
3102 | int i;
|
---|
3103 | struct dfamust *dm, *ndm;
|
---|
3104 |
|
---|
3105 | free((ptr_t) d->charclasses);
|
---|
3106 | free((ptr_t) d->tokens);
|
---|
3107 |
|
---|
3108 | #ifdef MBS_SUPPORT
|
---|
3109 | if (MB_CUR_MAX > 1)
|
---|
3110 | {
|
---|
3111 | free((ptr_t) d->multibyte_prop);
|
---|
3112 | for (i = 0; i < d->nmbcsets; ++i)
|
---|
3113 | {
|
---|
3114 | int j;
|
---|
3115 | struct mb_char_classes *p = &(d->mbcsets[i]);
|
---|
3116 | if (p->chars != NULL)
|
---|
3117 | free(p->chars);
|
---|
3118 | if (p->ch_classes != NULL)
|
---|
3119 | free(p->ch_classes);
|
---|
3120 | if (p->range_sts != NULL)
|
---|
3121 | free(p->range_sts);
|
---|
3122 | if (p->range_ends != NULL)
|
---|
3123 | free(p->range_ends);
|
---|
3124 |
|
---|
3125 | for (j = 0; j < p->nequivs; ++j)
|
---|
3126 | free(p->equivs[j]);
|
---|
3127 | if (p->equivs != NULL)
|
---|
3128 | free(p->equivs);
|
---|
3129 |
|
---|
3130 | for (j = 0; j < p->ncoll_elems; ++j)
|
---|
3131 | free(p->coll_elems[j]);
|
---|
3132 | if (p->coll_elems != NULL)
|
---|
3133 | free(p->coll_elems);
|
---|
3134 | }
|
---|
3135 | free((ptr_t) d->mbcsets);
|
---|
3136 | }
|
---|
3137 | #endif /* MBS_SUPPORT */
|
---|
3138 |
|
---|
3139 | for (i = 0; i < d->sindex; ++i)
|
---|
3140 | free((ptr_t) d->states[i].elems.elems);
|
---|
3141 | free((ptr_t) d->states);
|
---|
3142 | for (i = 0; i < d->tindex; ++i)
|
---|
3143 | if (d->follows[i].elems)
|
---|
3144 | free((ptr_t) d->follows[i].elems);
|
---|
3145 | free((ptr_t) d->follows);
|
---|
3146 | for (i = 0; i < d->tralloc; ++i)
|
---|
3147 | if (d->trans[i])
|
---|
3148 | free((ptr_t) d->trans[i]);
|
---|
3149 | else if (d->fails[i])
|
---|
3150 | free((ptr_t) d->fails[i]);
|
---|
3151 | if (d->realtrans) free((ptr_t) d->realtrans);
|
---|
3152 | if (d->fails) free((ptr_t) d->fails);
|
---|
3153 | if (d->newlines) free((ptr_t) d->newlines);
|
---|
3154 | if (d->success) free((ptr_t) d->success);
|
---|
3155 | for (dm = d->musts; dm; dm = ndm)
|
---|
3156 | {
|
---|
3157 | ndm = dm->next;
|
---|
3158 | free(dm->must);
|
---|
3159 | free((ptr_t) dm);
|
---|
3160 | }
|
---|
3161 | }
|
---|
3162 |
|
---|
3163 | /* Having found the postfix representation of the regular expression,
|
---|
3164 | try to find a long sequence of characters that must appear in any line
|
---|
3165 | containing the r.e.
|
---|
3166 | Finding a "longest" sequence is beyond the scope here;
|
---|
3167 | we take an easy way out and hope for the best.
|
---|
3168 | (Take "(ab|a)b"--please.)
|
---|
3169 |
|
---|
3170 | We do a bottom-up calculation of sequences of characters that must appear
|
---|
3171 | in matches of r.e.'s represented by trees rooted at the nodes of the postfix
|
---|
3172 | representation:
|
---|
3173 | sequences that must appear at the left of the match ("left")
|
---|
3174 | sequences that must appear at the right of the match ("right")
|
---|
3175 | lists of sequences that must appear somewhere in the match ("in")
|
---|
3176 | sequences that must constitute the match ("is")
|
---|
3177 |
|
---|
3178 | When we get to the root of the tree, we use one of the longest of its
|
---|
3179 | calculated "in" sequences as our answer. The sequence we find is returned in
|
---|
3180 | d->must (where "d" is the single argument passed to "dfamust");
|
---|
3181 | the length of the sequence is returned in d->mustn.
