1 | /* dfa - DFA construction routines */
|
---|
2 |
|
---|
3 | /* Copyright (c) 1990 The Regents of the University of California. */
|
---|
4 | /* All rights reserved. */
|
---|
5 |
|
---|
6 | /* This code is derived from software contributed to Berkeley by */
|
---|
7 | /* Vern Paxson. */
|
---|
8 |
|
---|
9 | /* The United States Government has rights in this work pursuant */
|
---|
10 | /* to contract no. DE-AC03-76SF00098 between the United States */
|
---|
11 | /* Department of Energy and the University of California. */
|
---|
12 |
|
---|
13 | /* Redistribution and use in source and binary forms, with or without */
|
---|
14 | /* modification, are permitted provided that the following conditions */
|
---|
15 | /* are met: */
|
---|
16 |
|
---|
17 | /* 1. Redistributions of source code must retain the above copyright */
|
---|
18 | /* notice, this list of conditions and the following disclaimer. */
|
---|
19 | /* 2. Redistributions in binary form must reproduce the above copyright */
|
---|
20 | /* notice, this list of conditions and the following disclaimer in the */
|
---|
21 | /* documentation and/or other materials provided with the distribution. */
|
---|
22 |
|
---|
23 | /* Neither the name of the University nor the names of its contributors */
|
---|
24 | /* may be used to endorse or promote products derived from this software */
|
---|
25 | /* without specific prior written permission. */
|
---|
26 |
|
---|
27 | /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
|
---|
28 | /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
|
---|
29 | /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
|
---|
30 | /* PURPOSE. */
|
---|
31 |
|
---|
32 | #include "flexdef.h"
|
---|
33 | #include "tables.h"
|
---|
34 |
|
---|
35 | /* declare functions that have forward references */
|
---|
36 |
|
---|
37 | void dump_associated_rules PROTO ((FILE *, int));
|
---|
38 | void dump_transitions PROTO ((FILE *, int[]));
|
---|
39 | void sympartition PROTO ((int[], int, int[], int[]));
|
---|
40 | int symfollowset PROTO ((int[], int, int, int[]));
|
---|
41 |
|
---|
42 |
|
---|
43 | /* check_for_backing_up - check a DFA state for backing up
|
---|
44 | *
|
---|
45 | * synopsis
|
---|
46 | * void check_for_backing_up( int ds, int state[numecs] );
|
---|
47 | *
|
---|
48 | * ds is the number of the state to check and state[] is its out-transitions,
|
---|
49 | * indexed by equivalence class.
|
---|
50 | */
|
---|
51 |
|
---|
52 | void check_for_backing_up (ds, state)
|
---|
53 | int ds;
|
---|
54 | int state[];
|
---|
55 | {
|
---|
56 | if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */
|
---|
57 | ++num_backing_up;
|
---|
58 |
|
---|
59 | if (backing_up_report) {
|
---|
60 | fprintf (backing_up_file,
|
---|
61 | _("State #%d is non-accepting -\n"), ds);
|
---|
62 |
|
---|
63 | /* identify the state */
|
---|
64 | dump_associated_rules (backing_up_file, ds);
|
---|
65 |
|
---|
66 | /* Now identify it further using the out- and
|
---|
67 | * jam-transitions.
|
---|
68 | */
|
---|
69 | dump_transitions (backing_up_file, state);
|
---|
70 |
|
---|
71 | putc ('\n', backing_up_file);
|
---|
72 | }
|
---|
73 | }
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | /* check_trailing_context - check to see if NFA state set constitutes
|
---|
78 | * "dangerous" trailing context
|
---|
79 | *
|
---|
80 | * synopsis
|
---|
81 | * void check_trailing_context( int nfa_states[num_states+1], int num_states,
|
---|
82 | * int accset[nacc+1], int nacc );
|
---|
83 | *
|
---|
84 | * NOTES
|
---|
85 | * Trailing context is "dangerous" if both the head and the trailing
|
---|
86 | * part are of variable size \and/ there's a DFA state which contains
|
---|
87 | * both an accepting state for the head part of the rule and NFA states
|
---|
88 | * which occur after the beginning of the trailing context.
|
---|
89 | *
|
---|
90 | * When such a rule is matched, it's impossible to tell if having been
|
---|
91 | * in the DFA state indicates the beginning of the trailing context or
|
---|
92 | * further-along scanning of the pattern. In these cases, a warning
|
---|
93 | * message is issued.
|
---|
94 | *
|
---|
95 | * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
|
---|
96 | * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
|
---|
97 | */
|
---|
98 |
|
---|
99 | void check_trailing_context (nfa_states, num_states, accset, nacc)
|
---|
100 | int *nfa_states, num_states;
|
---|
101 | int *accset;
|
---|
102 | int nacc;
|
---|
103 | {
|
---|
104 | register int i, j;
|
---|
105 |
|
---|
106 | for (i = 1; i <= num_states; ++i) {
|
---|
107 | int ns = nfa_states[i];
|
---|
108 | register int type = state_type[ns];
|
---|
109 | register int ar = assoc_rule[ns];
|
---|
110 |
|
---|
111 | if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */
|
---|
112 | }
|
---|
113 |
|
---|
114 | else if (type == STATE_TRAILING_CONTEXT) {
|
---|
115 | /* Potential trouble. Scan set of accepting numbers
|
---|
116 | * for the one marking the end of the "head". We
|
---|
117 | * assume that this looping will be fairly cheap
|
---|
118 | * since it's rare that an accepting number set
|
---|
119 | * is large.
|
---|
120 | */
|
---|
121 | for (j = 1; j <= nacc; ++j)
|
---|
122 | if (accset[j] & YY_TRAILING_HEAD_MASK) {
|
---|
123 | line_warning (_
|
---|
124 | ("dangerous trailing context"),
|
---|
125 | rule_linenum[ar]);
|
---|
126 | return;
|
---|
127 | }
|
---|
128 | }
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 |
|
---|
133 | /* dump_associated_rules - list the rules associated with a DFA state
|
---|
134 | *
|
---|
135 | * Goes through the set of NFA states associated with the DFA and
|
---|
136 | * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
|
---|
137 | * and writes a report to the given file.
