| 1 | /* @(#)s_log1p.c 5.1 93/09/24 */
|
|---|
| 2 | /*
|
|---|
| 3 | * ====================================================
|
|---|
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|---|
| 5 | *
|
|---|
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|---|
| 7 | * Permission to use, copy, modify, and distribute this
|
|---|
| 8 | * software is freely granted, provided that this notice
|
|---|
| 9 | * is preserved.
|
|---|
| 10 | * ====================================================
|
|---|
| 11 | */
|
|---|
| 12 |
|
|---|
| 13 | #ifndef lint
|
|---|
| 14 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_log1p.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
|
|---|
| 15 | #endif
|
|---|
| 16 |
|
|---|
| 17 | /* double log1p(double x)
|
|---|
| 18 | *
|
|---|
| 19 | * Method :
|
|---|
| 20 | * 1. Argument Reduction: find k and f such that
|
|---|
| 21 | * 1+x = 2^k * (1+f),
|
|---|
| 22 | * where sqrt(2)/2 < 1+f < sqrt(2) .
|
|---|
| 23 | *
|
|---|
| 24 | * Note. If k=0, then f=x is exact. However, if k!=0, then f
|
|---|
| 25 | * may not be representable exactly. In that case, a correction
|
|---|
| 26 | * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
|---|
| 27 | * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
|---|
| 28 | * and add back the correction term c/u.
|
|---|
| 29 | * (Note: when x > 2**53, one can simply return log(x))
|
|---|
| 30 | *
|
|---|
| 31 | * 2. Approximation of log1p(f).
|
|---|
| 32 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|---|
| 33 | * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|---|
| 34 | * = 2s + s*R
|
|---|
| 35 | * We use a special Reme algorithm on [0,0.1716] to generate
|
|---|
| 36 | * a polynomial of degree 14 to approximate R The maximum error
|
|---|
| 37 | * of this polynomial approximation is bounded by 2**-58.45. In
|
|---|
| 38 | * other words,
|
|---|
| 39 | * 2 4 6 8 10 12 14
|
|---|
| 40 | * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
|---|
| 41 | * (the values of Lp1 to Lp7 are listed in the program)
|
|---|
| 42 | * and
|
|---|
| 43 | * | 2 14 | -58.45
|
|---|
| 44 | * | Lp1*s +...+Lp7*s - R(z) | <= 2
|
|---|
| 45 | * | |
|
|---|
| 46 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|---|
| 47 | * In order to guarantee error in log below 1ulp, we compute log
|
|---|
| 48 | * by
|
|---|
| 49 | * log1p(f) = f - (hfsq - s*(hfsq+R)).
|
|---|
| 50 | *
|
|---|
| 51 | * 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
|---|
| 52 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
|---|
| 53 | * Here ln2 is split into two floating point number:
|
|---|
| 54 | * ln2_hi + ln2_lo,
|
|---|
| 55 | * where n*ln2_hi is always exact for |n| < 2000.
|
|---|
| 56 | *
|
|---|
| 57 | * Special cases:
|
|---|
| 58 | * log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
|---|
| 59 | * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
|---|
| 60 | * log1p(NaN) is that NaN with no signal.
|
|---|
| 61 | *
|
|---|
| 62 | * Accuracy:
|
|---|
| 63 | * according to an error analysis, the error is always less than
|
|---|
| 64 | * 1 ulp (unit in the last place).
|
|---|
| 65 | *
|
|---|
| 66 | * Constants:
|
|---|
| 67 | * The hexadecimal values are the intended ones for the following
|
|---|
| 68 | * constants. The decimal values may be used, provided that the
|
|---|
| 69 | * compiler will convert from decimal to binary accurately enough
|
|---|
| 70 | * to produce the hexadecimal values shown.
|
|---|
| 71 | *
|
|---|
| 72 | * Note: Assuming log() return accurate answer, the following
|
|---|
| 73 | * algorithm can be used to compute log1p(x) to within a few ULP:
|
|---|
| 74 | *
|
|---|
| 75 | * u = 1+x;
|
|---|
| 76 | * if(u==1.0) return x ; else
|
|---|
| 77 | * return log(u)*(x/(u-1.0));
|
|---|
| 78 | *
|
|---|
| 79 | * See HP-15C Advanced Functions Handbook, p.193.