|
---|
3182 |
|
---|
3183 | The sequences calculated for the various types of node (in pseudo ANSI c)
|
---|
3184 | are shown below. "p" is the operand of unary operators (and the left-hand
|
---|
3185 | operand of binary operators); "q" is the right-hand operand of binary
|
---|
3186 | operators.
|
---|
3187 |
|
---|
3188 | "ZERO" means "a zero-length sequence" below.
|
---|
3189 |
|
---|
3190 | Type left right is in
|
---|
3191 | ---- ---- ----- -- --
|
---|
3192 | char c # c # c # c # c
|
---|
3193 |
|
---|
3194 | ANYCHAR ZERO ZERO ZERO ZERO
|
---|
3195 |
|
---|
3196 | MBCSET ZERO ZERO ZERO ZERO
|
---|
3197 |
|
---|
3198 | CSET ZERO ZERO ZERO ZERO
|
---|
3199 |
|
---|
3200 | STAR ZERO ZERO ZERO ZERO
|
---|
3201 |
|
---|
3202 | QMARK ZERO ZERO ZERO ZERO
|
---|
3203 |
|
---|
3204 | PLUS p->left p->right ZERO p->in
|
---|
3205 |
|
---|
3206 | CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus
|
---|
3207 | p->left : q->right : q->is!=ZERO) ? q->in plus
|
---|
3208 | p->is##q->left p->right##q->is p->is##q->is : p->right##q->left
|
---|
3209 | ZERO
|
---|
3210 |
|
---|
3211 | OR longest common longest common (do p->is and substrings common to
|
---|
3212 | leading trailing q->is have same p->in and q->in
|
---|
3213 | (sub)sequence (sub)sequence length and
|
---|
3214 | of p->left of p->right content) ?
|
---|
3215 | and q->left and q->right p->is : NULL
|
---|
3216 |
|
---|
3217 | If there's anything else we recognize in the tree, all four sequences get set
|
---|
3218 | to zero-length sequences. If there's something we don't recognize in the tree,
|
---|
3219 | we just return a zero-length sequence.
|
---|
3220 |
|
---|
3221 | Break ties in favor of infrequent letters (choosing 'zzz' in preference to
|
---|
3222 | 'aaa')?
|
---|
3223 |
|
---|
3224 | And. . .is it here or someplace that we might ponder "optimizations" such as
|
---|
3225 | egrep 'psi|epsilon' -> egrep 'psi'
|
---|
3226 | egrep 'pepsi|epsilon' -> egrep 'epsi'
|
---|
3227 | (Yes, we now find "epsi" as a "string
|
---|
3228 | that must occur", but we might also
|
---|
3229 | simplify the *entire* r.e. being sought)
|
---|
3230 | grep '[c]' -> grep 'c'
|
---|
3231 | grep '(ab|a)b' -> grep 'ab'
|
---|
3232 | grep 'ab*' -> grep 'a'
|
---|
3233 | grep 'a*b' -> grep 'b'
|
---|
3234 |
|
---|
3235 | There are several issues:
|
---|
3236 |
|
---|
3237 | Is optimization easy (enough)?
|
---|
3238 |
|
---|
3239 | Does optimization actually accomplish anything,
|
---|
3240 | or is the automaton you get from "psi|epsilon" (for example)
|
---|
3241 | the same as the one you get from "psi" (for example)?
