1 | /*-
|
---|
2 | * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | * 1. Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer in the
|
---|
12 | * documentation and/or other materials provided with the distribution.
|
---|
13 | *
|
---|
14 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
---|
15 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
17 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
---|
18 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
19 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
20 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
21 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
22 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
23 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
24 | * SUCH DAMAGE.
|
---|
25 | */
|
---|
26 |
|
---|
27 | #include <sys/cdefs.h>
|
---|
28 | __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $");
|
---|
29 |
|
---|
30 | #include <fenv.h>
|
---|
31 | #include <float.h>
|
---|
32 | #include <math.h>
|
---|
33 |
|
---|
34 | /*
|
---|
35 | * Fused multiply-add: Compute x * y + z with a single rounding error.
|
---|
36 | *
|
---|
37 | * We use scaling to avoid overflow/underflow, along with the
|
---|
38 | * canonical precision-doubling technique adapted from:
|
---|
39 | *
|
---|
40 | * Dekker, T. A Floating-Point Technique for Extending the
|
---|
41 | * Available Precision. Numer. Math. 18, 224-242 (1971).
|
---|
42 | *
|
---|
43 | * This algorithm is sensitive to the rounding precision. FPUs such
|
---|
44 | * as the i387 must be set in double-precision mode if variables are
|
---|
45 | * to be stored in FP registers in order to avoid incorrect results.
|
---|
46 | * This is the default on FreeBSD, but not on many other systems.
|
---|
47 | *
|
---|
48 | * Hardware instructions should be used on architectures that support it,
|
---|
49 | * since this implementation will likely be several times slower.
|
---|
50 | */
|
---|
51 | #if LDBL_MANT_DIG != 113
|
---|
52 | double
|
---|
53 | fma(double x, double y, double z)
|
---|
54 | {
|
---|
55 | static const double split = 0x1p27 + 1.0;
|
---|
56 | double xs, ys, zs;
|
---|
57 | double c, cc, hx, hy, p, q, tx, ty;
|
---|
58 | double r, rr, s;
|
---|
59 | int oround;
|
---|
60 | int ex, ey, ez;
|
---|
61 | int spread;
|
---|
62 |
|
---|
63 | if (z == 0.0)
|
---|
64 | return (x * y);
|
---|
65 | if (x == 0.0 || y == 0.0)
|
---|
66 | return (x * y + z);
|
---|
67 |
|
---|
68 | /* Results of frexp() are undefined for these cases. */
|
---|
69 | if (!isfinite(x) || !isfinite(y) || !isfinite(z))
|
---|
70 | return (x * y + z);
|
---|
71 |
|
---|
72 | xs = frexp(x, &ex);
|
---|
73 | ys = frexp(y, &ey);
|
---|
74 | zs = frexp(z, &ez);
|
---|
75 | oround = fegetround();
|
---|
76 | spread = ex + ey - ez;
|
---|
77 |
|
---|
78 | /*
|
---|
79 | * If x * y and z are many orders of magnitude apart, the scaling
|
---|
80 | * will overflow, so we handle these cases specially. Rounding
|
---|
81 | * modes other than FE_TONEAREST are painful.