|
|---|
| 80 | */
|
|---|
| 81 |
|
|---|
| 82 | #include "math.h"
|
|---|
| 83 | #include "math_private.h"
|
|---|
| 84 |
|
|---|
| 85 | static const double
|
|---|
| 86 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
|---|
| 87 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
|---|
| 88 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
|---|
| 89 | Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
|---|
| 90 | Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
|---|
| 91 | Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
|---|
| 92 | Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
|---|
| 93 | Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
|---|
| 94 | Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
|---|
| 95 | Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
|---|
| 96 |
|
|---|
| 97 | static const double zero = 0.0;
|
|---|
| 98 |
|
|---|
| 99 | double
|
|---|
| 100 | log1p(double x)
|
|---|
| 101 | {
|
|---|
| 102 | double hfsq,f,c,s,z,R,u;
|
|---|
| 103 | int32_t k,hx,hu,ax;
|
|---|
| 104 |
|
|---|
| 105 | GET_HIGH_WORD(hx,x);
|
|---|
| 106 | ax = hx&0x7fffffff;
|
|---|
| 107 |
|
|---|
| 108 | k = 1;
|
|---|
| 109 | if (hx < 0x3FDA827A) { /* x < 0.41422 */
|
|---|
| 110 | if(ax>=0x3ff00000) { /* x <= -1.0 */
|
|---|
| 111 | if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
|
|---|
| 112 | else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
|---|
| 113 | }
|
|---|
| 114 | if(ax<0x3e200000) { /* |x| < 2**-29 */
|
|---|
| 115 | if(two54+x>zero /* raise inexact */
|
|---|
| 116 | &&ax<0x3c900000) /* |x| < 2**-54 */
|
|---|
| 117 | return x;
|
|---|
| 118 | else
|
|---|
| 119 | return x - x*x*0.5;
|
|---|
| 120 | }
|
|---|
| 121 | if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
|
|---|
| 122 | k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
|
|---|
| 123 | }
|
|---|
| 124 | if (hx >= 0x7ff00000) return x+x;
|
|---|
| 125 | if(k!=0) {
|
|---|
| 126 | if(hx<0x43400000) {
|
|---|
| 127 | u = 1.0+x;
|
|---|
| 128 | GET_HIGH_WORD(hu,u);
|
|---|
| 129 | k = (hu>>20)-1023;
|
|---|
| 130 | c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
|---|
| 131 | c /= u;
|
|---|
| 132 | } else {
|
|---|
| 133 | u = x;
|
|---|
| 134 | GET_HIGH_WORD(hu,u);
|
|---|
| 135 | k = (hu>>20)-1023;
|
|---|
| 136 | c = 0;
|
|---|
| 137 | }
|
|---|
| 138 | hu &= 0x000fffff;
|
|---|
| 139 | if(hu<0x6a09e) {
|
|---|
| 140 | SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
|
|---|
| 141 | } else {
|
|---|
| 142 | k += 1;
|
|---|
| 143 | SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
|
|---|
| 144 | hu = (0x00100000-hu)>>2;
|
|---|
| 145 | }
|
|---|
| 146 | f = u-1.0;
|
|---|
| 147 | }
|
|---|
| 148 | hfsq=0.5*f*f;
|
|---|
| 149 | if(hu==0) { /* |f| < 2**-20 */
|
|---|
| 150 | if(f==zero) if(k==0) return zero;
|
|---|
| 151 | else {c += k*ln2_lo; return k*ln2_hi+c;}
|
|---|
| 152 | R = hfsq*(1.0-0.66666666666666666*f);
|
|---|
| 153 | if(k==0) return f-R; else
|
|---|
| 154 | return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
|---|
| 155 | }
|
|---|
| 156 | s = f/(2.0+f);
|
|---|
| 157 | z = s*s;
|
|---|
| 158 | R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
|---|
| 159 | if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
|---|
| 160 | return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
|
|---|
| 161 | }
|
|---|