|
---|
3242 |
|
---|
3243 | Are optimizable r.e.'s likely to be used in real-life situations
|
---|
3244 | (something like 'ab*' is probably unlikely; something like is
|
---|
3245 | 'psi|epsilon' is likelier)? */
|
---|
3246 |
|
---|
3247 | static char *
|
---|
3248 | icatalloc (char *old, char *new)
|
---|
3249 | {
|
---|
3250 | char *result;
|
---|
3251 | size_t oldsize, newsize;
|
---|
3252 |
|
---|
3253 | newsize = (new == NULL) ? 0 : strlen(new);
|
---|
3254 | if (old == NULL)
|
---|
3255 | oldsize = 0;
|
---|
3256 | else if (newsize == 0)
|
---|
3257 | return old;
|
---|
3258 | else oldsize = strlen(old);
|
---|
3259 | if (old == NULL)
|
---|
3260 | result = (char *) malloc(newsize + 1);
|
---|
3261 | else
|
---|
3262 | result = (char *) realloc((void *) old, oldsize + newsize + 1);
|
---|
3263 | if (result != NULL && new != NULL)
|
---|
3264 | (void) strcpy(result + oldsize, new);
|
---|
3265 | return result;
|
---|
3266 | }
|
---|
3267 |
|
---|
3268 | static char *
|
---|
3269 | icpyalloc (char *string)
|
---|
3270 | {
|
---|
3271 | return icatalloc((char *) NULL, string);
|
---|
3272 | }
|
---|
3273 |
|
---|
3274 | static char *
|
---|
3275 | istrstr (char *lookin, char *lookfor)
|
---|
3276 | {
|
---|
3277 | char *cp;
|
---|
3278 | size_t len;
|
---|
3279 |
|
---|
3280 | len = strlen(lookfor);
|
---|
3281 | for (cp = lookin; *cp != '\0'; ++cp)
|
---|
3282 | if (strncmp(cp, lookfor, len) == 0)
|
---|
3283 | return cp;
|
---|
3284 | return NULL;
|
---|
3285 | }
|
---|
3286 |
|
---|
3287 | static void
|
---|
3288 | ifree (char *cp)
|
---|
3289 | {
|
---|
3290 | if (cp != NULL)
|
---|
3291 | free(cp);
|
---|
3292 | }
|
---|
3293 |
|
---|
3294 | static void
|
---|
3295 | freelist (char **cpp)
|
---|
3296 | {
|
---|
3297 | int i;
|
---|
3298 |
|
---|
3299 | if (cpp == NULL)
|
---|
3300 | return;
|
---|
3301 | for (i = 0; cpp[i] != NULL; ++i)
|
---|
3302 | {
|
---|
3303 | free(cpp[i]);
|
---|
3304 | cpp[i] = NULL;
|
---|
3305 | }
|
---|
3306 | }
|
---|
3307 |
|
---|
3308 | static char **
|
---|
3309 | enlist (char **cpp, char *new, size_t len)
|
---|
3310 | {
|
---|
3311 | int i, j;
|
---|
3312 |
|
---|
3313 | if (cpp == NULL)
|
---|
3314 | return NULL;
|
---|
3315 | if ((new = icpyalloc(new)) == NULL)
|
---|
3316 | {
|
---|
3317 | freelist(cpp);
|
---|
3318 | return NULL;
|
---|
3319 | }
|
---|
3320 | new[len] = '\0';
|
---|
3321 | /* Is there already something in the list that's new (or longer)? */
|
---|
3322 | for (i = 0; cpp[i] != NULL; ++i)
|
---|
3323 | if (istrstr(cpp[i], new) != NULL)
|
---|
3324 | {
|
---|
3325 | free(new);
|
---|
3326 | return cpp;
|
---|
3327 | }
|
---|
3328 | /* Eliminate any obsoleted strings. */
|
---|
3329 | j = 0;
|
---|
3330 | while (cpp[j] != NULL)
|
---|
3331 | if (istrstr(new, cpp[j]) == NULL)
|
---|
3332 | ++j;
|
---|
3333 | else
|
---|
3334 | {
|
---|
3335 | free(cpp[j]);
|