|
---|
138 | */
|
---|
139 |
|
---|
140 | void dump_associated_rules (file, ds)
|
---|
141 | FILE *file;
|
---|
142 | int ds;
|
---|
143 | {
|
---|
144 | register int i, j;
|
---|
145 | register int num_associated_rules = 0;
|
---|
146 | int rule_set[MAX_ASSOC_RULES + 1];
|
---|
147 | int *dset = dss[ds];
|
---|
148 | int size = dfasiz[ds];
|
---|
149 |
|
---|
150 | for (i = 1; i <= size; ++i) {
|
---|
151 | register int rule_num = rule_linenum[assoc_rule[dset[i]]];
|
---|
152 |
|
---|
153 | for (j = 1; j <= num_associated_rules; ++j)
|
---|
154 | if (rule_num == rule_set[j])
|
---|
155 | break;
|
---|
156 |
|
---|
157 | if (j > num_associated_rules) { /* new rule */
|
---|
158 | if (num_associated_rules < MAX_ASSOC_RULES)
|
---|
159 | rule_set[++num_associated_rules] =
|
---|
160 | rule_num;
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | bubble (rule_set, num_associated_rules);
|
---|
165 |
|
---|
166 | fprintf (file, _(" associated rule line numbers:"));
|
---|
167 |
|
---|
168 | for (i = 1; i <= num_associated_rules; ++i) {
|
---|
169 | if (i % 8 == 1)
|
---|
170 | putc ('\n', file);
|
---|
171 |
|
---|
172 | fprintf (file, "\t%d", rule_set[i]);
|
---|
173 | }
|
---|
174 |
|
---|
175 | putc ('\n', file);
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | /* dump_transitions - list the transitions associated with a DFA state
|
---|
180 | *
|
---|
181 | * synopsis
|
---|
182 | * dump_transitions( FILE *file, int state[numecs] );
|
---|
183 | *
|
---|
184 | * Goes through the set of out-transitions and lists them in human-readable
|
---|
185 | * form (i.e., not as equivalence classes); also lists jam transitions
|
---|
186 | * (i.e., all those which are not out-transitions, plus EOF). The dump
|
---|
187 | * is done to the given file.
|
---|
188 | */
|
---|
189 |
|
---|
190 | void dump_transitions (file, state)
|
---|
191 | FILE *file;
|
---|
192 | int state[];
|
---|
193 | {
|
---|
194 | register int i, ec;
|
---|
195 | int out_char_set[CSIZE];
|
---|
196 |
|
---|
197 | for (i = 0; i < csize; ++i) {
|
---|
198 | ec = ABS (ecgroup[i]);
|
---|
199 | out_char_set[i] = state[ec];
|
---|
200 | }
|
---|
201 |
|
---|
202 | fprintf (file, _(" out-transitions: "));
|
---|
203 |
|
---|
204 | list_character_set (file, out_char_set);
|
---|
205 |
|
---|
206 | /* now invert the members of the set to get the jam transitions */
|
---|
207 | for (i = 0; i < csize; ++i)
|
---|
208 | out_char_set[i] = !out_char_set[i];
|
---|
209 |
|
---|
210 | fprintf (file, _("\n jam-transitions: EOF "));
|
---|
211 |
|
---|
212 | list_character_set (file, out_char_set);
|
---|
213 |
|
---|
214 | putc ('\n', file);
|
---|
215 | }
|
---|
216 |
|
---|
217 |
|
---|
218 | /* epsclosure - construct the epsilon closure of a set of ndfa states
|
---|
219 | *
|
---|
220 | * synopsis
|
---|
221 | * int *epsclosure( int t[num_states], int *numstates_addr,
|
---|
222 | * int accset[num_rules+1], int *nacc_addr,
|
---|
223 | * int *hashval_addr );
|
---|
224 | *
|
---|
225 | * NOTES
|
---|
226 | * The epsilon closure is the set of all states reachable by an arbitrary
|
---|
227 | * number of epsilon transitions, which themselves do not have epsilon
|
---|
228 | * transitions going out, unioned with the set of states which have non-null
|
---|
229 | * accepting numbers. t is an array of size numstates of nfa state numbers.
|
---|
230 | * Upon return, t holds the epsilon closure and *numstates_addr is updated.
|
---|
231 | * accset holds a list of the accepting numbers, and the size of accset is
|
---|
232 | * given by *nacc_addr. t may be subjected to reallocation if it is not
|
---|
233 | * large enough to hold the epsilon closure.
|
---|
234 | *
|
---|
235 | * hashval is the hash value for the dfa corresponding to the state set.
|
---|
236 | */
|
---|
237 |
|
---|
238 | int *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
|
---|
239 | int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
|
---|
240 | {
|
---|
241 | register int stkpos, ns, tsp;
|
---|
242 | int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
|
---|
243 | int stkend, nstate;
|
---|
244 | static int did_stk_init = false, *stk;
|
---|
245 |
|
---|
246 | #define MARK_STATE(state) \
|
---|
247 | do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
|
---|
248 |
|
---|
249 | #define IS_MARKED(state) (trans1[state] < 0)
|
---|
250 |
|
---|
251 | #define UNMARK_STATE(state) \
|
---|
252 | do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
|
---|
253 |
|
---|
254 | #define CHECK_ACCEPT(state) \
|
---|
255 | do{ \
|
---|
256 | nfaccnum = accptnum[state]; \
|
---|
257 | if ( nfaccnum != NIL ) \
|
---|
258 | accset[++nacc] = nfaccnum; \
|
---|
259 | }while(0)
|
---|
260 |
|
---|
261 | #define DO_REALLOCATION() \
|
---|
262 | do { \
|
---|
263 | current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
|
---|
264 | ++num_reallocs; \
|
---|
265 | t = reallocate_integer_array( t, current_max_dfa_size ); \
|
---|
266 | stk = reallocate_integer_array( stk, current_max_dfa_size ); \
|
---|
267 | }while(0) \
|
---|
268 |
|
---|
269 | #define PUT_ON_STACK(state) \
|
---|
270 | do { \
|
---|
271 | if ( ++stkend >= current_max_dfa_size ) \
|
---|
272 | DO_REALLOCATION(); \
|
---|
273 | stk[stkend] = state; \
|
---|
274 | MARK_STATE(state); \
|
---|
275 | }while(0)
|
---|
276 |
|
---|
277 | #define ADD_STATE(state) \
|
---|
278 | do { \
|
---|
279 | if ( ++numstates >= current_max_dfa_size ) \
|
---|
280 | DO_REALLOCATION(); \
|
---|
281 | t[numstates] = state; \
|
---|
282 | hashval += state; \
|
---|
283 | }while(0)
|
---|
284 |
|
---|
285 | #define STACK_STATE(state) \
|
---|
286 | do { \
|
---|
287 | PUT_ON_STACK(state); \
|
---|
288 | CHECK_ACCEPT(state); \
|
---|
289 | if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
|
---|
290 | ADD_STATE(state); \
|
---|
291 | }while(0)
|
---|
292 |
|
---|
293 |
|
---|
294 | if (!did_stk_init) {
|
---|
295 | stk = allocate_integer_array (current_max_dfa_size);
|
---|
296 | did_stk_init = true;
|
---|
297 | }
|
---|
298 |
|
---|
299 | nacc = stkend = hashval = 0;
|
---|
300 |
|
---|
301 | for (nstate = 1; nstate <= numstates; ++nstate) {
|
---|
302 | ns = t[nstate];
|
---|
303 |
|
---|
304 | /* The state could be marked if we've already pushed it onto
|
---|
305 | * the stack.
