source: vendor/binutils/current/opcodes/tic80-opc.c

Last change on this file was 10, checked in by bird, 22 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 62.6 KB
Line 
1/* Opcode table for TI TMS320C80 (MVP).
2 Copyright 1996, 1997, 2000 Free Software Foundation, Inc.
3
4This file is part of GDB, GAS, and the GNU binutils.
5
6GDB, GAS, and the GNU binutils are free software; you can redistribute
7them and/or modify them under the terms of the GNU General Public
8License as published by the Free Software Foundation; either version
91, or (at your option) any later version.
10
11GDB, GAS, and the GNU binutils are distributed in the hope that they
12will be useful, but WITHOUT ANY WARRANTY; without even the implied
13warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
14the GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this file; see the file COPYING. If not, write to the Free
18Software Foundation, 59 Temple Place - Suite 330, Boston, MA
1902111-1307, USA. */
20
21#include <stdio.h>
22#include "sysdep.h"
23#include "opcode/tic80.h"
24
25/* This file holds various tables for the TMS320C80 (MVP).
26
27 The opcode table is strictly constant data, so the compiler should
28 be able to put it in the .text section.
29
30 This file also holds the operand table. All knowledge about
31 inserting operands into instructions and vice-versa is kept in this
32 file.
33
34 The predefined register table maps from register names to register
35 values. */
36
37
38
39/* Table of predefined symbol names, such as general purpose registers,
40 floating point registers, condition codes, control registers, and bit
41 numbers.
42
43 The table is sorted case independently by name so that it is suitable for
44 searching via a binary search using a case independent comparison
45 function.
46
47 Note that the type of the symbol is stored in the upper bits of the value
48 field, which allows the value and type to be passed around as a unit in a
49 single int. The types have to be masked off before using the numeric
50 value as a number.
51*/
52
53const struct predefined_symbol tic80_predefined_symbols[] =
54{
55 { "a0", TIC80_OPERAND_FPA | 0 },
56 { "a1", TIC80_OPERAND_FPA | 1 },
57 { "alw.b", TIC80_OPERAND_CC | 7 },
58 { "alw.h", TIC80_OPERAND_CC | 15 },
59 { "alw.w", TIC80_OPERAND_CC | 23 },
60 { "ANASTAT", TIC80_OPERAND_CR | 0x34 },
61 { "BRK1", TIC80_OPERAND_CR | 0x39 },
62 { "BRK2", TIC80_OPERAND_CR | 0x3A },
63 { "CONFIG", TIC80_OPERAND_CR | 2 },
64 { "DLRU", TIC80_OPERAND_CR | 0x500 },
65 { "DTAG0", TIC80_OPERAND_CR | 0x400 },
66 { "DTAG1", TIC80_OPERAND_CR | 0x401 },
67 { "DTAG10", TIC80_OPERAND_CR | 0x40A },
68 { "DTAG11", TIC80_OPERAND_CR | 0x40B },
69 { "DTAG12", TIC80_OPERAND_CR | 0x40C },
70 { "DTAG13", TIC80_OPERAND_CR | 0x40D },
71 { "DTAG14", TIC80_OPERAND_CR | 0x40E },
72 { "DTAG15", TIC80_OPERAND_CR | 0x40F },
73 { "DTAG2", TIC80_OPERAND_CR | 0x402 },
74 { "DTAG3", TIC80_OPERAND_CR | 0x403 },
75 { "DTAG4", TIC80_OPERAND_CR | 0x404 },
76 { "DTAG5", TIC80_OPERAND_CR | 0x405 },
77 { "DTAG6", TIC80_OPERAND_CR | 0x406 },
78 { "DTAG7", TIC80_OPERAND_CR | 0x407 },
79 { "DTAG8", TIC80_OPERAND_CR | 0x408 },
80 { "DTAG9", TIC80_OPERAND_CR | 0x409 },
81 { "ECOMCNTL", TIC80_OPERAND_CR | 0x33 },
82 { "EIP", TIC80_OPERAND_CR | 1 },
83 { "EPC", TIC80_OPERAND_CR | 0 },
84 { "eq.b", TIC80_OPERAND_BITNUM | 0 },
85 { "eq.f", TIC80_OPERAND_BITNUM | 20 },
86 { "eq.h", TIC80_OPERAND_BITNUM | 10 },
87 { "eq.w", TIC80_OPERAND_BITNUM | 20 },
88 { "eq0.b", TIC80_OPERAND_CC | 2 },
89 { "eq0.h", TIC80_OPERAND_CC | 10 },
90 { "eq0.w", TIC80_OPERAND_CC | 18 },
91 { "FLTADR", TIC80_OPERAND_CR | 0x11 },
92 { "FLTDTH", TIC80_OPERAND_CR | 0x14 },
93 { "FLTDTL", TIC80_OPERAND_CR | 0x13 },
94 { "FLTOP", TIC80_OPERAND_CR | 0x10 },
95 { "FLTTAG", TIC80_OPERAND_CR | 0x12 },
96 { "FPST", TIC80_OPERAND_CR | 8 },
97 { "ge.b", TIC80_OPERAND_BITNUM | 5 },
98 { "ge.f", TIC80_OPERAND_BITNUM | 25 },
99 { "ge.h", TIC80_OPERAND_BITNUM | 15 },
100 { "ge.w", TIC80_OPERAND_BITNUM | 25 },
101 { "ge0.b", TIC80_OPERAND_CC | 3 },
102 { "ge0.h", TIC80_OPERAND_CC | 11 },
103 { "ge0.w", TIC80_OPERAND_CC | 19 },
104 { "gt.b", TIC80_OPERAND_BITNUM | 2 },
105 { "gt.f", TIC80_OPERAND_BITNUM | 22 },
106 { "gt.h", TIC80_OPERAND_BITNUM | 12 },
107 { "gt.w", TIC80_OPERAND_BITNUM | 22 },
108 { "gt0.b", TIC80_OPERAND_CC | 1 },
109 { "gt0.h", TIC80_OPERAND_CC | 9 },
110 { "gt0.w", TIC80_OPERAND_CC | 17 },
111 { "hi.b", TIC80_OPERAND_BITNUM | 6 },
112 { "hi.h", TIC80_OPERAND_BITNUM | 16 },
113 { "hi.w", TIC80_OPERAND_BITNUM | 26 },
114 { "hs.b", TIC80_OPERAND_BITNUM | 9 },
115 { "hs.h", TIC80_OPERAND_BITNUM | 19 },
116 { "hs.w", TIC80_OPERAND_BITNUM | 29 },
117 { "ib.f", TIC80_OPERAND_BITNUM | 28 },
118 { "IE", TIC80_OPERAND_CR | 6 },
119 { "ILRU", TIC80_OPERAND_CR | 0x300 },
120 { "in.f", TIC80_OPERAND_BITNUM | 27 },
121 { "IN0P", TIC80_OPERAND_CR | 0x4000 },
122 { "IN1P", TIC80_OPERAND_CR | 0x4001 },
123 { "INTPEN", TIC80_OPERAND_CR | 4 },
124 { "ITAG0", TIC80_OPERAND_CR | 0x200 },
125 { "ITAG1", TIC80_OPERAND_CR | 0x201 },
126 { "ITAG10", TIC80_OPERAND_CR | 0x20A },
127 { "ITAG11", TIC80_OPERAND_CR | 0x20B },
128 { "ITAG12", TIC80_OPERAND_CR | 0x20C },
129 { "ITAG13", TIC80_OPERAND_CR | 0x20D },
130 { "ITAG14", TIC80_OPERAND_CR | 0x20E },
131 { "ITAG15", TIC80_OPERAND_CR | 0x20F },
132 { "ITAG2", TIC80_OPERAND_CR | 0x202 },
133 { "ITAG3", TIC80_OPERAND_CR | 0x203 },
134 { "ITAG4", TIC80_OPERAND_CR | 0x204 },
135 { "ITAG5", TIC80_OPERAND_CR | 0x205 },
136 { "ITAG6", TIC80_OPERAND_CR | 0x206 },
137 { "ITAG7", TIC80_OPERAND_CR | 0x207 },
138 { "ITAG8", TIC80_OPERAND_CR | 0x208 },
139 { "ITAG9", TIC80_OPERAND_CR | 0x209 },
140 { "le.b", TIC80_OPERAND_BITNUM | 3 },
141 { "le.f", TIC80_OPERAND_BITNUM | 23 },
142 { "le.h", TIC80_OPERAND_BITNUM | 13 },
143 { "le.w", TIC80_OPERAND_BITNUM | 23 },
144 { "le0.b", TIC80_OPERAND_CC | 6 },
145 { "le0.h", TIC80_OPERAND_CC | 14 },
146 { "le0.w", TIC80_OPERAND_CC | 22 },
147 { "lo.b", TIC80_OPERAND_BITNUM | 8 },
148 { "lo.h", TIC80_OPERAND_BITNUM | 18 },
149 { "lo.w", TIC80_OPERAND_BITNUM | 28 },
150 { "ls.b", TIC80_OPERAND_BITNUM | 7 },
151 { "ls.h", TIC80_OPERAND_BITNUM | 17 },
152 { "ls.w", TIC80_OPERAND_BITNUM | 27 },
153 { "lt.b", TIC80_OPERAND_BITNUM | 4 },
154 { "lt.f", TIC80_OPERAND_BITNUM | 24 },
155 { "lt.h", TIC80_OPERAND_BITNUM | 14 },
156 { "lt.w", TIC80_OPERAND_BITNUM | 24 },
157 { "lt0.b", TIC80_OPERAND_CC | 4 },
158 { "lt0.h", TIC80_OPERAND_CC | 12 },
159 { "lt0.w", TIC80_OPERAND_CC | 20 },
160 { "MIP", TIC80_OPERAND_CR | 0x31 },
161 { "MPC", TIC80_OPERAND_CR | 0x30 },
162 { "ne.b", TIC80_OPERAND_BITNUM | 1 },
163 { "ne.f", TIC80_OPERAND_BITNUM | 21 },
164 { "ne.h", TIC80_OPERAND_BITNUM | 11 },
165 { "ne.w", TIC80_OPERAND_BITNUM | 21 },
166 { "ne0.b", TIC80_OPERAND_CC | 5 },
167 { "ne0.h", TIC80_OPERAND_CC | 13 },
168 { "ne0.w", TIC80_OPERAND_CC | 21 },
169 { "nev.b", TIC80_OPERAND_CC | 0 },
170 { "nev.h", TIC80_OPERAND_CC | 8 },
171 { "nev.w", TIC80_OPERAND_CC | 16 },
172 { "ob.f", TIC80_OPERAND_BITNUM | 29 },
173 { "or.f", TIC80_OPERAND_BITNUM | 31 },
174 { "ou.f", TIC80_OPERAND_BITNUM | 26 },
175 { "OUTP", TIC80_OPERAND_CR | 0x4002 },
176 { "PKTREQ", TIC80_OPERAND_CR | 0xD },
177 { "PPERROR", TIC80_OPERAND_CR | 0xA },
178 { "r0", TIC80_OPERAND_GPR | 0 },
179 { "r1", TIC80_OPERAND_GPR | 1 },
180 { "r10", TIC80_OPERAND_GPR | 10 },
181 { "r11", TIC80_OPERAND_GPR | 11 },
182 { "r12", TIC80_OPERAND_GPR | 12 },
183 { "r13", TIC80_OPERAND_GPR | 13 },
184 { "r14", TIC80_OPERAND_GPR | 14 },
185 { "r15", TIC80_OPERAND_GPR | 15 },
186 { "r16", TIC80_OPERAND_GPR | 16 },
187 { "r17", TIC80_OPERAND_GPR | 17 },
188 { "r18", TIC80_OPERAND_GPR | 18 },