---|
3336 | if (--i == j)
|
---|
3337 | break;
|
---|
3338 | cpp[j] = cpp[i];
|
---|
3339 | cpp[i] = NULL;
|
---|
3340 | }
|
---|
3341 | /* Add the new string. */
|
---|
3342 | cpp = (char **) realloc((char *) cpp, (i + 2) * sizeof *cpp);
|
---|
3343 | if (cpp == NULL)
|
---|
3344 | return NULL;
|
---|
3345 | cpp[i] = new;
|
---|
3346 | cpp[i + 1] = NULL;
|
---|
3347 | return cpp;
|
---|
3348 | }
|
---|
3349 |
|
---|
3350 | /* Given pointers to two strings, return a pointer to an allocated
|
---|
3351 | list of their distinct common substrings. Return NULL if something
|
---|
3352 | seems wild. */
|
---|
3353 | static char **
|
---|
3354 | comsubs (char *left, char *right)
|
---|
3355 | {
|
---|
3356 | char **cpp;
|
---|
3357 | char *lcp;
|
---|
3358 | char *rcp;
|
---|
3359 | size_t i, len;
|
---|
3360 |
|
---|
3361 | if (left == NULL || right == NULL)
|
---|
3362 | return NULL;
|
---|
3363 | cpp = (char **) malloc(sizeof *cpp);
|
---|
3364 | if (cpp == NULL)
|
---|
3365 | return NULL;
|
---|
3366 | cpp[0] = NULL;
|
---|
3367 | for (lcp = left; *lcp != '\0'; ++lcp)
|
---|
3368 | {
|
---|
3369 | len = 0;
|
---|
3370 | rcp = strchr (right, *lcp);
|
---|
3371 | while (rcp != NULL)
|
---|
3372 | {
|
---|
3373 | for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
|
---|
3374 | continue;
|
---|
3375 | if (i > len)
|
---|
3376 | len = i;
|
---|
3377 | rcp = strchr (rcp + 1, *lcp);
|
---|
3378 | }
|
---|
3379 | if (len == 0)
|
---|
3380 | continue;
|
---|
3381 | if ((cpp = enlist(cpp, lcp, len)) == NULL)
|
---|
3382 | break;
|
---|
3383 | }
|
---|
3384 | return cpp;
|
---|
3385 | }
|
---|
3386 |
|
---|
3387 | static char **
|
---|
3388 | addlists (char **old, char **new)
|
---|
3389 | {
|
---|
3390 | int i;
|
---|
3391 |
|
---|
3392 | if (old == NULL || new == NULL)
|
---|
3393 | return NULL;
|
---|
3394 | for (i = 0; new[i] != NULL; ++i)
|
---|
3395 | {
|
---|
3396 | old = enlist(old, new[i], strlen(new[i]));
|
---|
3397 | if (old == NULL)
|
---|
3398 | break;
|
---|
3399 | }
|
---|
3400 | return old;
|
---|
3401 | }
|
---|
3402 |
|
---|
3403 | /* Given two lists of substrings, return a new list giving substrings
|
---|
3404 | common to both. */
|
---|
3405 | static char **
|
---|
3406 | inboth (char **left, char **right)
|
---|
3407 | {
|
---|
3408 | char **both;
|
---|
3409 | char **temp;
|
---|
3410 | int lnum, rnum;
|
---|
3411 |
|
---|
3412 | if (left == NULL || right == NULL)
|
---|
3413 | return NULL;
|
---|
3414 | both = (char **) malloc(sizeof *both);
|
---|
3415 | if (both == NULL)
|
---|
3416 | return NULL;
|
---|
3417 | both[0] = NULL;
|
---|
3418 | for (lnum = 0; left[lnum] != NULL; ++lnum)
|
---|
3419 | {
|
---|
3420 | for (rnum = 0; right[rnum] != NULL; ++rnum)
|
---|
3421 | {
|
---|
3422 | temp = comsubs(left[lnum], right[rnum]);
|
---|
3423 | if (temp == NULL)
|
---|
3424 | {
|
---|
3425 | freelist(both);