|
---|
306 | */
|
---|
307 | if (!IS_MARKED (ns)) {
|
---|
308 | PUT_ON_STACK (ns);
|
---|
309 | CHECK_ACCEPT (ns);
|
---|
310 | hashval += ns;
|
---|
311 | }
|
---|
312 | }
|
---|
313 |
|
---|
314 | for (stkpos = 1; stkpos <= stkend; ++stkpos) {
|
---|
315 | ns = stk[stkpos];
|
---|
316 | transsym = transchar[ns];
|
---|
317 |
|
---|
318 | if (transsym == SYM_EPSILON) {
|
---|
319 | tsp = trans1[ns] + MARKER_DIFFERENCE;
|
---|
320 |
|
---|
321 | if (tsp != NO_TRANSITION) {
|
---|
322 | if (!IS_MARKED (tsp))
|
---|
323 | STACK_STATE (tsp);
|
---|
324 |
|
---|
325 | tsp = trans2[ns];
|
---|
326 |
|
---|
327 | if (tsp != NO_TRANSITION
|
---|
328 | && !IS_MARKED (tsp))
|
---|
329 | STACK_STATE (tsp);
|
---|
330 | }
|
---|
331 | }
|
---|
332 | }
|
---|
333 |
|
---|
334 | /* Clear out "visit" markers. */
|
---|
335 |
|
---|
336 | for (stkpos = 1; stkpos <= stkend; ++stkpos) {
|
---|
337 | if (IS_MARKED (stk[stkpos]))
|
---|
338 | UNMARK_STATE (stk[stkpos]);
|
---|
339 | else
|
---|
340 | flexfatal (_
|
---|
341 | ("consistency check failed in epsclosure()"));
|
---|
342 | }
|
---|
343 |
|
---|
344 | *ns_addr = numstates;
|
---|
345 | *hv_addr = hashval;
|
---|
346 | *nacc_addr = nacc;
|
---|
347 |
|
---|
348 | return t;
|
---|
349 | }
|
---|
350 |
|
---|
351 |
|
---|
352 | /* increase_max_dfas - increase the maximum number of DFAs */
|
---|
353 |
|
---|
354 | void increase_max_dfas ()
|
---|
355 | {
|
---|
356 | current_max_dfas += MAX_DFAS_INCREMENT;
|
---|
357 |
|
---|
358 | ++num_reallocs;
|
---|
359 |
|
---|
360 | base = reallocate_integer_array (base, current_max_dfas);
|
---|
361 | def = reallocate_integer_array (def, current_max_dfas);
|
---|
362 | dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
|
---|
363 | accsiz = reallocate_integer_array (accsiz, current_max_dfas);
|
---|
364 | dhash = reallocate_integer_array (dhash, current_max_dfas);
|
---|
365 | dss = reallocate_int_ptr_array (dss, current_max_dfas);
|
---|
366 | dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
|
---|
367 |
|
---|
368 | if (nultrans)
|
---|
369 | nultrans =
|
---|
370 | reallocate_integer_array (nultrans,
|
---|
371 | current_max_dfas);
|
---|
372 | }
|
---|
373 |
|
---|
374 |
|
---|
375 | /* ntod - convert an ndfa to a dfa
|
---|
376 | *
|
---|
377 | * Creates the dfa corresponding to the ndfa we've constructed. The
|
---|
378 | * dfa starts out in state #1.
|
---|
379 | */
|
---|
380 |
|
---|
381 | void ntod ()
|
---|
382 | {
|
---|
383 | int *accset, ds, nacc, newds;
|
---|
384 | int sym, hashval, numstates, dsize;
|
---|
385 | int num_full_table_rows=0; /* used only for -f */
|
---|
386 | int *nset, *dset;
|
---|
387 | int targptr, totaltrans, i, comstate, comfreq, targ;
|
---|
388 | int symlist[CSIZE + 1];
|
---|
389 | int num_start_states;
|
---|
390 | int todo_head, todo_next;
|
---|
391 |
|
---|
392 | struct yytbl_data *yynxt_tbl = 0;
|
---|
393 | flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
|
---|
394 |
|
---|
395 | /* Note that the following are indexed by *equivalence classes*
|
---|
396 | * and not by characters. Since equivalence classes are indexed
|
---|
397 | * beginning with 1, even if the scanner accepts NUL's, this
|
---|
398 | * means that (since every character is potentially in its own
|
---|
399 | * equivalence class) these arrays must have room for indices
|
---|
400 | * from 1 to CSIZE, so their size must be CSIZE + 1.