189 { "r19", TIC80_OPERAND_GPR | 19 },
190 { "r2", TIC80_OPERAND_GPR | 2 },
191 { "r20", TIC80_OPERAND_GPR | 20 },
192 { "r21", TIC80_OPERAND_GPR | 21 },
193 { "r22", TIC80_OPERAND_GPR | 22 },
194 { "r23", TIC80_OPERAND_GPR | 23 },
195 { "r24", TIC80_OPERAND_GPR | 24 },
196 { "r25", TIC80_OPERAND_GPR | 25 },
197 { "r26", TIC80_OPERAND_GPR | 26 },
198 { "r27", TIC80_OPERAND_GPR | 27 },
199 { "r28", TIC80_OPERAND_GPR | 28 },
200 { "r29", TIC80_OPERAND_GPR | 29 },
201 { "r3", TIC80_OPERAND_GPR | 3 },
202 { "r30", TIC80_OPERAND_GPR | 30 },
203 { "r31", TIC80_OPERAND_GPR | 31 },
204 { "r4", TIC80_OPERAND_GPR | 4 },
205 { "r5", TIC80_OPERAND_GPR | 5 },
206 { "r6", TIC80_OPERAND_GPR | 6 },
207 { "r7", TIC80_OPERAND_GPR | 7 },
208 { "r8", TIC80_OPERAND_GPR | 8 },
209 { "r9", TIC80_OPERAND_GPR | 9 },
210 { "SYSSTK", TIC80_OPERAND_CR | 0x20 },
211 { "SYSTMP", TIC80_OPERAND_CR | 0x21 },
212 { "TCOUNT", TIC80_OPERAND_CR | 0xE },
213 { "TSCALE", TIC80_OPERAND_CR | 0xF },
214 { "uo.f", TIC80_OPERAND_BITNUM | 30 },
215};
216
217const int tic80_num_predefined_symbols = sizeof (tic80_predefined_symbols) / sizeof (struct predefined_symbol);
218
219/* This function takes a predefined symbol name in NAME, symbol class
220 in CLASS, and translates it to a numeric value, which it returns.
221
222 If CLASS is zero, any symbol that matches NAME is translated. If
223 CLASS is non-zero, then only a symbol that has class CLASS is
224 matched.
225
226 If no translation is possible, it returns -1, a value not used by
227 any predefined symbol. Note that the predefined symbol array is
228 presorted case independently by name.
229
230 This function is implemented with the assumption that there are no
231 duplicate names in the predefined symbol array, which happens to be
232 true at the moment.
233
234 */
235
236int
237tic80_symbol_to_value (name, class)
238 char *name;
239 int class;
240{
241 const struct predefined_symbol *pdsp;
242 int low = 0;
243 int middle;
244 int high = tic80_num_predefined_symbols - 1;
245 int cmp;
246 int rtnval = -1;
247
248 while (low <= high)
249 {
250 middle = (low + high) / 2;
251 cmp = strcasecmp (name, tic80_predefined_symbols[middle].name);
252 if (cmp < 0)
253 {
254 high = middle - 1;
255 }
256 else if (cmp > 0)
257 {
258 low = middle + 1;
259 }
260 else
261 {
262 pdsp = &tic80_predefined_symbols[middle];
263 if ((class == 0) || (class & PDS_VALUE (pdsp)))
264 {
265 rtnval = PDS_VALUE (pdsp);
266 }
267 /* For now we assume that there are no duplicate names */
268 break;
269 }
270 }
271 return (rtnval);
272}
273
274/* This function takes a value VAL and finds a matching predefined
275 symbol that is in the operand class specified by CLASS. If CLASS
276 is zero, the first matching symbol is returned. */
277
278const char *
279tic80_value_to_symbol (val, class)
280 int val;
281 int class;
282{
283 const struct predefined_symbol *pdsp;
284 int ival;
285 char *name;
286
287 name = NULL;
288 for (pdsp = tic80_predefined_symbols;
289 pdsp < tic80_predefined_symbols + tic80_num_predefined_symbols;
290 pdsp++)
291 {
292 ival = PDS_VALUE (pdsp) & ~TIC80_OPERAND_MASK;
293 if (ival == val)
294 {
295 if ((class == 0) || (class & PDS_VALUE (pdsp)))
296 {
297 /* Found the desired match */
298 name = PDS_NAME (pdsp);
299 break;
300 }
301 }
302 }
303 return (name);
304}
305
306/* This function returns a pointer to the next symbol in the predefined
307 symbol table after PDSP, or NULL if PDSP points to the last symbol. If
308 PDSP is NULL, it returns the first symbol in the table. Thus it can be
309 used to walk through the table by first calling it with NULL and then
310 calling it with each value it returned on the previous call, until it
311 returns NULL. */
312
313const struct predefined_symbol *
314tic80_next_predefined_symbol (pdsp)
315 const struct predefined_symbol *pdsp;
316{
317 if (pdsp == NULL)
318 {
319 pdsp = tic80_predefined_symbols;
320 }
321 else if (pdsp >= tic80_predefined_symbols &&
322 pdsp < tic80_predefined_symbols + tic80_num_predefined_symbols - 1)
323 {
324 pdsp++;
325 }
326 else
327 {
328 pdsp = NULL;
329 }
330 return (pdsp);
331}
332
333
334
335
336/* The operands table. The fields are:
337
338 bits, shift, insertion function, extraction function, flags
339 */
340
341const struct tic80_operand tic80_operands[] =
342{
343
344 /* The zero index is used to indicate the end of the list of operands. */
345
346#define UNUSED (0)
347 { 0, 0, 0, 0, 0 },
348
349 /* Short signed immediate value in bits 14-0. */
350
351#define SSI (UNUSED + 1)
352 { 15, 0, NULL, NULL, TIC80_OPERAND_SIGNED },
353
354 /* Short unsigned immediate value in bits 14-0 */
355
356#define SUI (SSI + 1)
357 { 15, 0, NULL, NULL, 0 },
358
359 /* Short unsigned bitfield in bits 14-0. We distinguish this
360 from a regular unsigned immediate value only for the convenience
361 of the disassembler and the user. */
362
363#define SUBF (SUI + 1)
364 { 15, 0, NULL, NULL, TIC80_OPERAND_BITFIELD },
365
366 /* Long signed immediate in following 32 bit word */
367
368#define LSI (SUBF + 1)
369 { 32, 0, NULL, NULL, TIC80_OPERAND_SIGNED },
370
371 /* Long unsigned immediate in following 32 bit word */
372
373#define LUI (LSI + 1)
374 { 32, 0, NULL, NULL, 0 },
375
376 /* Long unsigned bitfield in following 32 bit word. We distinguish
377 this from a regular unsigned immediate value only for the
378 convenience of the disassembler and the user. */
379
380#define LUBF (LUI + 1)
381 { 32, 0, NULL, NULL, TIC80_OPERAND_BITFIELD },
382
383 /* Single precision floating point immediate in following 32 bit
384 word. */
385
386#define SPFI (LUBF + 1)
387 { 32, 0, NULL, NULL, TIC80_OPERAND_FLOAT },
388
389 /* Register in bits 4-0 */
390
391#define REG_0 (SPFI + 1)
392 { 5, 0, NULL, NULL, TIC80_OPERAND_GPR },
393
394 /* Even register in bits 4-0 */
395
396#define REG_0_E (REG_0 + 1)
397 { 5, 0, NULL, NULL, TIC80_OPERAND_GPR | TIC80_OPERAND_EVEN },
398
399 /* Register in bits 26-22 */
400
401#define REG_22 (REG_0_E + 1)
402 { 5, 22, NULL, NULL, TIC80_OPERAND_GPR },
403
404 /* Even register in bits 26-22 */
405
406#define REG_22_E (REG_22 + 1)
407 { 5, 22, NULL, NULL, TIC80_OPERAND_GPR | TIC80_OPERAND_EVEN },
408
409 /* Register in bits 31-27 */
410
411#define REG_DEST (REG_22_E + 1)
412 { 5, 27, NULL, NULL, TIC80_OPERAND_GPR },
413
414 /* Even register in bits 31-27 */
415
416#define REG_DEST_E (REG_DEST + 1)
417 { 5, 27, NULL, NULL, TIC80_OPERAND_GPR | TIC80_OPERAND_EVEN },
418
419 /* Floating point accumulator register (a0-a3) specified by bit 16 (MSB)
420 and bit 11 (LSB) */
421 /* FIXME! Needs to use functions to insert and extract the register
422 number in bits 16 and 11. */
423
424#define REG_FPA (REG_DEST_E + 1)
425 { 0, 0, NULL, NULL, TIC80_OPERAND_FPA },
426
427 /* Short signed PC word offset in bits 14-0 */
428
429#define OFF_SS_PC (REG_FPA + 1)
430 { 15, 0, NULL, NULL, TIC80_OPERAND_PCREL | TIC80_OPERAND_SIGNED },
431
432 /* Long signed PC word offset in following 32 bit word */
433
434#define OFF_SL_PC (OFF_SS_PC + 1)
435 { 32, 0, NULL, NULL, TIC80_OPERAND_PCREL | TIC80_OPERAND_SIGNED },
436
437 /* Short signed base relative byte offset in bits 14-0 */
438
439#define OFF_SS_BR (OFF_SL_PC + 1)
440 { 15, 0, NULL, NULL, TIC80_OPERAND_BASEREL | TIC80_OPERAND_SIGNED },
441
442 /* Long signed base relative byte offset in following 32 bit word */
443
444#define OFF_SL_BR (OFF_SS_BR + 1)
445 { 32, 0, NULL, NULL, TIC80_OPERAND_BASEREL | TIC80_OPERAND_SIGNED },
446
447 /* Long signed base relative byte offset in following 32 bit word
448 with optional ":s" modifier flag in bit 11 */
449
450#define OFF_SL_BR_SCALED (OFF_SL_BR + 1)