|
---|
3426 | return NULL;
|
---|
3427 | }
|
---|
3428 | both = addlists(both, temp);
|
---|
3429 | freelist(temp);
|
---|
3430 | free(temp);
|
---|
3431 | if (both == NULL)
|
---|
3432 | return NULL;
|
---|
3433 | }
|
---|
3434 | }
|
---|
3435 | return both;
|
---|
3436 | }
|
---|
3437 |
|
---|
3438 | typedef struct
|
---|
3439 | {
|
---|
3440 | char **in;
|
---|
3441 | char *left;
|
---|
3442 | char *right;
|
---|
3443 | char *is;
|
---|
3444 | } must;
|
---|
3445 |
|
---|
3446 | static void
|
---|
3447 | resetmust (must *mp)
|
---|
3448 | {
|
---|
3449 | mp->left[0] = mp->right[0] = mp->is[0] = '\0';
|
---|
3450 | freelist(mp->in);
|
---|
3451 | }
|
---|
3452 |
|
---|
3453 | static void
|
---|
3454 | dfamust (struct dfa *dfa)
|
---|
3455 | {
|
---|
3456 | must *musts;
|
---|
3457 | must *mp;
|
---|
3458 | char *result;
|
---|
3459 | int ri;
|
---|
3460 | int i;
|
---|
3461 | int exact;
|
---|
3462 | token t;
|
---|
3463 | static must must0;
|
---|
3464 | struct dfamust *dm;
|
---|
3465 | static char empty_string[] = "";
|
---|
3466 |
|
---|
3467 | result = empty_string;
|
---|
3468 | exact = 0;
|
---|
3469 | musts = (must *) malloc((dfa->tindex + 1) * sizeof *musts);
|
---|
3470 | if (musts == NULL)
|
---|
3471 | return;
|
---|
3472 | mp = musts;
|
---|
3473 | for (i = 0; i <= dfa->tindex; ++i)
|
---|
3474 | mp[i] = must0;
|
---|
3475 | for (i = 0; i <= dfa->tindex; ++i)
|
---|
3476 | {
|
---|
3477 | mp[i].in = (char **) malloc(sizeof *mp[i].in);
|
---|
3478 | mp[i].left = malloc(2);
|
---|
3479 | mp[i].right = malloc(2);
|
---|
3480 | mp[i].is = malloc(2);
|
---|
3481 | if (mp[i].in == NULL || mp[i].left == NULL ||
|
---|
3482 | mp[i].right == NULL || mp[i].is == NULL)
|
---|
3483 | goto done;
|
---|
3484 | mp[i].left[0] = mp[i].right[0] = mp[i].is[0] = '\0';
|
---|
3485 | mp[i].in[0] = NULL;
|
---|
3486 | }
|
---|
3487 | #ifdef DEBUG
|
---|
3488 | fprintf(stderr, "dfamust:\n");
|
---|
3489 | for (i = 0; i < dfa->tindex; ++i)
|
---|
3490 | {
|
---|
3491 | fprintf(stderr, " %d:", i);
|
---|
3492 | prtok(dfa->tokens[i]);
|
---|
3493 | }
|
---|
3494 | putc('\n', stderr);
|
---|
3495 | #endif
|
---|
3496 | for (ri = 0; ri < dfa->tindex; ++ri)
|
---|
3497 | {
|
---|
3498 | switch (t = dfa->tokens[ri])
|
---|
3499 | {
|
---|
3500 | case LPAREN:
|
---|
3501 | case RPAREN:
|
---|
3502 | goto done; /* "cannot happen" */
|
---|
3503 | case EMPTY:
|
---|
3504 | case BEGLINE:
|
---|
3505 | case ENDLINE:
|
---|
3506 | case BEGWORD:
|
---|
3507 | case ENDWORD:
|
---|
3508 | case LIMWORD:
|
---|
3509 | case NOTLIMWORD:
|
---|
3510 | case BACKREF:
|
---|
3511 | resetmust(mp);
|
---|
3512 | break;
|
---|
3513 | case STAR:
|
---|
3514 | case QMARK:
|
---|
3515 | if (mp <= musts)
|
---|
3516 | goto done; /* "cannot happen" */
|
---|
3517 | --mp;
|
---|
3518 | resetmust(mp);
|
---|
3519 | break;
|
---|
3520 | case OR:
|
---|