|
---|
401 | */
|
---|
402 | int duplist[CSIZE + 1], state[CSIZE + 1];
|
---|
403 | int targfreq[CSIZE + 1], targstate[CSIZE + 1];
|
---|
404 |
|
---|
405 | /* accset needs to be large enough to hold all of the rules present
|
---|
406 | * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
|
---|
407 | */
|
---|
408 | accset = allocate_integer_array ((num_rules + 1) * 2);
|
---|
409 | nset = allocate_integer_array (current_max_dfa_size);
|
---|
410 |
|
---|
411 | /* The "todo" queue is represented by the head, which is the DFA
|
---|
412 | * state currently being processed, and the "next", which is the
|
---|
413 | * next DFA state number available (not in use). We depend on the
|
---|
414 | * fact that snstods() returns DFA's \in increasing order/, and thus
|
---|
415 | * need only know the bounds of the dfas to be processed.
|
---|
416 | */
|
---|
417 | todo_head = todo_next = 0;
|
---|
418 |
|
---|
419 | for (i = 0; i <= csize; ++i) {
|
---|
420 | duplist[i] = NIL;
|
---|
421 | symlist[i] = false;
|
---|
422 | }
|
---|
423 |
|
---|
424 | for (i = 0; i <= num_rules; ++i)
|
---|
425 | accset[i] = NIL;
|
---|
426 |
|
---|
427 | if (trace) {
|
---|
428 | dumpnfa (scset[1]);
|
---|
429 | fputs (_("\n\nDFA Dump:\n\n"), stderr);
|
---|
430 | }
|
---|
431 |
|
---|
432 | inittbl ();
|
---|
433 |
|
---|
434 | /* Check to see whether we should build a separate table for
|
---|
435 | * transitions on NUL characters. We don't do this for full-speed
|
---|
436 | * (-F) scanners, since for them we don't have a simple state
|
---|
437 | * number lying around with which to index the table. We also
|
---|
438 | * don't bother doing it for scanners unless (1) NUL is in its own
|
---|
439 | * equivalence class (indicated by a positive value of
|
---|
440 | * ecgroup[NUL]), (2) NUL's equivalence class is the last
|
---|
441 | * equivalence class, and (3) the number of equivalence classes is
|
---|
442 | * the same as the number of characters. This latter case comes
|
---|
443 | * about when useecs is false or when it's true but every character
|
---|
444 | * still manages to land in its own class (unlikely, but it's
|
---|
445 | * cheap to check for). If all these things are true then the
|
---|
446 | * character code needed to represent NUL's equivalence class for
|
---|
447 | * indexing the tables is going to take one more bit than the
|
---|
448 | * number of characters, and therefore we won't be assured of
|
---|
449 | * being able to fit it into a YY_CHAR variable. This rules out
|
---|
450 | * storing the transitions in a compressed table, since the code
|
---|
451 | * for interpreting them uses a YY_CHAR variable (perhaps it
|
---|
452 | * should just use an integer, though; this is worth pondering ...
|
---|
453 | * ###).
|
---|
454 | *
|
---|
455 | * Finally, for full tables, we want the number of entries in the
|
---|
456 | * table to be a power of two so the array references go fast (it
|
---|
457 | * will just take a shift to compute the major index). If
|
---|
458 | * encoding NUL's transitions in the table will spoil this, we
|
---|
459 | * give it its own table (note that this will be the case if we're
|
---|
460 | * not using equivalence classes).
|
---|
461 | */
|
---|
462 |
|
---|
463 | /* Note that the test for ecgroup[0] == numecs below accomplishes
|
---|
464 | * both (1) and (2) above
|
---|
465 | */
|
---|
466 | if (!fullspd && ecgroup[0] == numecs) {
|
---|
467 | /* NUL is alone in its equivalence class, which is the
|
---|
468 | * last one.
|
---|
469 | */
|
---|
470 | int use_NUL_table = (numecs == csize);
|
---|
471 |
|
---|
472 | if (fulltbl && !use_NUL_table) {
|
---|
473 | /* We still may want to use the table if numecs
|
---|
474 | * is a power of 2.
|
---|
475 | */
|
---|
476 | int power_of_two;
|
---|
477 |
|
---|
478 | for (power_of_two = 1; power_of_two <= csize;
|
---|
479 | power_of_two *= 2)
|
---|
480 | if (numecs == power_of_two) {
|
---|
481 | use_NUL_table = true;
|
---|
482 | break;
|
---|
483 | }
|
---|
484 | }
|
---|
485 |
|
---|
486 | if (use_NUL_table)
|
---|
487 | nultrans =
|
---|
488 | allocate_integer_array (current_max_dfas);
|
---|
489 |
|
---|
490 | /* From now on, nultrans != nil indicates that we're
|
---|
491 | * saving null transitions for later, separate encoding.
|
---|
492 | */
|
---|
493 | }
|
---|
494 |
|
---|
495 |
|
---|
496 | if (fullspd) {
|
---|
497 | for (i = 0; i <= numecs; ++i)
|
---|
498 | state[i] = 0;
|
---|
499 |
|
---|
500 | place_state (state, 0, 0);
|
---|
501 | dfaacc[0].dfaacc_state = 0;
|
---|
502 | }
|
---|
503 |
|
---|
504 | else if (fulltbl) {
|
---|
505 | if (nultrans)
|
---|
506 | /* We won't be including NUL's transitions in the
|
---|
507 | * table, so build it for entries from 0 .. numecs - 1.
|
---|
508 | */
|
---|
509 | num_full_table_rows = numecs;
|
---|
510 |
|
---|
511 | else
|
---|
512 | /* Take into account the fact that we'll be including
|
---|
513 | * the NUL entries in the transition table. Build it
|
---|
514 | * from 0 .. numecs.
|
---|
515 | */
|
---|
516 | num_full_table_rows = numecs + 1;
|
---|
517 |
|
---|
518 | /* Begin generating yy_nxt[][]
|
---|
519 | * This spans the entire LONG function.
|
---|
520 | * This table is tricky because we don't know how big it will be.
|
---|
521 | * So we'll have to realloc() on the way...
|
---|
522 | * we'll wait until we can calculate yynxt_tbl->td_hilen.