451 { 32, 0, NULL, NULL, TIC80_OPERAND_BASEREL | TIC80_OPERAND_SIGNED | TIC80_OPERAND_SCALED },
452
453 /* BITNUM in bits 31-27 */
454
455#define BITNUM (OFF_SL_BR_SCALED + 1)
456 { 5, 27, NULL, NULL, TIC80_OPERAND_BITNUM },
457
458 /* Condition code in bits 31-27 */
459
460#define CC (BITNUM + 1)
461 { 5, 27, NULL, NULL, TIC80_OPERAND_CC },
462
463 /* Control register number in bits 14-0 */
464
465#define CR_SI (CC + 1)
466 { 15, 0, NULL, NULL, TIC80_OPERAND_CR },
467
468 /* Control register number in next 32 bit word */
469
470#define CR_LI (CR_SI + 1)
471 { 32, 0, NULL, NULL, TIC80_OPERAND_CR },
472
473 /* A base register in bits 26-22, enclosed in parens */
474
475#define REG_BASE (CR_LI + 1)
476 { 5, 22, NULL, NULL, TIC80_OPERAND_GPR | TIC80_OPERAND_PARENS },
477
478 /* A base register in bits 26-22, enclosed in parens, with optional ":m"
479 flag in bit 17 (short immediate instructions only) */
480
481#define REG_BASE_M_SI (REG_BASE + 1)
482 { 5, 22, NULL, NULL, TIC80_OPERAND_GPR | TIC80_OPERAND_PARENS | TIC80_OPERAND_M_SI },
483
484 /* A base register in bits 26-22, enclosed in parens, with optional ":m"
485 flag in bit 15 (long immediate and register instructions only) */
486
487#define REG_BASE_M_LI (REG_BASE_M_SI + 1)
488 { 5, 22, NULL, NULL, TIC80_OPERAND_GPR | TIC80_OPERAND_PARENS | TIC80_OPERAND_M_LI },
489
490 /* Scaled register in bits 4-0, with optional ":s" modifier flag in bit 11 */
491
492#define REG_SCALED (REG_BASE_M_LI + 1)
493 { 5, 0, NULL, NULL, TIC80_OPERAND_GPR | TIC80_OPERAND_SCALED },
494
495 /* Unsigned immediate in bits 4-0, used only for shift instructions */
496
497#define ROTATE (REG_SCALED + 1)
498 { 5, 0, NULL, NULL, 0 },
499
500 /* Unsigned immediate in bits 9-5, used only for shift instructions */
501#define ENDMASK (ROTATE + 1)
502 { 5, 5, NULL, NULL, TIC80_OPERAND_ENDMASK },
503
504};
505
506const int tic80_num_operands = sizeof (tic80_operands)/sizeof(*tic80_operands);
507
508
509
510/* Macros used to generate entries for the opcodes table. */
511
512#define FIXME 0
513
514/* Short-Immediate Format Instructions - basic opcode */
515#define OP_SI(x) (((x) & 0x7F) << 15)
516#define MASK_SI OP_SI(0x7F)
517
518/* Long-Immediate Format Instructions - basic opcode */
519#define OP_LI(x) (((x) & 0x3FF) << 12)
520#define MASK_LI OP_LI(0x3FF)
521
522/* Register Format Instructions - basic opcode */
523#define OP_REG(x) OP_LI(x) /* For readability */
524#define MASK_REG MASK_LI /* For readability */
525
526/* The 'n' bit at bit 10 */
527#define n(x) ((x) << 10)
528
529/* The 'i' bit at bit 11 */
530#define i(x) ((x) << 11)
531
532/* The 'F' bit at bit 27 */
533#define F(x) ((x) << 27)
534
535/* The 'E' bit at bit 27 */
536#define E(x) ((x) << 27)
537
538/* The 'M' bit at bit 15 in register and long immediate opcodes */
539#define M_REG(x) ((x) << 15)
540#define M_LI(x) ((x) << 15)
541
542/* The 'M' bit at bit 17 in short immediate opcodes */
543#define M_SI(x) ((x) << 17)
544
545/* The 'SZ' field at bits 14-13 in register and long immediate opcodes */
546#define SZ_REG(x) ((x) << 13)
547#define SZ_LI(x) ((x) << 13)
548
549/* The 'SZ' field at bits 16-15 in short immediate opcodes */
550#define SZ_SI(x) ((x) << 15)
551
552/* The 'D' (direct external memory access) bit at bit 10 in long immediate
553 and register opcodes. */
554#define D(x) ((x) << 10)
555
556/* The 'S' (scale offset by data size) bit at bit 11 in long immediate
557 and register opcodes. */
558#define S(x) ((x) << 11)
559
560/* The 'PD' field at bits 10-9 in floating point instructions */
561#define PD(x) ((x) << 9)
562
563/* The 'P2' field at bits 8-7 in floating point instructions */
564#define P2(x) ((x) << 7)
565
566/* The 'P1' field at bits 6-5 in floating point instructions */
567#define P1(x) ((x) << 5)
568
569/* The 'a' field at bit 16 in vector instructions */
570#define V_a1(x) ((x) << 16)
571
572/* The 'a' field at bit 11 in vector instructions */
573#define V_a0(x) ((x) << 11)
574
575/* The 'm' field at bit 10 in vector instructions */
576#define V_m(x) ((x) << 10)
577
578/* The 'S' field at bit 9 in vector instructions */
579#define V_S(x) ((x) << 9)
580
581/* The 'Z' field at bit 8 in vector instructions */
582#define V_Z(x) ((x) << 8)
583
584/* The 'p' field at bit 6 in vector instructions */
585#define V_p(x) ((x) << 6)
586
587/* The opcode field at bits 21-17 for vector instructions */
588#define OP_V(x) ((x) << 17)
589#define MASK_V OP_V(0x1F)
590
591
592
593/* The opcode table. Formatted for better readability on a wide screen. Also, all
594 entries with the same mnemonic are sorted so that they are adjacent in the table,
595 allowing the use of a hash table to locate the first of a sequence of opcodes that have
596 a particular name. The short immediate forms also come before the long immediate forms
597 so that the assembler will pick the "best fit" for the size of the operand, except for
598 the case of the PC relative forms, where the long forms come first and are the default
599 forms. */
600
601const struct tic80_opcode tic80_opcodes[] = {
602
603 /* The "nop" instruction is really "rdcr 0,r0". We put it first so that this
604 specific bit pattern will get disassembled as a nop rather than an rdcr. The
605 mask of all ones ensures that this will happen. */
606
607 {"nop", OP_SI(0x4), ~0, 0, {0} },
608
609 /* The "br" instruction is really "bbz target,r0,31". We put it first so that
610 this specific bit pattern will get disassembled as a br rather than bbz. */
611
612 {"br", OP_SI(0x48), 0xFFFF8000, 0, {OFF_SS_PC} },
613 {"br", OP_LI(0x391), 0xFFFFF000, 0, {OFF_SL_PC} },
614 {"br", OP_REG(0x390), 0xFFFFF000, 0, {REG_0} },
615 {"br.a", OP_SI(0x49), 0xFFFF8000, 0, {OFF_SS_PC} },
616 {"br.a", OP_LI(0x393), 0xFFFFF000, 0, {OFF_SL_PC} },
617 {"br.a", OP_REG(0x392), 0xFFFFF000, 0, {REG_0} },
618
619 /* Signed integer ADD */
620
621 {"add", OP_SI(0x58), MASK_SI, 0, {SSI, REG_22, REG_DEST} },
622 {"add", OP_LI(0x3B1), MASK_LI, 0, {LSI, REG_22, REG_DEST} },
623 {"add", OP_REG(0x3B0), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
624
625 /* Unsigned integer ADD */
626
627 {"addu", OP_SI(0x59), MASK_SI, 0, {SSI, REG_22, REG_DEST} },
628 {"addu", OP_LI(0x3B3), MASK_LI, 0, {LSI, REG_22, REG_DEST} },
629 {"addu", OP_REG(0x3B2), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
630
631 /* Bitwise AND */
632
633 {"and", OP_SI(0x11), MASK_SI, 0, {SUBF, REG_22, REG_DEST} },
634 {"and", OP_LI(0x323), MASK_LI, 0, {LUBF, REG_22, REG_DEST} },
635 {"and", OP_REG(0x322), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
636 {"and.tt", OP_SI(0x11), MASK_SI, 0, {SUBF, REG_22, REG_DEST} },
637 {"and.tt", OP_LI(0x323), MASK_LI, 0, {LUBF, REG_22, REG_DEST} },
638 {"and.tt", OP_REG(0x322), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
639
640 /* Bitwise AND with ones complement of both sources */
641
642 {"and.ff", OP_SI(0x18), MASK_SI, 0, {SUBF, REG_22, REG_DEST} },
643 {"and.ff", OP_LI(0x331), MASK_LI, 0, {LUBF, REG_22, REG_DEST} },
644 {"and.ff", OP_REG(0x330), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
645
646 /* Bitwise AND with ones complement of source 1 */
647
648 {"and.ft", OP_SI(0x14), MASK_SI, 0, {SUBF, REG_22, REG_DEST} },
649 {"and.ft", OP_LI(0x329), MASK_LI, 0, {LUBF, REG_22, REG_DEST} },
650 {"and.ft", OP_REG(0x328), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
651
652 /* Bitwise AND with ones complement of source 2 */
653
654 {"and.tf", OP_SI(0x12), MASK_SI, 0, {SUBF, REG_22, REG_DEST} },
655 {"and.tf", OP_LI(0x325), MASK_LI, 0, {LUBF, REG_22, REG_DEST} },
656 {"and.tf", OP_REG(0x324), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
657
658 /* Branch Bit One - nonannulled */