|
---|
82 | */
|
---|
83 | if (spread > DBL_MANT_DIG * 2) {
|
---|
84 | fenv_t env;
|
---|
85 | feraiseexcept(FE_INEXACT);
|
---|
86 | switch(oround) {
|
---|
87 | case FE_TONEAREST:
|
---|
88 | return (x * y);
|
---|
89 | case FE_TOWARDZERO:
|
---|
90 | if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
|
---|
91 | return (x * y);
|
---|
92 | feholdexcept(&env);
|
---|
93 | r = x * y;
|
---|
94 | if (!fetestexcept(FE_INEXACT))
|
---|
95 | r = nextafter(r, 0);
|
---|
96 | feupdateenv(&env);
|
---|
97 | return (r);
|
---|
98 | case FE_DOWNWARD:
|
---|
99 | if (z > 0.0)
|
---|
100 | return (x * y);
|
---|
101 | feholdexcept(&env);
|
---|
102 | r = x * y;
|
---|
103 | if (!fetestexcept(FE_INEXACT))
|
---|
104 | r = nextafter(r, -INFINITY);
|
---|
105 | feupdateenv(&env);
|
---|
106 | return (r);
|
---|
107 | default: /* FE_UPWARD */
|
---|
108 | if (z < 0.0)
|
---|
109 | return (x * y);
|
---|
110 | feholdexcept(&env);
|
---|
111 | r = x * y;
|
---|
112 | if (!fetestexcept(FE_INEXACT))
|
---|
113 | r = nextafter(r, INFINITY);
|
---|
114 | feupdateenv(&env);
|
---|
115 | return (r);
|
---|
116 | }
|
---|
117 | }
|
---|
118 | if (spread < -DBL_MANT_DIG) {
|
---|
119 | feraiseexcept(FE_INEXACT);
|
---|
120 | if (!isnormal(z))
|
---|
121 | feraiseexcept(FE_UNDERFLOW);
|
---|
122 | switch (oround) {
|
---|
123 | case FE_TONEAREST:
|
---|
124 | return (z);
|
---|
125 | case FE_TOWARDZERO:
|
---|
126 | if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
|
---|
127 | return (z);
|
---|
128 | else
|
---|
129 | return (nextafter(z, 0));
|
---|
130 | case FE_DOWNWARD:
|
---|
131 | if (x > 0.0 ^ y < 0.0)
|
---|
132 | return (z);
|
---|
133 | else
|
---|
134 | return (nextafter(z, -INFINITY));
|
---|
135 | default: /* FE_UPWARD */
|
---|
136 | if (x > 0.0 ^ y < 0.0)
|
---|
137 | return (nextafter(z, INFINITY));
|
---|
138 | else
|
---|
139 | return (z);
|
---|
140 | }
|
---|
141 | }
|
---|
142 |
|
---|
143 | /*
|
---|
144 | * Use Dekker's algorithm to perform the multiplication and
|
---|
145 | * subsequent addition in twice the machine precision.
|
---|
146 | * Arrange so that x * y = c + cc, and x * y + z = r + rr.
|
---|
147 | */
|
---|
148 | fesetround(FE_TONEAREST);
|
---|
149 |
|
---|
150 | p = xs * split;
|
---|
151 | hx = xs - p;
|
---|
152 | hx += p;
|
---|
153 | tx = xs - hx;
|
---|
154 |
|
---|
155 | p = ys * split;
|
---|
156 | hy = ys - p;
|
---|
157 | hy += p;
|
---|
158 | ty = ys - hy;
|
---|
159 |
|
---|
160 | p = hx * hy;
|
---|
161 | q = hx * ty + tx * hy;
|
---|
162 | c = p + q;
|
---|
163 | cc = p - c + q + tx * ty;
|
---|
164 |
|
---|
165 | zs = ldexp(zs, -spread);
|
---|
166 | r = c + zs;
|
---|
167 | s = r - c;
|
---|
168 | rr = (c - (r - s)) + (zs - s) + cc;
|
---|
169 |
|
---|
170 | spread = ex + ey;
|
---|
171 | if (spread + ilogb(r) > -1023) {
|
---|
172 | fesetround(oround);
|
---|
173 | r = r + rr;
|
---|
174 | } else {
|
---|
175 | /*
|
---|
176 | * The result is subnormal, so we round before scaling to
|
---|
177 | * avoid double rounding.
|
---|
178 | */
|
---|
179 | p = ldexp(copysign(0x1p-1022, r), -spread);
|
---|
180 | c = r + p;
|
---|
181 | s = c - r;
|
---|
182 | cc = (r - (c - s)) + (p - s) + rr;
|
---|
183 | fesetround(oround);
|
---|
184 | r = (c + cc) - p;
|
---|
185 | }
|
---|
186 | return (ldexp(r, spread));
|
---|
187 | }
|
---|
188 | #else /* LDBL_MANT_DIG == 113 */
|
---|
189 | /*
|
---|
190 | * 113 bits of precision is more than twice the precision of a double,
|
---|
191 | * so it is enough to represent the intermediate product exactly.
|
---|
192 | */
|
---|
193 | double
|
---|
194 | fma(double x, double y, double z)
|
---|
195 | {
|
---|
196 | return ((long double)x * y + z);
|
---|
197 | }
|
---|
198 | #endif /* LDBL_MANT_DIG != 113 */
|
---|
199 |
|
---|
200 | #if (LDBL_MANT_DIG == 53)
|
---|
201 | __weak_reference(fma, fmal);
|
---|
202 | #endif
|
---|