|
---|
523 | */
|
---|
524 | yynxt_tbl =
|
---|
525 | (struct yytbl_data *) calloc (1,
|
---|
526 | sizeof (struct
|
---|
527 | yytbl_data));
|
---|
528 | yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
|
---|
529 | yynxt_tbl->td_hilen = 1;
|
---|
530 | yynxt_tbl->td_lolen = num_full_table_rows;
|
---|
531 | yynxt_tbl->td_data = yynxt_data =
|
---|
532 | (flex_int32_t *) calloc (yynxt_tbl->td_lolen *
|
---|
533 | yynxt_tbl->td_hilen,
|
---|
534 | sizeof (flex_int32_t));
|
---|
535 | yynxt_curr = 0;
|
---|
536 |
|
---|
537 | buf_prints (&yydmap_buf,
|
---|
538 | "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
|
---|
539 | long_align ? "flex_int32_t" : "flex_int16_t");
|
---|
540 |
|
---|
541 | /* Unless -Ca, declare it "short" because it's a real
|
---|
542 | * long-shot that that won't be large enough.
|
---|
543 | */
|
---|
544 | if (gentables)
|
---|
545 | out_str_dec
|
---|
546 | ("static yyconst %s yy_nxt[][%d] =\n {\n",
|
---|
547 | long_align ? "flex_int32_t" : "flex_int16_t",
|
---|
548 | num_full_table_rows);
|
---|
549 | else {
|
---|
550 | out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
|
---|
551 | out_str ("static yyconst %s *yy_nxt =0;\n",
|
---|
552 | long_align ? "flex_int32_t" : "flex_int16_t");
|
---|
553 | }
|
---|
554 |
|
---|
555 |
|
---|
556 | if (gentables)
|
---|
557 | outn (" {");
|
---|
558 |
|
---|
559 | /* Generate 0 entries for state #0. */
|
---|
560 | for (i = 0; i < num_full_table_rows; ++i) {
|
---|
561 | mk2data (0);
|
---|
562 | yynxt_data[yynxt_curr++] = 0;
|
---|
563 | }
|
---|
564 |
|
---|
565 | dataflush ();
|
---|
566 | if (gentables)
|
---|
567 | outn (" },\n");
|
---|
568 | }
|
---|
569 |
|
---|
570 | /* Create the first states. */
|
---|
571 |
|
---|
572 | num_start_states = lastsc * 2;
|
---|
573 |
|
---|
574 | for (i = 1; i <= num_start_states; ++i) {
|
---|
575 | numstates = 1;
|
---|
576 |
|
---|
577 | /* For each start condition, make one state for the case when
|
---|
578 | * we're at the beginning of the line (the '^' operator) and
|
---|
579 | * one for the case when we're not.
|
---|
580 | */
|
---|
581 | if (i % 2 == 1)
|
---|
582 | nset[numstates] = scset[(i / 2) + 1];
|
---|
583 | else
|
---|
584 | nset[numstates] =
|
---|
585 | mkbranch (scbol[i / 2], scset[i / 2]);
|
---|
586 |
|
---|
587 | nset = epsclosure (nset, &numstates, accset, &nacc,
|
---|
588 | &hashval);
|
---|
589 |
|
---|
590 | if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
|
---|
591 | numas += nacc;
|
---|
592 | totnst += numstates;
|
---|
593 | ++todo_next;
|
---|
594 |
|
---|
595 | if (variable_trailing_context_rules && nacc > 0)
|
---|
596 | check_trailing_context (nset, numstates,
|
---|
597 | accset, nacc);
|
---|
598 | }
|
---|
599 | }
|
---|
600 |
|
---|
601 | if (!fullspd) {
|
---|
602 | if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
|
---|
603 | flexfatal (_
|
---|
604 | ("could not create unique end-of-buffer state"));
|
---|
605 |
|
---|
606 | ++numas;
|
---|
607 | ++num_start_states;
|
---|
608 | ++todo_next;
|
---|
609 | }
|
---|
610 |
|
---|
611 |
|
---|
612 | while (todo_head < todo_next) {
|
---|
613 | targptr = 0;
|
---|
614 | totaltrans = 0;
|
---|
615 |
|
---|
616 | for (i = 1; i <= numecs; ++i)
|
---|
617 | state[i] = 0;
|
---|
618 |
|
---|
619 | ds = ++todo_head;
|
---|
620 |
|
---|
621 | dset = dss[ds];
|
---|
622 | dsize = dfasiz[ds];
|
---|
623 |
|
---|
624 | if (trace)
|
---|
625 | fprintf (stderr, _("state # %d:\n"), ds);
|
---|
626 |
|
---|
627 | sympartition (dset, dsize, symlist, duplist);
|
---|
628 |
|
---|
629 | for (sym = 1; sym <= numecs; ++sym) {
|
---|
630 | if (symlist[sym]) {
|
---|
631 | symlist[sym] = 0;
|
---|
632 |
|
---|
633 | if (duplist[sym] == NIL) {
|
---|
634 | /* Symbol has unique out-transitions. */
|
---|
635 | numstates =
|
---|
636 | symfollowset (dset, dsize,
|
---|
637 | sym, nset);
|
---|
638 | nset = epsclosure (nset,
|
---|
639 | &numstates,
|
---|
640 | accset, &nacc,
|
---|
641 | &hashval);
|
---|
642 |
|
---|
643 | if (snstods
|
---|
644 | (nset, numstates, accset, nacc,
|
---|
645 | hashval, &newds)) {
|
---|
646 | totnst = totnst +
|
---|
647 | numstates;
|
---|
648 | ++todo_next;
|
---|
649 | numas += nacc;
|
---|
650 |
|
---|
651 | if (variable_trailing_context_rules && nacc > 0)
|
---|
652 | check_trailing_context
|
---|
653 | (nset,
|
---|
654 | numstates,
|
---|
655 | accset,
|
---|
656 | nacc);
|
---|
657 | }
|
---|
658 |
|
---|
659 | state[sym] = newds;
|
---|
660 |
|
---|
661 | if (trace)
|
---|
662 | fprintf (stderr,
|
---|
663 | "\t%d\t%d\n", sym,
|
---|
664 | newds);
|
---|
665 |
|
---|
666 | targfreq[++targptr] = 1;
|
---|
667 | targstate[targptr] = newds;
|
---|
668 | ++numuniq;
|
---|
669 | }
|
---|
670 |
|
---|
671 | else {
|
---|
672 | /* sym's equivalence class has the same
|
---|
673 | * transitions as duplist(sym)'s
|
---|
674 | * equivalence class.