659
660 {"bbo", OP_SI(0x4A), MASK_SI, 0, {OFF_SS_PC, REG_22, BITNUM} },
661 {"bbo", OP_LI(0x395), MASK_LI, 0, {OFF_SL_PC, REG_22, BITNUM} },
662 {"bbo", OP_REG(0x394), MASK_REG, 0, {REG_0, REG_22, BITNUM} },
663
664 /* Branch Bit One - annulled */
665
666 {"bbo.a", OP_SI(0x4B), MASK_SI, 0, {OFF_SS_PC, REG_22, BITNUM} },
667 {"bbo.a", OP_LI(0x397), MASK_LI, 0, {OFF_SL_PC, REG_22, BITNUM} },
668 {"bbo.a", OP_REG(0x396), MASK_REG, 0, {REG_0, REG_22, BITNUM} },
669
670 /* Branch Bit Zero - nonannulled */
671
672 {"bbz", OP_SI(0x48), MASK_SI, 0, {OFF_SS_PC, REG_22, BITNUM} },
673 {"bbz", OP_LI(0x391), MASK_LI, 0, {OFF_SL_PC, REG_22, BITNUM} },
674 {"bbz", OP_REG(0x390), MASK_REG, 0, {REG_0, REG_22, BITNUM} },
675
676 /* Branch Bit Zero - annulled */
677
678 {"bbz.a", OP_SI(0x49), MASK_SI, 0, {OFF_SS_PC, REG_22, BITNUM} },
679 {"bbz.a", OP_LI(0x393), MASK_LI, 0, {OFF_SL_PC, REG_22, BITNUM} },
680 {"bbz.a", OP_REG(0x392), MASK_REG, 0, {REG_0, REG_22, BITNUM} },
681
682 /* Branch Conditional - nonannulled */
683
684 {"bcnd", OP_SI(0x4C), MASK_SI, 0, {OFF_SS_PC, REG_22, CC} },
685 {"bcnd", OP_LI(0x399), MASK_LI, 0, {OFF_SL_PC, REG_22, CC} },
686 {"bcnd", OP_REG(0x398), MASK_REG, 0, {REG_0, REG_22, CC} },
687
688 /* Branch Conditional - annulled */
689
690 {"bcnd.a", OP_SI(0x4D), MASK_SI, 0, {OFF_SS_PC, REG_22, CC} },
691 {"bcnd.a", OP_LI(0x39B), MASK_LI, 0, {OFF_SL_PC, REG_22, CC} },
692 {"bcnd.a", OP_REG(0x39A), MASK_REG, 0, {REG_0, REG_22, CC} },
693
694 /* Branch Control Register */
695
696 {"brcr", OP_SI(0x6), MASK_SI, 0, {CR_SI} },
697 {"brcr", OP_LI(0x30D), MASK_LI, 0, {CR_LI} },
698 {"brcr", OP_REG(0x30C), MASK_REG, 0, {REG_0} },
699
700 /* Branch and save return - nonannulled */
701
702 {"bsr", OP_SI(0x40), MASK_SI, 0, {OFF_SS_PC, REG_DEST} },
703 {"bsr", OP_LI(0x381), MASK_LI, 0, {OFF_SL_PC, REG_DEST} },
704 {"bsr", OP_REG(0x380), MASK_REG, 0, {REG_0, REG_DEST} },
705
706 /* Branch and save return - annulled */
707
708 {"bsr.a", OP_SI(0x41), MASK_SI, 0, {OFF_SS_PC, REG_DEST} },
709 {"bsr.a", OP_LI(0x383), MASK_LI, 0, {OFF_SL_PC, REG_DEST} },
710 {"bsr.a", OP_REG(0x382), MASK_REG, 0, {REG_0, REG_DEST} },
711
712 /* Send command */
713
714 {"cmnd", OP_SI(0x2), MASK_SI, 0, {SUI} },
715 {"cmnd", OP_LI(0x305), MASK_LI, 0, {LUI} },
716 {"cmnd", OP_REG(0x304), MASK_REG, 0, {REG_0} },
717
718 /* Integer compare */
719
720 {"cmp", OP_SI(0x50), MASK_SI, 0, {SSI, REG_22, REG_DEST} },
721 {"cmp", OP_LI(0x3A1), MASK_LI, 0, {LSI, REG_22, REG_DEST} },
722 {"cmp", OP_REG(0x3A0), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
723
724 /* Flush data cache subblock - don't clear subblock preset flag */
725
726 {"dcachec", OP_SI(0x38), F(1) | (MASK_SI & ~M_SI(1)), 0, {SSI, REG_BASE_M_SI} },
727 {"dcachec", OP_LI(0x371), F(1) | (MASK_LI & ~M_LI(1)) | S(1) | D(1), 0, {LSI, REG_BASE_M_LI} },
728 {"dcachec", OP_REG(0x370), F(1) | (MASK_REG & ~M_REG(1)) | S(1) | D(1), 0, {REG_0, REG_BASE_M_LI} },
729
730 /* Flush data cache subblock - clear subblock preset flag */
731
732 {"dcachef", OP_SI(0x38) | F(1), F(1) | (MASK_SI & ~M_SI(1)), 0, {SSI, REG_BASE_M_SI} },
733 {"dcachef", OP_LI(0x371) | F(1), F(1) | (MASK_LI & ~M_LI(1)) | S(1) | D(1), 0, {LSI, REG_BASE_M_LI} },
734 {"dcachef", OP_REG(0x370) | F(1), F(1) | (MASK_REG & ~M_REG(1)) | S(1) | D(1), 0, {REG_0, REG_BASE_M_LI} },
735
736 /* Direct load signed data into register */
737
738 {"dld", OP_LI(0x345) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
739 {"dld", OP_REG(0x344) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
740 {"dld.b", OP_LI(0x341) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
741 {"dld.b", OP_REG(0x340) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
742 {"dld.d", OP_LI(0x347) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST_E} },
743 {"dld.d", OP_REG(0x346) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST_E} },
744 {"dld.h", OP_LI(0x343) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
745 {"dld.h", OP_REG(0x342) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
746
747 /* Direct load unsigned data into register */
748
749 {"dld.ub", OP_LI(0x351) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
750 {"dld.ub", OP_REG(0x350) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
751 {"dld.uh", OP_LI(0x353) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
752 {"dld.uh", OP_REG(0x352) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
753
754 /* Direct store data into memory */
755
756 {"dst", OP_LI(0x365) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
757 {"dst", OP_REG(0x364) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
758 {"dst.b", OP_LI(0x361) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
759 {"dst.b", OP_REG(0x360) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
760 {"dst.d", OP_LI(0x367) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST_E} },
761 {"dst.d", OP_REG(0x366) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST_E} },
762 {"dst.h", OP_LI(0x363) | D(1), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
763 {"dst.h", OP_REG(0x362) | D(1), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
764
765 /* Emulation stop */
766
767 {"estop", OP_LI(0x3FC), MASK_LI, 0, {0} },
768
769 /* Emulation trap */
770
771 {"etrap", OP_SI(0x1) | E(1), MASK_SI | E(1), 0, {SUI} },
772 {"etrap", OP_LI(0x303) | E(1), MASK_LI | E(1), 0, {LUI} },
773 {"etrap", OP_REG(0x302) | E(1), MASK_REG | E(1), 0, {REG_0} },
774
775 /* Floating-point addition */
776
777 {"fadd.ddd", OP_REG(0x3E0) | PD(1) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22_E, REG_DEST_E} },
778 {"fadd.dsd", OP_REG(0x3E0) | PD(1) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22, REG_DEST_E} },
779 {"fadd.sdd", OP_LI(0x3E1) | PD(1) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22_E, REG_DEST_E} },
780 {"fadd.sdd", OP_REG(0x3E0) | PD(1) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22_E, REG_DEST_E} },
781 {"fadd.ssd", OP_LI(0x3E1) | PD(1) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST_E} },
782 {"fadd.ssd", OP_REG(0x3E0) | PD(1) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST_E} },
783 {"fadd.sss", OP_LI(0x3E1) | PD(0) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST} },
784 {"fadd.sss", OP_REG(0x3E0) | PD(0) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST} },
785
786 /* Floating point compare */
787
788 {"fcmp.dd", OP_REG(0x3EA) | PD(0) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22_E, REG_DEST} },
789 {"fcmp.ds", OP_REG(0x3EA) | PD(0) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22, REG_DEST} },
790 {"fcmp.sd", OP_LI(0x3EB) | PD(0) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22_E, REG_DEST} },
791 {"fcmp.sd", OP_REG(0x3EA) | PD(0) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22_E, REG_DEST} },
792 {"fcmp.ss", OP_LI(0x3EB) | PD(0) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST} },
793 {"fcmp.ss", OP_REG(0x3EA) | PD(0) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST} },
794
795 /* Floating point divide */
796
797 {"fdiv.ddd", OP_REG(0x3E6) | PD(1) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22_E, REG_DEST_E} },
798 {"fdiv.dsd", OP_REG(0x3E6) | PD(1) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22, REG_DEST_E} },
799 {"fdiv.sdd", OP_LI(0x3E7) | PD(1) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22_E, REG_DEST_E} },
800 {"fdiv.sdd", OP_REG(0x3E6) | PD(1) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22_E, REG_DEST_E} },
801 {"fdiv.ssd", OP_LI(0x3E7) | PD(1) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST_E} },
802 {"fdiv.ssd", OP_REG(0x3E6) | PD(1) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST_E} },