3521 | case ORTOP:
|
---|
3522 | if (mp < &musts[2])
|
---|
3523 | goto done; /* "cannot happen" */
|
---|
3524 | {
|
---|
3525 | char **new;
|
---|
3526 | must *lmp;
|
---|
3527 | must *rmp;
|
---|
3528 | int j, ln, rn, n;
|
---|
3529 |
|
---|
3530 | rmp = --mp;
|
---|
3531 | lmp = --mp;
|
---|
3532 | /* Guaranteed to be. Unlikely, but. . . */
|
---|
3533 | if (strcmp(lmp->is, rmp->is) != 0)
|
---|
3534 | lmp->is[0] = '\0';
|
---|
3535 | /* Left side--easy */
|
---|
3536 | i = 0;
|
---|
3537 | while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
|
---|
3538 | ++i;
|
---|
3539 | lmp->left[i] = '\0';
|
---|
3540 | /* Right side */
|
---|
3541 | ln = strlen(lmp->right);
|
---|
3542 | rn = strlen(rmp->right);
|
---|
3543 | n = ln;
|
---|
3544 | if (n > rn)
|
---|
3545 | n = rn;
|
---|
3546 | for (i = 0; i < n; ++i)
|
---|
3547 | if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
|
---|
3548 | break;
|
---|
3549 | for (j = 0; j < i; ++j)
|
---|
3550 | lmp->right[j] = lmp->right[(ln - i) + j];
|
---|
3551 | lmp->right[j] = '\0';
|
---|
3552 | new = inboth(lmp->in, rmp->in);
|
---|
3553 | if (new == NULL)
|
---|
3554 | goto done;
|
---|
3555 | freelist(lmp->in);
|
---|
3556 | free((char *) lmp->in);
|
---|
3557 | lmp->in = new;
|
---|
3558 | }
|
---|
3559 | break;
|
---|
3560 | case PLUS:
|
---|
3561 | if (mp <= musts)
|
---|
3562 | goto done; /* "cannot happen" */
|
---|
3563 | --mp;
|
---|
3564 | mp->is[0] = '\0';
|
---|
3565 | break;
|
---|
3566 | case END:
|
---|
3567 | if (mp != &musts[1])
|
---|
3568 | goto done; /* "cannot happen" */
|
---|
3569 | for (i = 0; musts[0].in[i] != NULL; ++i)
|
---|
3570 | if (strlen(musts[0].in[i]) > strlen(result))
|
---|
3571 | result = musts[0].in[i];
|
---|
3572 | if (strcmp(result, musts[0].is) == 0)
|
---|
3573 | exact = 1;
|
---|
3574 | goto done;
|
---|
3575 | case CAT:
|
---|
3576 | if (mp < &musts[2])
|
---|
3577 | goto done; /* "cannot happen" */
|
---|
3578 | {
|
---|
3579 | must *lmp;
|
---|
3580 | must *rmp;
|
---|
3581 |
|
---|
3582 | rmp = --mp;
|
---|
3583 | lmp = --mp;
|
---|
3584 | /* In. Everything in left, plus everything in
|
---|
3585 | right, plus catenation of
|
---|
3586 | left's right and right's left. */
|
---|
3587 | lmp->in = addlists(lmp->in, rmp->in);
|
---|
3588 | if (lmp->in == NULL)
|
---|
3589 | goto done;
|
---|
3590 | if (lmp->right[0] != '\0' &&
|
---|
3591 | rmp->left[0] != '\0')
|
---|
3592 | {
|
---|
3593 | char *tp;
|
---|
3594 |
|
---|
3595 | tp = icpyalloc(lmp->right);
|
---|
3596 | if (tp == NULL)
|
---|
3597 | goto done;
|
---|
3598 | tp = icatalloc(tp, rmp->left);
|
---|
3599 | if (tp == NULL)
|
---|
3600 | goto done;
|
---|
3601 | lmp->in = enlist(lmp->in, tp,
|
---|
3602 | strlen(tp));
|
---|
3603 | free(tp);
|
---|
3604 | if (lmp->in == NULL)
|
---|
3605 | goto done;
|
---|
3606 | }
|
---|
3607 | /* Left-hand */
|
---|
3608 | if (lmp->is[0] != '\0')