|
---|
675 | */
|
---|
676 | targ = state[duplist[sym]];
|
---|
677 | state[sym] = targ;
|
---|
678 |
|
---|
679 | if (trace)
|
---|
680 | fprintf (stderr,
|
---|
681 | "\t%d\t%d\n", sym,
|
---|
682 | targ);
|
---|
683 |
|
---|
684 | /* Update frequency count for
|
---|
685 | * destination state.
|
---|
686 | */
|
---|
687 |
|
---|
688 | i = 0;
|
---|
689 | while (targstate[++i] != targ) ;
|
---|
690 |
|
---|
691 | ++targfreq[i];
|
---|
692 | ++numdup;
|
---|
693 | }
|
---|
694 |
|
---|
695 | ++totaltrans;
|
---|
696 | duplist[sym] = NIL;
|
---|
697 | }
|
---|
698 | }
|
---|
699 |
|
---|
700 | if (caseins && !useecs) {
|
---|
701 | register int j;
|
---|
702 |
|
---|
703 | for (i = 'A', j = 'a'; i <= 'Z'; ++i, ++j) {
|
---|
704 | if (state[i] == 0 && state[j] != 0)
|
---|
705 | /* We're adding a transition. */
|
---|
706 | ++totaltrans;
|
---|
707 |
|
---|
708 | else if (state[i] != 0 && state[j] == 0)
|
---|
709 | /* We're taking away a transition. */
|
---|
710 | --totaltrans;
|
---|
711 |
|
---|
712 | state[i] = state[j];
|
---|
713 | }
|
---|
714 | }
|
---|
715 |
|
---|
716 | numsnpairs += totaltrans;
|
---|
717 |
|
---|
718 | if (ds > num_start_states)
|
---|
719 | check_for_backing_up (ds, state);
|
---|
720 |
|
---|
721 | if (nultrans) {
|
---|
722 | nultrans[ds] = state[NUL_ec];
|
---|
723 | state[NUL_ec] = 0; /* remove transition */
|
---|
724 | }
|
---|
725 |
|
---|
726 | if (fulltbl) {
|
---|
727 |
|
---|
728 | /* Each time we hit here, it's another td_hilen, so we realloc. */
|
---|
729 | yynxt_tbl->td_hilen++;
|
---|
730 | yynxt_tbl->td_data = yynxt_data =
|
---|
731 | (flex_int32_t *) realloc (yynxt_data,
|
---|
732 | yynxt_tbl->td_hilen *
|
---|
733 | yynxt_tbl->td_lolen *
|
---|
734 | sizeof (flex_int32_t));
|
---|
735 |
|
---|
736 |
|
---|
737 | if (gentables)
|
---|
738 | outn (" {");
|
---|
739 |
|
---|
740 | /* Supply array's 0-element. */
|
---|
741 | if (ds == end_of_buffer_state) {
|
---|
742 | mk2data (-end_of_buffer_state);
|
---|
743 | yynxt_data[yynxt_curr++] =
|
---|
744 | -end_of_buffer_state;
|
---|
745 | }
|
---|
746 | else {
|
---|
747 | mk2data (end_of_buffer_state);
|
---|
748 | yynxt_data[yynxt_curr++] =
|
---|
749 | end_of_buffer_state;
|
---|
750 | }
|
---|
751 |
|
---|
752 | for (i = 1; i < num_full_table_rows; ++i) {
|
---|
753 | /* Jams are marked by negative of state
|
---|
754 | * number.
|
---|
755 | */
|
---|
756 | mk2data (state[i] ? state[i] : -ds);
|
---|
757 | yynxt_data[yynxt_curr++] =
|
---|
758 | state[i] ? state[i] : -ds;
|
---|
759 | }
|
---|
760 |
|
---|
761 | dataflush ();
|
---|
762 | if (gentables)
|
---|
763 | outn (" },\n");
|
---|
764 | }
|
---|
765 |
|
---|
766 | else if (fullspd)
|
---|
767 | place_state (state, ds, totaltrans);
|
---|
768 |
|
---|
769 | else if (ds == end_of_buffer_state)
|
---|
770 | /* Special case this state to make sure it does what
|
---|
771 | * it's supposed to, i.e., jam on end-of-buffer.
|
---|
772 | */
|
---|
773 | stack1 (ds, 0, 0, JAMSTATE);
|
---|
774 |
|
---|
775 | else { /* normal, compressed state */
|
---|
776 |
|
---|
777 | /* Determine which destination state is the most
|
---|
778 | * common, and how many transitions to it there are.
|
---|
779 | */
|
---|
780 |
|
---|
781 | comfreq = 0;
|
---|
782 | comstate = 0;
|
---|
783 |
|
---|
784 | for (i = 1; i <= targptr; ++i)
|
---|
785 | if (targfreq[i] > comfreq) {
|
---|
786 | comfreq = targfreq[i];
|
---|
787 | comstate = targstate[i];
|
---|
788 | }
|
---|
789 |
|
---|
790 | bldtbl (state, ds, totaltrans, comstate, comfreq);
|
---|
791 | }
|
---|
792 | }
|
---|
793 |
|
---|
794 | if (fulltbl) {
|
---|
795 | dataend ();
|
---|
796 | if (tablesext) {
|
---|
797 | yytbl_data_compress (yynxt_tbl);
|
---|
798 | if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
|
---|
799 | flexerror (_
|
---|
800 | ("Could not write yynxt_tbl[][]"));
|
---|
801 | }
|
---|
802 | if (yynxt_tbl) {
|
---|
803 | yytbl_data_destroy (yynxt_tbl);
|
---|
804 | yynxt_tbl = 0;
|
---|
805 | }
|
---|
806 | }
|
---|
807 |
|
---|
808 | else if (!fullspd) {
|
---|
809 | cmptmps (); /* create compressed template entries */
|
---|
810 |
|
---|
811 | /* Create tables for all the states with only one
|
---|
812 | * out-transition.