803 {"fdiv.sss", OP_LI(0x3E7) | PD(0) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST} },
804 {"fdiv.sss", OP_REG(0x3E6) | PD(0) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST} },
805
806 /* Floating point multiply */
807
808 {"fmpy.ddd", OP_REG(0x3E4) | PD(1) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22_E, REG_DEST_E} },
809 {"fmpy.dsd", OP_REG(0x3E4) | PD(1) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22, REG_DEST_E} },
810 {"fmpy.iii", OP_LI(0x3E5) | PD(2) | P2(2) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_22, REG_DEST} },
811 {"fmpy.iii", OP_REG(0x3E4) | PD(2) | P2(2) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST} },
812 {"fmpy.sdd", OP_LI(0x3E5) | PD(1) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22_E, REG_DEST_E} },
813 {"fmpy.sdd", OP_REG(0x3E4) | PD(1) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22_E, REG_DEST_E} },
814 {"fmpy.ssd", OP_LI(0x3E5) | PD(1) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST_E} },
815 {"fmpy.ssd", OP_REG(0x3E4) | PD(1) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST_E} },
816 {"fmpy.sss", OP_LI(0x3E5) | PD(0) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST} },
817 {"fmpy.sss", OP_REG(0x3E4) | PD(0) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST} },
818 {"fmpy.uuu", OP_LI(0x3E5) | PD(3) | P2(3) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LUI, REG_22, REG_DEST} },
819 {"fmpy.uuu", OP_REG(0x3E4) | PD(3) | P2(3) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST} },
820
821 /* Convert/Round to Minus Infinity */
822
823 {"frndm.dd", OP_REG(0x3E8) | PD(1) | P2(3) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST_E} },
824 {"frndm.di", OP_REG(0x3E8) | PD(2) | P2(3) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
825 {"frndm.ds", OP_REG(0x3E8) | PD(0) | P2(3) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
826 {"frndm.du", OP_REG(0x3E8) | PD(3) | P2(3) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
827 {"frndm.id", OP_LI(0x3E9) | PD(1) | P2(3) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
828 {"frndm.id", OP_REG(0x3E8) | PD(1) | P2(3) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
829 {"frndm.is", OP_LI(0x3E9) | PD(0) | P2(3) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
830 {"frndm.is", OP_REG(0x3E8) | PD(0) | P2(3) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
831 {"frndm.sd", OP_LI(0x3E9) | PD(1) | P2(3) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST_E} },
832 {"frndm.sd", OP_REG(0x3E8) | PD(1) | P2(3) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
833 {"frndm.si", OP_LI(0x3E9) | PD(2) | P2(3) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
834 {"frndm.si", OP_REG(0x3E8) | PD(2) | P2(3) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
835 {"frndm.ss", OP_LI(0x3E9) | PD(0) | P2(3) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
836 {"frndm.ss", OP_REG(0x3E8) | PD(0) | P2(3) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
837 {"frndm.su", OP_LI(0x3E9) | PD(3) | P2(3) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
838 {"frndm.su", OP_REG(0x3E8) | PD(3) | P2(3) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
839 {"frndm.ud", OP_LI(0x3E9) | PD(1) | P2(3) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
840 {"frndm.ud", OP_REG(0x3E8) | PD(1) | P2(3) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
841 {"frndm.us", OP_LI(0x3E9) | PD(0) | P2(3) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
842 {"frndm.us", OP_REG(0x3E8) | PD(0) | P2(3) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
843
844 /* Convert/Round to Nearest */
845
846 {"frndn.dd", OP_REG(0x3E8) | PD(1) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST_E} },
847 {"frndn.di", OP_REG(0x3E8) | PD(2) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
848 {"frndn.ds", OP_REG(0x3E8) | PD(0) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
849 {"frndn.du", OP_REG(0x3E8) | PD(3) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
850 {"frndn.id", OP_LI(0x3E9) | PD(1) | P2(0) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
851 {"frndn.id", OP_REG(0x3E8) | PD(1) | P2(0) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
852 {"frndn.is", OP_LI(0x3E9) | PD(0) | P2(0) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
853 {"frndn.is", OP_REG(0x3E8) | PD(0) | P2(0) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
854 {"frndn.sd", OP_LI(0x3E9) | PD(1) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST_E} },
855 {"frndn.sd", OP_REG(0x3E8) | PD(1) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
856 {"frndn.si", OP_LI(0x3E9) | PD(2) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
857 {"frndn.si", OP_REG(0x3E8) | PD(2) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
858 {"frndn.ss", OP_LI(0x3E9) | PD(0) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
859 {"frndn.ss", OP_REG(0x3E8) | PD(0) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
860 {"frndn.su", OP_LI(0x3E9) | PD(3) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
861 {"frndn.su", OP_REG(0x3E8) | PD(3) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
862 {"frndn.ud", OP_LI(0x3E9) | PD(1) | P2(0) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
863 {"frndn.ud", OP_REG(0x3E8) | PD(1) | P2(0) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
864 {"frndn.us", OP_LI(0x3E9) | PD(0) | P2(0) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
865 {"frndn.us", OP_REG(0x3E8) | PD(0) | P2(0) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
866
867 /* Convert/Round to Positive Infinity */
868
869 {"frndp.dd", OP_REG(0x3E8) | PD(1) | P2(2) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST_E} },
870 {"frndp.di", OP_REG(0x3E8) | PD(2) | P2(2) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
871 {"frndp.ds", OP_REG(0x3E8) | PD(0) | P2(2) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
872 {"frndp.du", OP_REG(0x3E8) | PD(3) | P2(2) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
873 {"frndp.id", OP_LI(0x3E9) | PD(1) | P2(2) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
874 {"frndp.id", OP_REG(0x3E8) | PD(1) | P2(2) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
875 {"frndp.is", OP_LI(0x3E9) | PD(0) | P2(2) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
876 {"frndp.is", OP_REG(0x3E8) | PD(0) | P2(2) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
877 {"frndp.sd", OP_LI(0x3E9) | PD(1) | P2(2) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST_E} },
878 {"frndp.sd", OP_REG(0x3E8) | PD(1) | P2(2) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
879 {"frndp.si", OP_LI(0x3E9) | PD(2) | P2(2) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
880 {"frndp.si", OP_REG(0x3E8) | PD(2) | P2(2) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
881 {"frndp.ss", OP_LI(0x3E9) | PD(0) | P2(2) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
882 {"frndp.ss", OP_REG(0x3E8) | PD(0) | P2(2) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
883 {"frndp.su", OP_LI(0x3E9) | PD(3) | P2(2) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
884 {"frndp.su", OP_REG(0x3E8) | PD(3) | P2(2) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
885 {"frndp.ud", OP_LI(0x3E9) | PD(1) | P2(2) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
886 {"frndp.ud", OP_REG(0x3E8) | PD(1) | P2(2) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
887 {"frndp.us", OP_LI(0x3E9) | PD(0) | P2(2) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
888 {"frndp.us", OP_REG(0x3E8) | PD(0) | P2(2) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
889
890 /* Convert/Round to Zero */
