1 | /* @(#)e_fmod.c 1.3 95/01/18 */
|
---|
2 | /*-
|
---|
3 | * ====================================================
|
---|
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
5 | *
|
---|
6 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
7 | * Permission to use, copy, modify, and distribute this
|
---|
8 | * software is freely granted, provided that this notice
|
---|
9 | * is preserved.
|
---|
10 | * ====================================================
|
---|
11 | */
|
---|
12 |
|
---|
13 | #include <sys/cdefs.h>
|
---|
14 | __FBSDID("$FreeBSD: src/lib/msun/src/s_remquo.c,v 1.1 2005/03/25 04:40:44 das Exp $");
|
---|
15 |
|
---|
16 | #include "math.h"
|
---|
17 | #include "math_private.h"
|
---|
18 |
|
---|
19 | static const double Zero[] = {0.0, -0.0,};
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Return the IEEE remainder and set *quo to the last n bits of the
|
---|
23 | * quotient, rounded to the nearest integer. We choose n=31 because
|
---|
24 | * we wind up computing all the integer bits of the quotient anyway as
|
---|
25 | * a side-effect of computing the remainder by the shift and subtract
|
---|
26 | * method. In practice, this is far more bits than are needed to use
|
---|
27 | * remquo in reduction algorithms.
|
---|
28 | */
|
---|
29 | double
|
---|
30 | remquo(double x, double y, int *quo)
|
---|
31 | {
|
---|
32 | int32_t n,hx,hy,hz,ix,iy,sx,i;
|
---|
33 | u_int32_t lx,ly,lz,q,sxy;
|
---|
34 |
|
---|
35 | EXTRACT_WORDS(hx,lx,x);
|
---|
36 | EXTRACT_WORDS(hy,ly,y);
|
---|
37 | sxy = (hx ^ hy) & 0x80000000;
|
---|
38 | sx = hx&0x80000000; /* sign of x */
|
---|
39 | hx ^=sx; /* |x| */
|
---|
40 | hy &= 0x7fffffff; /* |y| */
|
---|
41 |
|
---|
42 | /* purge off exception values */
|
---|
43 | if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
|
---|
44 | ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
|
---|
45 | return (x*y)/(x*y);
|
---|
46 | if(hx<=hy) {
|
---|
47 | if((hx<hy)||(lx<ly)) {
|
---|
48 | q = 0;
|
---|
49 | goto fixup; /* |x|<|y| return x or x-y */
|
---|
50 | }
|
---|
51 | if(lx==ly) {
|
---|
52 | *quo = 1;
|
---|
53 | return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 | /* determine ix = ilogb(x) */
|
---|
58 | if(hx<0x00100000) { /* subnormal x */
|
---|
59 | if(hx==0) {
|
---|
60 | for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
|
---|
61 | } else {
|
---|
62 | for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
|
---|
63 | }
|
---|
64 | } else ix = (hx>>20)-1023;
|
---|
65 |
|
---|
66 | /* determine iy = ilogb(y) */
|
---|
67 | if(hy<0x00100000) { /* subnormal y */
|
---|
68 | if(hy==0) {
|
---|
69 | for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
|
---|
70 | } else {
|
---|
71 | for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
|
---|
72 | }
|
---|
73 | } else iy = (hy>>20)-1023;
|
---|
74 |
|
---|
75 | /* set up {hx,lx}, {hy,ly} and align y to x */
|
---|
76 | if(ix >= -1022)
|
---|
77 | hx = 0x00100000|(0x000fffff&hx);
|
---|
78 | else { /* subnormal x, shift x to normal */
|
---|
79 | n = -1022-ix;
|
---|
80 | if(n<=31) {
|
---|
81 | hx = (hx<<n)|(lx>>(32-n));
|
---|
82 | lx <<= n;
|
---|
83 | } else {
|
---|
84 | hx = lx<<(n-32);
|
---|
85 | lx = 0;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | if(iy >= -1022)
|
---|
89 | hy = 0x00100000|(0x000fffff&hy);
|
---|
90 | else { /* subnormal y, shift y to normal */
|
---|
91 | n = -1022-iy;
|
---|
92 | if(n<=31) {
|
---|
93 | hy = (hy<<n)|(ly>>(32-n));
|
---|
94 | ly <<= n;
|
---|
95 | } else {
|
---|
96 | hy = ly<<(n-32);
|
---|
97 | ly = 0;
|
---|
98 | }
|
---|
99 | }
|
---|
100 |
|
---|
101 | /* fix point fmod */
|
---|
102 | n = ix - iy;
|
---|
103 | q = 0;
|
---|
104 | while(n--) {
|
---|
105 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
---|
106 | if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
|
---|
107 | else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;}
|
---|
108 | q <<= 1;
|
---|
109 | }
|
---|
110 | hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
---|
111 | if(hz>=0) {hx=hz;lx=lz;q++;}
|
---|
112 |
|
---|
113 | /* convert back to floating value and restore the sign */
|
---|
114 | if((hx|lx)==0) { /* return sign(x)*0 */
|
---|
115 | *quo = (sxy ? -q : q);
|
---|
116 | return Zero[(u_int32_t)sx>>31];
|
---|
117 | }
|
---|
118 | while(hx<0x00100000) { /* normalize x */
|
---|
119 | hx = hx+hx+(lx>>31); lx = lx+lx;
|
---|
120 | iy -= 1;
|
---|
121 | }
|
---|
122 | if(iy>= -1022) { /* normalize output */
|
---|
123 | hx = ((hx-0x00100000)|((iy+1023)<<20));
|
---|
124 | } else { /* subnormal output */
|
---|
125 | n = -1022 - iy;
|
---|
126 | if(n<=20) {
|
---|
127 | lx = (lx>>n)|((u_int32_t)hx<<(32-n));
|
---|
128 | hx >>= n;
|
---|
129 | } else if (n<=31) {
|
---|
130 | lx = (hx<<(32-n))|(lx>>n); hx = sx;
|
---|
131 | } else {
|
---|
132 | lx = hx>>(n-32); hx = sx;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | fixup:
|
---|
136 | INSERT_WORDS(x,hx,lx);
|
---|
137 | y = fabs(y);
|
---|
138 | if (y < 0x1p-1021) {
|
---|
139 | if (x+x>y || (x+x==y && (q & 1))) {
|
---|
140 | q++;
|
---|
141 | x-=y;
|
---|
142 | }
|
---|
143 | } else if (x>0.5*y || (x==0.5*y && (q & 1))) {
|
---|
144 | q++;
|
---|
145 | x-=y;
|
---|
146 | }
|
---|
147 | GET_HIGH_WORD(hx,x);
|
---|
148 | SET_HIGH_WORD(x,hx^sx);
|
---|
149 | q &= 0x7fffffff;
|
---|
150 | *quo = (sxy ? -q : q);
|
---|
151 | return x;
|
---|
152 | }
|
---|