|
---|
813 | */
|
---|
814 | while (onesp > 0) {
|
---|
815 | mk1tbl (onestate[onesp], onesym[onesp],
|
---|
816 | onenext[onesp], onedef[onesp]);
|
---|
817 | --onesp;
|
---|
818 | }
|
---|
819 |
|
---|
820 | mkdeftbl ();
|
---|
821 | }
|
---|
822 |
|
---|
823 | flex_free ((void *) accset);
|
---|
824 | flex_free ((void *) nset);
|
---|
825 | }
|
---|
826 |
|
---|
827 |
|
---|
828 | /* snstods - converts a set of ndfa states into a dfa state
|
---|
829 | *
|
---|
830 | * synopsis
|
---|
831 | * is_new_state = snstods( int sns[numstates], int numstates,
|
---|
832 | * int accset[num_rules+1], int nacc,
|
---|
833 | * int hashval, int *newds_addr );
|
---|
834 | *
|
---|
835 | * On return, the dfa state number is in newds.
|
---|
836 | */
|
---|
837 |
|
---|
838 | int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
|
---|
839 | int sns[], numstates, accset[], nacc, hashval, *newds_addr;
|
---|
840 | {
|
---|
841 | int didsort = 0;
|
---|
842 | register int i, j;
|
---|
843 | int newds, *oldsns;
|
---|
844 |
|
---|
845 | for (i = 1; i <= lastdfa; ++i)
|
---|
846 | if (hashval == dhash[i]) {
|
---|
847 | if (numstates == dfasiz[i]) {
|
---|
848 | oldsns = dss[i];
|
---|
849 |
|
---|
850 | if (!didsort) {
|
---|
851 | /* We sort the states in sns so we
|
---|
852 | * can compare it to oldsns quickly.
|
---|
853 | * We use bubble because there probably
|
---|
854 | * aren't very many states.
|
---|
855 | */
|
---|
856 | bubble (sns, numstates);
|
---|
857 | didsort = 1;
|
---|
858 | }
|
---|
859 |
|
---|
860 | for (j = 1; j <= numstates; ++j)
|
---|
861 | if (sns[j] != oldsns[j])
|
---|
862 | break;
|
---|
863 |
|
---|
864 | if (j > numstates) {
|
---|
865 | ++dfaeql;
|
---|
866 | *newds_addr = i;
|
---|
867 | return 0;
|
---|
868 | }
|
---|
869 |
|
---|
870 | ++hshcol;
|
---|
871 | }
|
---|
872 |
|
---|
873 | else
|
---|
874 | ++hshsave;
|
---|
875 | }
|
---|
876 |
|
---|
877 | /* Make a new dfa. */
|
---|
878 |
|
---|
879 | if (++lastdfa >= current_max_dfas)
|
---|
880 | increase_max_dfas ();
|
---|
881 |
|
---|
882 | newds = lastdfa;
|
---|
883 |
|
---|
884 | dss[newds] = allocate_integer_array (numstates + 1);
|
---|
885 |
|
---|
886 | /* If we haven't already sorted the states in sns, we do so now,
|
---|
887 | * so that future comparisons with it can be made quickly.
|
---|
888 | */
|
---|
889 |
|
---|
890 | if (!didsort)
|
---|
891 | bubble (sns, numstates);
|
---|
892 |
|
---|
893 | for (i = 1; i <= numstates; ++i)
|
---|
894 | dss[newds][i] = sns[i];
|
---|
895 |
|
---|
896 | dfasiz[newds] = numstates;
|
---|
897 | dhash[newds] = hashval;
|
---|
898 |
|
---|
899 | if (nacc == 0) {
|
---|
900 | if (reject)
|
---|
901 | dfaacc[newds].dfaacc_set = (int *) 0;
|
---|
902 | else
|
---|
903 | dfaacc[newds].dfaacc_state = 0;
|
---|
904 |
|
---|
905 | accsiz[newds] = 0;
|
---|
906 | }
|
---|
907 |
|
---|
908 | else if (reject) {
|
---|
909 | /* We sort the accepting set in increasing order so the
|
---|
910 | * disambiguating rule that the first rule listed is considered
|
---|
911 | * match in the event of ties will work. We use a bubble
|
---|
912 | * sort since the list is probably quite small.
|
---|
913 | */
|
---|
914 |
|
---|
915 | bubble (accset, nacc);
|
---|
916 |
|
---|
917 | dfaacc[newds].dfaacc_set =
|
---|
918 | allocate_integer_array (nacc + 1);
|
---|
919 |
|
---|
920 | /* Save the accepting set for later */
|
---|
921 | for (i = 1; i <= nacc; ++i) {
|
---|
922 | dfaacc[newds].dfaacc_set[i] = accset[i];
|
---|
923 |
|
---|
924 | if (accset[i] <= num_rules)
|
---|
925 | /* Who knows, perhaps a REJECT can yield
|
---|
926 | * this rule.
|
---|
927 | */
|
---|
928 | rule_useful[accset[i]] = true;
|
---|
929 | }
|
---|
930 |
|
---|
931 | accsiz[newds] = nacc;
|
---|
932 | }
|
---|
933 |
|
---|
934 | else {
|
---|
935 | /* Find lowest numbered rule so the disambiguating rule
|
---|
936 | * will work.