891
892 {"frndz.dd", OP_REG(0x3E8) | PD(1) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST_E} },
893 {"frndz.di", OP_REG(0x3E8) | PD(2) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
894 {"frndz.ds", OP_REG(0x3E8) | PD(0) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
895 {"frndz.du", OP_REG(0x3E8) | PD(3) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST} },
896 {"frndz.id", OP_LI(0x3E9) | PD(1) | P2(1) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
897 {"frndz.id", OP_REG(0x3E8) | PD(1) | P2(1) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
898 {"frndz.is", OP_LI(0x3E9) | PD(0) | P2(1) | P1(2), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
899 {"frndz.is", OP_REG(0x3E8) | PD(0) | P2(1) | P1(2), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
900 {"frndz.sd", OP_LI(0x3E9) | PD(1) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST_E} },
901 {"frndz.sd", OP_REG(0x3E8) | PD(1) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
902 {"frndz.si", OP_LI(0x3E9) | PD(2) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
903 {"frndz.si", OP_REG(0x3E8) | PD(2) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
904 {"frndz.ss", OP_LI(0x3E9) | PD(0) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
905 {"frndz.ss", OP_REG(0x3E8) | PD(0) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
906 {"frndz.su", OP_LI(0x3E9) | PD(3) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
907 {"frndz.su", OP_REG(0x3E8) | PD(3) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
908 {"frndz.ud", OP_LI(0x3E9) | PD(1) | P2(1) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST_E} },
909 {"frndz.ud", OP_REG(0x3E8) | PD(1) | P2(1) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
910 {"frndz.us", OP_LI(0x3E9) | PD(0) | P2(1) | P1(3), MASK_LI | PD(3) | P2(3) | P1(3), 0, {LSI, REG_DEST} },
911 {"frndz.us", OP_REG(0x3E8) | PD(0) | P2(1) | P1(3), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
912
913 /* Floating point square root */
914
915 {"fsqrt.dd", OP_REG(0x3EE) | PD(1) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_DEST_E} },
916 {"fsqrt.sd", OP_LI(0x3EF) | PD(1) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST_E} },
917 {"fsqrt.sd", OP_REG(0x3EE) | PD(1) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST_E} },
918 {"fsqrt.ss", OP_LI(0x3EF) | PD(0) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_DEST} },
919 {"fsqrt.ss", OP_REG(0x3EE) | PD(0) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_DEST} },
920
921 /* Floating point subtraction */
922
923 { "fsub.ddd", OP_REG(0x3E2) | PD(1) | P2(1) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22_E, REG_DEST_E} },
924 { "fsub.dsd", OP_REG(0x3E2) | PD(1) | P2(0) | P1(1), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0_E, REG_22, REG_DEST_E} },
925 { "fsub.sdd", OP_LI(0x3E3) | PD(1) | P2(1) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22_E, REG_DEST_E} },
926 { "fsub.sdd", OP_REG(0x3E2) | PD(1) | P2(1) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22_E, REG_DEST_E} },
927 { "fsub.ssd", OP_LI(0x3E3) | PD(1) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST_E} },
928 { "fsub.ssd", OP_REG(0x3E2) | PD(1) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST_E} },
929 { "fsub.sss", OP_LI(0x3E3) | PD(0) | P2(0) | P1(0), MASK_LI | PD(3) | P2(3) | P1(3), 0, {SPFI, REG_22, REG_DEST} },
930 { "fsub.sss", OP_REG(0x3E2) | PD(0) | P2(0) | P1(0), MASK_REG | PD(3) | P2(3) | P1(3), 0, {REG_0, REG_22, REG_DEST} },
931
932 /* Illegal instructions */
933
934 {"illop0", OP_SI(0x0), MASK_SI, 0, {0} },
935 {"illopF", 0x1FF << 13, 0x1FF << 13, 0, {0} },
936
937 /* Jump and save return */
938
939 {"jsr", OP_SI(0x44), MASK_SI, 0, {OFF_SS_BR, REG_BASE, REG_DEST} },
940 {"jsr", OP_LI(0x389), MASK_LI, 0, {OFF_SL_BR, REG_BASE, REG_DEST} },
941 {"jsr", OP_REG(0x388), MASK_REG, 0, {REG_0, REG_BASE, REG_DEST} },
942 {"jsr.a", OP_SI(0x45), MASK_SI, 0, {OFF_SS_BR, REG_BASE, REG_DEST} },
943 {"jsr.a", OP_LI(0x38B), MASK_LI, 0, {OFF_SL_BR, REG_BASE, REG_DEST} },
944 {"jsr.a", OP_REG(0x38A), MASK_REG, 0, {REG_0, REG_BASE, REG_DEST} },
945
946 /* Load Signed Data Into Register */
947
948 {"ld", OP_SI(0x22), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
949 {"ld", OP_LI(0x345) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
950 {"ld", OP_REG(0x344) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
951 {"ld.b", OP_SI(0x20), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
952 {"ld.b", OP_LI(0x341) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
953 {"ld.b", OP_REG(0x340) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
954 {"ld.d", OP_SI(0x23), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST_E} },
955 {"ld.d", OP_LI(0x347) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST_E} },
956 {"ld.d", OP_REG(0x346) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST_E} },
957 {"ld.h", OP_SI(0x21), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
958 {"ld.h", OP_LI(0x343) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
959 {"ld.h", OP_REG(0x342) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
960
961 /* Load Unsigned Data Into Register */
962
963 {"ld.ub", OP_SI(0x28), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
964 {"ld.ub", OP_LI(0x351) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
965 {"ld.ub", OP_REG(0x350) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
966 {"ld.uh", OP_SI(0x29), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
967 {"ld.uh", OP_LI(0x353) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
968 {"ld.uh", OP_REG(0x352) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
969
970 /* Leftmost one */
971
972 {"lmo", OP_LI(0x3F0), MASK_LI, 0, {REG_22, REG_DEST} },
973
974 /* Bitwise logical OR. Note that "or.tt" and "or" are the same instructions. */
975
976 {"or.ff", OP_SI(0x1E), MASK_SI, 0, {SUI, REG_22, REG_DEST} },
977 {"or.ff", OP_LI(0x33D), MASK_LI, 0, {LUI, REG_22, REG_DEST} },
978 {"or.ff", OP_REG(0x33C), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
979 {"or.ft", OP_SI(0x1D), MASK_SI, 0, {SUI, REG_22, REG_DEST} },
980 {"or.ft", OP_LI(0x33B), MASK_LI, 0, {LUI, REG_22, REG_DEST} },
981 {"or.ft", OP_REG(0x33A), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
982 {"or.tf", OP_SI(0x1B), MASK_SI, 0, {SUI, REG_22, REG_DEST} },
983 {"or.tf", OP_LI(0x337), MASK_LI, 0, {LUI, REG_22, REG_DEST} },
984 {"or.tf", OP_REG(0x336), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
985 {"or.tt", OP_SI(0x17), MASK_SI, 0, {SUI, REG_22, REG_DEST} },
986 {"or.tt", OP_LI(0x32F), MASK_LI, 0, {LUI, REG_22, REG_DEST} },
987 {"or.tt", OP_REG(0x32E), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
988 {"or", OP_SI(0x17), MASK_SI, 0, {SUI, REG_22, REG_DEST} },
989 {"or", OP_LI(0x32F), MASK_LI, 0, {LUI, REG_22, REG_DEST} },
990 {"or", OP_REG(0x32E), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
991
992 /* Read Control Register */
993
994 {"rdcr", OP_SI(0x4), MASK_SI | (0x1F << 22), 0, {CR_SI, REG_DEST} },
995 {"rdcr", OP_LI(0x309), MASK_LI | (0x1F << 22), 0, {CR_LI, REG_DEST} },
996 {"rdcr", OP_REG(0x308), MASK_REG | (0x1F << 22), 0, {REG_0, REG_DEST} },
997
998 /* Rightmost one */
999
1000 {"rmo", OP_LI(0x3F2), MASK_LI, 0, {REG_22, REG_DEST} },
1001
1002 /* Shift Register Left - note that rotl, shl, and ins are all alternate names for one of the shift instructions.
1003 They appear prior to their sl equivalent so that they will be diassembled as the alternate name. */
1004
1005