|
---|
3609 | {
|
---|
3610 | lmp->left = icatalloc(lmp->left,
|
---|
3611 | rmp->left);
|
---|
3612 | if (lmp->left == NULL)
|
---|
3613 | goto done;
|
---|
3614 | }
|
---|
3615 | /* Right-hand */
|
---|
3616 | if (rmp->is[0] == '\0')
|
---|
3617 | lmp->right[0] = '\0';
|
---|
3618 | lmp->right = icatalloc(lmp->right, rmp->right);
|
---|
3619 | if (lmp->right == NULL)
|
---|
3620 | goto done;
|
---|
3621 | /* Guaranteed to be */
|
---|
3622 | if (lmp->is[0] != '\0' && rmp->is[0] != '\0')
|
---|
3623 | {
|
---|
3624 | lmp->is = icatalloc(lmp->is, rmp->is);
|
---|
3625 | if (lmp->is == NULL)
|
---|
3626 | goto done;
|
---|
3627 | }
|
---|
3628 | else
|
---|
3629 | lmp->is[0] = '\0';
|
---|
3630 | }
|
---|
3631 | break;
|
---|
3632 | default:
|
---|
3633 | if (t < END)
|
---|
3634 | {
|
---|
3635 | /* "cannot happen" */
|
---|
3636 | goto done;
|
---|
3637 | }
|
---|
3638 | else if (t == '\0')
|
---|
3639 | {
|
---|
3640 | /* not on *my* shift */
|
---|
3641 | goto done;
|
---|
3642 | }
|
---|
3643 | else if (t >= CSET
|
---|
3644 | #ifdef MBS_SUPPORT
|
---|
3645 | || t == ANYCHAR
|
---|
3646 | || t == MBCSET
|
---|
3647 | #endif /* MBS_SUPPORT */
|
---|
3648 | )
|
---|
3649 | {
|
---|
3650 | /* easy enough */
|
---|
3651 | resetmust(mp);
|
---|
3652 | }
|
---|
3653 | else
|
---|
3654 | {
|
---|
3655 | /* plain character */
|
---|
3656 | resetmust(mp);
|
---|
3657 | mp->is[0] = mp->left[0] = mp->right[0] = t;
|
---|
3658 | mp->is[1] = mp->left[1] = mp->right[1] = '\0';
|
---|
3659 | mp->in = enlist(mp->in, mp->is, (size_t)1);
|
---|
3660 | if (mp->in == NULL)
|
---|
3661 | goto done;
|
---|
3662 | }
|
---|
3663 | break;
|
---|
3664 | }
|
---|
3665 | #ifdef DEBUG
|
---|
3666 | fprintf(stderr, " node: %d:", ri);
|
---|
3667 | prtok(dfa->tokens[ri]);
|
---|
3668 | fprintf(stderr, "\n in:");
|
---|
3669 | for (i = 0; mp->in[i]; ++i)
|
---|
3670 | fprintf(stderr, " \"%s\"", mp->in[i]);
|
---|
3671 | fprintf(stderr, "\n is: \"%s\"\n", mp->is);
|
---|
3672 | fprintf(stderr, " left: \"%s\"\n", mp->left);
|
---|
3673 | fprintf(stderr, " right: \"%s\"\n", mp->right);
|
---|
3674 | #endif
|
---|
3675 | ++mp;
|
---|
3676 | }
|
---|
3677 | done:
|
---|
3678 | if (strlen(result))
|
---|
3679 | {
|
---|
3680 | MALLOC(dm, struct dfamust, 1);
|
---|
3681 | dm->exact = exact;
|
---|
3682 | MALLOC(dm->must, char, strlen(result) + 1);
|
---|
3683 | strcpy(dm->must, result);
|
---|
3684 | dm->next = dfa->musts;
|
---|
3685 | dfa->musts = dm;
|
---|
3686 | }
|
---|
3687 | mp = musts;
|
---|
3688 | for (i = 0; i <= dfa->tindex; ++i)
|
---|
3689 | {
|
---|
3690 | freelist(mp[i].in);
|
---|
3691 | ifree((char *) mp[i].in);
|
---|
3692 | ifree(mp[i].left);
|
---|
3693 | ifree(mp[i].right);
|
---|
3694 | ifree(mp[i].is);
|
---|
3695 | }
|
---|
3696 | free((char *) mp);
|
---|
3697 | }
|
---|
3698 | /* vim:set shiftwidth=2: */
|
---|