|
---|
937 | */
|
---|
938 | j = num_rules + 1;
|
---|
939 |
|
---|
940 | for (i = 1; i <= nacc; ++i)
|
---|
941 | if (accset[i] < j)
|
---|
942 | j = accset[i];
|
---|
943 |
|
---|
944 | dfaacc[newds].dfaacc_state = j;
|
---|
945 |
|
---|
946 | if (j <= num_rules)
|
---|
947 | rule_useful[j] = true;
|
---|
948 | }
|
---|
949 |
|
---|
950 | *newds_addr = newds;
|
---|
951 |
|
---|
952 | return 1;
|
---|
953 | }
|
---|
954 |
|
---|
955 |
|
---|
956 | /* symfollowset - follow the symbol transitions one step
|
---|
957 | *
|
---|
958 | * synopsis
|
---|
959 | * numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
|
---|
960 | * int transsym, int nset[current_max_dfa_size] );
|
---|
961 | */
|
---|
962 |
|
---|
963 | int symfollowset (ds, dsize, transsym, nset)
|
---|
964 | int ds[], dsize, transsym, nset[];
|
---|
965 | {
|
---|
966 | int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
|
---|
967 |
|
---|
968 | numstates = 0;
|
---|
969 |
|
---|
970 | for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */
|
---|
971 | ns = ds[i];
|
---|
972 | sym = transchar[ns];
|
---|
973 | tsp = trans1[ns];
|
---|
974 |
|
---|
975 | if (sym < 0) { /* it's a character class */
|
---|
976 | sym = -sym;
|
---|
977 | ccllist = cclmap[sym];
|
---|
978 | lenccl = ccllen[sym];
|
---|
979 |
|
---|
980 | if (cclng[sym]) {
|
---|
981 | for (j = 0; j < lenccl; ++j) {
|
---|
982 | /* Loop through negated character
|
---|
983 | * class.
|
---|
984 | */
|
---|
985 | ch = ccltbl[ccllist + j];
|
---|
986 |
|
---|
987 | if (ch == 0)
|
---|
988 | ch = NUL_ec;
|
---|
989 |
|
---|
990 | if (ch > transsym)
|
---|
991 | /* Transsym isn't in negated
|
---|
992 | * ccl.
|
---|
993 | */
|
---|
994 | break;
|
---|
995 |
|
---|
996 | else if (ch == transsym)
|
---|
997 | /* next 2 */
|
---|
998 | goto bottom;
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | /* Didn't find transsym in ccl. */
|
---|
1002 | nset[++numstates] = tsp;
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | else
|
---|
1006 | for (j = 0; j < lenccl; ++j) {
|
---|
1007 | ch = ccltbl[ccllist + j];
|
---|
1008 |
|
---|
1009 | if (ch == 0)
|
---|
1010 | ch = NUL_ec;
|
---|
1011 |
|
---|
1012 | if (ch > transsym)
|
---|
1013 | break;
|
---|
1014 | else if (ch == transsym) {
|
---|
1015 | nset[++numstates] = tsp;
|
---|
1016 | break;
|
---|
1017 | }
|
---|
1018 | }
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 | else if (sym >= 'A' && sym <= 'Z' && caseins)
|
---|
1022 | flexfatal (_
|
---|
1023 | ("consistency check failed in symfollowset"));
|
---|
1024 |
|
---|
1025 | else if (sym == SYM_EPSILON) { /* do nothing */
|
---|
1026 | }
|
---|
1027 |
|
---|
1028 | else if (ABS (ecgroup[sym]) == transsym)
|
---|
1029 | nset[++numstates] = tsp;
|
---|
1030 |
|
---|
1031 | bottom:;
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 | return numstates;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 |
|
---|
1038 | /* sympartition - partition characters with same out-transitions
|
---|
1039 | *
|
---|
1040 | * synopsis
|
---|
1041 | * sympartition( int ds[current_max_dfa_size], int numstates,
|
---|
1042 | * int symlist[numecs], int duplist[numecs] );
|
---|
1043 | */
|
---|
1044 |
|
---|
1045 | void sympartition (ds, numstates, symlist, duplist)
|
---|
1046 | int ds[], numstates;
|
---|
1047 | int symlist[], duplist[];
|
---|
1048 | {
|
---|
1049 | int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
|
---|
1050 |
|
---|
1051 | /* Partitioning is done by creating equivalence classes for those
|
---|
1052 | * characters which have out-transitions from the given state. Thus
|
---|
1053 | * we are really creating equivalence classes of equivalence classes.
|
---|
1054 | */
|
---|
1055 |
|
---|
1056 | for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */
|
---|
1057 | duplist[i] = i - 1;
|
---|
1058 | dupfwd[i] = i + 1;
|
---|
1059 | }
|
---|
1060 |
|
---|
1061 | duplist[1] = NIL;
|
---|
1062 | dupfwd[numecs] = NIL;
|
---|
1063 |
|
---|
1064 | for (i = 1; i <= numstates; ++i) {
|
---|
1065 | ns = ds[i];
|
---|
1066 | tch = transchar[ns];
|
---|
1067 |
|
---|
1068 | if (tch != SYM_EPSILON) {
|
---|
1069 | if (tch < -lastccl || tch >= csize) {
|
---|
1070 | flexfatal (_
|
---|
1071 | ("bad transition character detected in sympartition()"));
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | if (tch >= 0) { /* character transition */
|
---|
1075 | int ec = ecgroup[tch];
|
---|
1076 |
|
---|
1077 | mkechar (ec, dupfwd, duplist);
|
---|
1078 | symlist[ec] = 1;
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | else { /* character class */
|
---|
1082 | tch = -tch;
|
---|
1083 |
|
---|
1084 | lenccl = ccllen[tch];
|
---|
1085 | cclp = cclmap[tch];
|
---|
1086 | mkeccl (ccltbl + cclp, lenccl, dupfwd,
|
---|
1087 | duplist, numecs, NUL_ec);
|
---|
1088 |
|
---|
1089 | if (cclng[tch]) {
|
---|
1090 | j = 0;
|
---|
1091 |
|
---|
1092 | for (k = 0; k < lenccl; ++k) {
|
---|
1093 | ich = ccltbl[cclp + k];
|
---|
1094 |
|
---|
1095 | if (ich == 0)
|
---|
1096 | ich = NUL_ec;
|
---|
1097 |
|
---|
1098 | for (++j; j < ich; ++j)
|
---|
1099 | symlist[j] = 1;
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 | for (++j; j <= numecs; ++j)
|
---|
1103 | symlist[j] = 1;
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | else
|
---|
1107 | for (k = 0; k < lenccl; ++k) {
|
---|
1108 | ich = ccltbl[cclp + k];
|
---|
1109 |
|
---|
1110 | if (ich == 0)
|
---|
1111 | ich = NUL_ec;
|
---|
1112 |
|
---|
1113 | symlist[ich] = 1;
|
---|
1114 | }
|
---|
1115 | }
|
---|
1116 | }
|
---|
1117 | }
|
---|
1118 | }
|
---|