1006 {"ins", OP_REG(0x31E) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1007 {"ins", OP_SI(0xF) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1008 {"rotl", OP_REG(0x310) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1009 {"rotl", OP_SI(0x8) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1010 {"shl", OP_REG(0x31C) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1011 {"shl", OP_SI(0xE) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1012 {"sl.dm", OP_REG(0x312) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1013 {"sl.dm", OP_SI(0x9) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1014 {"sl.ds", OP_REG(0x314) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1015 {"sl.ds", OP_SI(0xA) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1016 {"sl.dz", OP_REG(0x310) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1017 {"sl.dz", OP_SI(0x8) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1018 {"sl.em", OP_REG(0x318) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1019 {"sl.em", OP_SI(0xC) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1020 {"sl.es", OP_REG(0x31A) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1021 {"sl.es", OP_SI(0xD) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1022 {"sl.ez", OP_REG(0x316) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1023 {"sl.ez", OP_SI(0xB) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1024 {"sl.im", OP_REG(0x31E) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1025 {"sl.im", OP_SI(0xF) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1026 {"sl.iz", OP_REG(0x31C) | i(0) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1027 {"sl.iz", OP_SI(0xE) | i(0) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1028
1029 /* Shift Register Left With Inverted Endmask */
1030
1031 {"sli.dm", OP_REG(0x312) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1032 {"sli.dm", OP_SI(0x9) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1033 {"sli.ds", OP_REG(0x314) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1034 {"sli.ds", OP_SI(0xA) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1035 {"sli.dz", OP_REG(0x310) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1036 {"sli.dz", OP_SI(0x8) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1037 {"sli.em", OP_REG(0x318) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1038 {"sli.em", OP_SI(0xC) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1039 {"sli.es", OP_REG(0x31A) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1040 {"sli.es", OP_SI(0xD) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1041 {"sli.ez", OP_REG(0x316) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1042 {"sli.ez", OP_SI(0xB) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1043 {"sli.im", OP_REG(0x31E) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1044 {"sli.im", OP_SI(0xF) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1045 {"sli.iz", OP_REG(0x31C) | i(1) | n(0), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1046 {"sli.iz", OP_SI(0xE) | i(1) | n(0), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1047
1048 /* Shift Register Right - note that exts, extu, rotr, sra, and srl are all alternate names for one of the shift instructions.
1049 They appear prior to their sr equivalent so that they will be diassembled as the alternate name. */
1050
1051 {"exts", OP_REG(0x314) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1052 {"exts", OP_SI(0xA) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1053 {"extu", OP_REG(0x310) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1054 {"extu", OP_SI(0x8) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1055 {"rotr", OP_REG(0x310) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1056 {"rotr", OP_SI(0x8) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1057 {"sra", OP_REG(0x31A) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1058 {"sra", OP_SI(0xD) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1059 {"srl", OP_REG(0x316) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1060 {"srl", OP_SI(0xB) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1061 {"sr.dm", OP_REG(0x312) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1062 {"sr.dm", OP_SI(0x9) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1063 {"sr.ds", OP_REG(0x314) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1064 {"sr.ds", OP_SI(0xA) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1065 {"sr.dz", OP_REG(0x310) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1066 {"sr.dz", OP_SI(0x8) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1067 {"sr.em", OP_REG(0x318) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1068 {"sr.em", OP_SI(0xC) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1069 {"sr.es", OP_REG(0x31A) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1070 {"sr.es", OP_SI(0xD) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1071 {"sr.ez", OP_REG(0x316) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1072 {"sr.ez", OP_SI(0xB) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1073 {"sr.im", OP_REG(0x31E) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1074 {"sr.im", OP_SI(0xF) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1075 {"sr.iz", OP_REG(0x31C) | i(0) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1076 {"sr.iz", OP_SI(0xE) | i(0) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1077
1078 /* Shift Register Right With Inverted Endmask */
1079
1080 {"sri.dm", OP_REG(0x312) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1081 {"sri.dm", OP_SI(0x9) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1082 {"sri.ds", OP_REG(0x314) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1083 {"sri.ds", OP_SI(0xA) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1084 {"sri.dz", OP_REG(0x310) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1085 {"sri.dz", OP_SI(0x8) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1086 {"sri.em", OP_REG(0x318) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1087 {"sri.em", OP_SI(0xC) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1088 {"sri.es", OP_REG(0x31A) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1089 {"sri.es", OP_SI(0xD) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1090 {"sri.ez", OP_REG(0x316) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1091 {"sri.ez", OP_SI(0xB) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1092 {"sri.im", OP_REG(0x31E) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1093 {"sri.im", OP_SI(0xF) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1094 {"sri.iz", OP_REG(0x31C) | i(1) | n(1), MASK_REG | i(1) | n(1), 0, {REG_0, ENDMASK, REG_22, REG_DEST} },
1095 {"sri.iz", OP_SI(0xE) | i(1) | n(1), MASK_SI | i(1) | n(1), 0, {ROTATE, ENDMASK, REG_22, REG_DEST} },
1096
1097 /* Store Data into Memory */
1098
1099 {"st", OP_SI(0x32), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
1100 {"st", OP_LI(0x365) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
1101 {"st", OP_REG(0x364) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
1102 {"st.b", OP_SI(0x30), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
1103 {"st.b", OP_LI(0x361) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
1104 {"st.b", OP_REG(0x360) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
1105 {"st.d", OP_SI(0x33), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST_E} },
1106 {"st.d", OP_LI(0x367) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST_E} },
1107 {"st.d", OP_REG(0x366) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST_E} },
1108 {"st.h", OP_SI(0x31), (MASK_SI & ~M_SI(1)), 0, {OFF_SS_BR, REG_BASE_M_SI, REG_DEST} },
1109 {"st.h", OP_LI(0x363) | D(0), (MASK_LI & ~M_REG(1)) | D(1), 0, {OFF_SL_BR_SCALED, REG_BASE_M_LI, REG_DEST} },
1110 {"st.h", OP_REG(0x362) | D(0), (MASK_REG & ~M_REG(1)) | D(1), 0, {REG_SCALED, REG_BASE_M_LI, REG_DEST} },
1111
1112 /* Signed Integer Subtract */
1113
1114 {"sub", OP_SI(0x5A), MASK_SI, 0, {SSI, REG_22, REG_DEST} },
1115 {"sub", OP_LI(0x3B5), MASK_LI, 0, {LSI, REG_22, REG_DEST} },
1116 {"sub", OP_REG(0x3B4), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
1117
1118 /* Unsigned Integer Subtract */
1119
1120 {"subu", OP_SI(0x5B), MASK_SI, 0, {SSI, REG_22, REG_DEST} },
1121 {"subu", OP_LI(0x3B7), MASK_LI, 0, {LSI, REG_22, REG_DEST} },
1122 {"subu", OP_REG(0x3B6), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
1123
1124 /* Write Control Register
1125 Is a special form of the "swcr" instruction so comes before it in the table. */
1126
1127 {"wrcr", OP_SI(0x5), MASK_SI | (0x1F << 27), 0, {CR_SI, REG_22} },
1128 {"wrcr", OP_LI(0x30B), MASK_LI | (0x1F << 27), 0, {CR_LI, REG_22} },
1129 {"wrcr", OP_REG(0x30A), MASK_REG | (0x1F << 27), 0, {REG_0, REG_22} },
1130
1131 /* Swap Control Register */
1132
1133 {"swcr", OP_SI(0x5), MASK_SI, 0, {CR_SI, REG_22, REG_DEST} },
1134 {"swcr", OP_LI(0x30B), MASK_LI, 0, {CR_LI, REG_22, REG_DEST} },
1135 {"swcr", OP_REG(0x30A), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
1136
1137 /* Trap */
1138
1139 {"trap", OP_SI(0x1) | E(0), MASK_SI | E(1), 0, {SUI} },
1140 {"trap", OP_LI(0x303) | E(0), MASK_LI | E(1), 0, {LUI} },
1141 {"trap", OP_REG(0x302) | E(0), MASK_REG | E(1), 0, {REG_0} },
1142
1143 /* Vector Floating-Point Add */
1144
1145 {"vadd.dd", OP_REG(0x3C0) | P2(1) | P1(1), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0_E, REG_22_E, REG_22_E} },
1146 {"vadd.sd", OP_LI(0x3C1) | P2(1) | P1(0), MASK_LI | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {SPFI, REG_22_E, REG_22_E} },
1147 {"vadd.sd", OP_REG(0x3C0) | P2(1) | P1(0), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22_E, REG_22_E} },
1148 {"vadd.ss", OP_LI(0x3C1) | P2(0) | P1(0), MASK_LI | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {SPFI, REG_22, REG_22} },
1149 {"vadd.ss", OP_REG(0x3C0) | P2(0) | P1(0), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22, REG_22} },
1150
1151 /* Vector Floating-Point Multiply and Add to Accumulator FIXME! This is not yet fully implemented.
1152 From the documentation there appears to be no way to tell the difference between the opcodes for
1153 instructions that have register destinations and instructions that have accumulator destinations.
1154 Further investigation is necessary. Since this isn't critical to getting a TIC80 toolchain up
1155 and running, it is defered until later. */
1156
1157 /* Vector Floating-Point Multiply
1158 Note: If r0 is in the destination reg, then this is a "vector nop" instruction. */
1159
1160 {"vmpy.dd", OP_REG(0x3C4) | P2(1) | P1(1), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR | TIC80_NO_R0_DEST, {REG_0_E, REG_22_E, REG_22_E} },
1161 {"vmpy.sd", OP_LI(0x3C5) | P2(1) | P1(0), MASK_LI | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR | TIC80_NO_R0_DEST, {SPFI, REG_22_E, REG_22_E} },
1162 {"vmpy.sd", OP_REG(0x3C4) | P2(1) | P1(0), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR | TIC80_NO_R0_DEST, {REG_0, REG_22_E, REG_22_E} },
1163 {"vmpy.ss", OP_LI(0x3C5) | P2(0) | P1(0), MASK_LI | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR | TIC80_NO_R0_DEST, {SPFI, REG_22, REG_22} },
1164 {"vmpy.ss", OP_REG(0x3C4) | P2(0) | P1(0), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR | TIC80_NO_R0_DEST, {REG_0, REG_22, REG_22} },
1165
1166 /* Vector Floating-Point Multiply and Subtract from Accumulator
1167 FIXME: See note above for vmac instruction */
1168
1169 /* Vector Floating-Point Subtract Accumulator From Source
1170 FIXME: See note above for vmac instruction */
1171
1172 /* Vector Round With Floating-Point Input
1173 FIXME: See note above for vmac instruction */
1174
1175 /* Vector Round with Integer Input */
1176
1177 {"vrnd.id", OP_LI (0x3CB) | P2(1) | P1(0), MASK_LI | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {LSI, REG_22_E}},
1178 {"vrnd.id", OP_REG (0x3CA) | P2(1) | P1(0), MASK_REG | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22_E}},
1179 {"vrnd.is", OP_LI (0x3CB) | P2(0) | P1(0), MASK_LI | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {LSI, REG_22}},
1180 {"vrnd.is", OP_REG (0x3CA) | P2(0) | P1(0), MASK_REG | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22}},
1181 {"vrnd.ud", OP_LI (0x3CB) | P2(1) | P1(1), MASK_LI | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {LUI, REG_22_E}},
1182 {"vrnd.ud", OP_REG (0x3CA) | P2(1) | P1(1), MASK_REG | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22_E}},
1183 {"vrnd.us", OP_LI (0x3CB) | P2(0) | P1(1), MASK_LI | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {LUI, REG_22}},
1184 {"vrnd.us", OP_REG (0x3CA) | P2(0) | P1(1), MASK_REG | V_a0(1) | V_Z(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22}},
1185
1186 /* Vector Floating-Point Subtract */
1187
1188 {"vsub.dd", OP_REG(0x3C2) | P2(1) | P1(1), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0_E, REG_22_E, REG_22_E} },
1189 {"vsub.sd", OP_LI(0x3C3) | P2(1) | P1(0), MASK_LI | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {SPFI, REG_22_E, REG_22_E} },
1190 {"vsub.sd", OP_REG(0x3C2) | P2(1) | P1(0), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22_E, REG_22_E} },
1191 {"vsub.ss", OP_LI(0x3C3) | P2(0) | P1(0), MASK_LI | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {SPFI, REG_22, REG_22} },
1192 {"vsub.ss", OP_REG(0x3C2) | P2(0) | P1(0), MASK_REG | V_a1(1) | P2(1) | P1(1), TIC80_VECTOR, {REG_0, REG_22, REG_22} },
1193
1194 /* Vector Load Data Into Register - Note that the vector load/store instructions come after the other
1195 vector instructions so that the disassembler will always print the load/store instruction second for
1196 vector instructions that have two instructions in the same opcode. */
1197
1198 {"vld0.d", OP_V(0x1E) | V_m(1) | V_S(1) | V_p(0), MASK_V | V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR, {REG_DEST_E} },
1199 {"vld0.s", OP_V(0x1E) | V_m(1) | V_S(0) | V_p(0), MASK_V | V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR, {REG_DEST} },
1200 {"vld1.d", OP_V(0x1E) | V_m(1) | V_S(1) | V_p(1), MASK_V | V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR, {REG_DEST_E} },
1201 {"vld1.s", OP_V(0x1E) | V_m(1) | V_S(0) | V_p(1), MASK_V | V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR, {REG_DEST} },
1202
1203 /* Vector Store Data Into Memory - Note that the vector load/store instructions come after the other
1204 vector instructions so that the disassembler will always print the load/store instruction second for
1205 vector instructions that have two instructions in the same opcode. */
1206
1207 {"vst.d", OP_V(0x1E) | V_m(0) | V_S(1) | V_p(1), MASK_V | V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR, {REG_DEST_E} },
1208 {"vst.s", OP_V(0x1E) | V_m(0) | V_S(0) | V_p(1), MASK_V | V_m(1) | V_S(1) | V_p(1), TIC80_VECTOR, {REG_DEST} },
1209
1210 {"xnor", OP_SI(0x19), MASK_SI, 0, {SUBF, REG_22, REG_DEST} },
1211 {"xnor", OP_LI(0x333), MASK_LI, 0, {LUBF, REG_22, REG_DEST} },
1212 {"xnor", OP_REG(0x332), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
1213
1214 {"xor", OP_SI(0x16), MASK_SI, 0, {SUBF, REG_22, REG_DEST} },
1215 {"xor", OP_LI(0x32D), MASK_LI, 0, {LUBF, REG_22, REG_DEST} },
1216 {"xor", OP_REG(0x32C), MASK_REG, 0, {REG_0, REG_22, REG_DEST} },
1217
1218};
1219
1220const int tic80_num_opcodes = sizeof (tic80_opcodes) / sizeof (tic80_opcodes[0]);
Note: See TracBrowser for help on using the repository browser.