1 | /* @(#)s_expm1.c 5.1 93/09/24 */
|
---|
2 | /*
|
---|
3 | * ====================================================
|
---|
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
5 | *
|
---|
6 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
---|
7 | * Permission to use, copy, modify, and distribute this
|
---|
8 | * software is freely granted, provided that this notice
|
---|
9 | * is preserved.
|
---|
10 | * ====================================================
|
---|
11 | */
|
---|
12 |
|
---|
13 | #ifndef lint
|
---|
14 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_expm1.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
|
---|
15 | #endif
|
---|
16 |
|
---|
17 | /* expm1(x)
|
---|
18 | * Returns exp(x)-1, the exponential of x minus 1.
|
---|
19 | *
|
---|
20 | * Method
|
---|
21 | * 1. Argument reduction:
|
---|
22 | * Given x, find r and integer k such that
|
---|
23 | *
|
---|
24 | * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
---|
25 | *
|
---|
26 | * Here a correction term c will be computed to compensate
|
---|
27 | * the error in r when rounded to a floating-point number.
|
---|
28 | *
|
---|
29 | * 2. Approximating expm1(r) by a special rational function on
|
---|
30 | * the interval [0,0.34658]:
|
---|
31 | * Since
|
---|
32 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
---|
33 | * we define R1(r*r) by
|
---|
34 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
---|
35 | * That is,
|
---|
36 | * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
---|
37 | * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
---|
38 | * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
---|
39 | * We use a special Reme algorithm on [0,0.347] to generate
|
---|
40 | * a polynomial of degree 5 in r*r to approximate R1. The
|
---|
41 | * maximum error of this polynomial approximation is bounded
|
---|
42 | * by 2**-61. In other words,
|
---|
43 | * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
---|
44 | * where Q1 = -1.6666666666666567384E-2,
|
---|
45 | * Q2 = 3.9682539681370365873E-4,
|
---|
46 | * Q3 = -9.9206344733435987357E-6,
|
---|
47 | * Q4 = 2.5051361420808517002E-7,
|
---|
48 | * Q5 = -6.2843505682382617102E-9;
|
---|
49 | * (where z=r*r, and the values of Q1 to Q5 are listed below)
|
---|
50 | * with error bounded by
|
---|
51 | * | 5 | -61
|
---|
52 | * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
---|
53 | * | |
|
---|
54 | *
|
---|
55 | * expm1(r) = exp(r)-1 is then computed by the following
|
---|
56 | * specific way which minimize the accumulation rounding error:
|
---|
57 | * 2 3
|
---|
58 | * r r [ 3 - (R1 + R1*r/2) ]
|
---|
59 | * expm1(r) = r + --- + --- * [--------------------]
|
---|
60 | * 2 2 [ 6 - r*(3 - R1*r/2) ]
|
---|
61 | *
|
---|
62 | * To compensate the error in the argument reduction, we use
|
---|
63 | * expm1(r+c) = expm1(r) + c + expm1(r)*c
|
---|
64 | * ~ expm1(r) + c + r*c
|
---|
65 | * Thus c+r*c will be added in as the correction terms for
|
---|
66 | * expm1(r+c). Now rearrange the term to avoid optimization
|
---|
67 | * screw up:
|
---|
68 | * ( 2 2 )
|
---|
69 | * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
---|
70 | * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
---|
71 | * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
---|
72 | * ( )
|
---|
73 | *
|
---|
74 | * = r - E
|
---|
75 | * 3. Scale back to obtain expm1(x):
|
---|
76 | * From step 1, we have
|
---|
77 | * expm1(x) = either 2^k*[expm1(r)+1] - 1
|
---|
78 | * = or 2^k*[expm1(r) + (1-2^-k)]
|
---|
79 | * 4. Implementation notes:
|
---|
80 | * (A). To save one multiplication, we scale the coefficient Qi
|
---|
81 | * to Qi*2^i, and replace z by (x^2)/2.
|
---|
82 | * (B). To achieve maximum accuracy, we compute expm1(x) by
|
---|
83 | * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
---|
84 | * (ii) if k=0, return r-E
|
---|
85 | * (iii) if k=-1, return 0.5*(r-E)-0.5
|
---|
86 | * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
---|
87 | * else return 1.0+2.0*(r-E);
|
---|
88 | * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
---|
89 | * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
---|
90 | * (vii) return 2^k(1-((E+2^-k)-r))
|
---|
91 | *
|
---|
92 | * Special cases:
|
---|
93 | * expm1(INF) is INF, expm1(NaN) is NaN;
|
---|
94 | * expm1(-INF) is -1, and
|
---|
95 | * for finite argument, only expm1(0)=0 is exact.
|
---|
96 | *
|
---|
97 | * Accuracy:
|
---|
98 | * according to an error analysis, the error is always less than
|
---|
99 | * 1 ulp (unit in the last place).
|
---|
100 | *
|
---|
101 | * Misc. info.
|
---|
102 | * For IEEE double
|
---|
103 | * if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
---|
104 | *
|
---|
105 | * Constants:
|
---|
106 | * The hexadecimal values are the intended ones for the following
|
---|
107 | * constants. The decimal values may be used, provided that the
|
---|
108 | * compiler will convert from decimal to binary accurately enough
|
---|
109 | * to produce the hexadecimal values shown.
|
---|
110 | */
|
---|
111 |
|
---|
112 | #include "math.h"
|
---|
113 | #include "math_private.h"
|
---|
114 |
|
---|
115 | static const double
|
---|
116 | one = 1.0,
|
---|
117 | huge = 1.0e+300,
|
---|
118 | tiny = 1.0e-300,
|
---|
119 | o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
|
---|
120 | ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
|
---|
121 | ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
|
---|
122 | invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
|
---|
123 | /* scaled coefficients related to expm1 */
|
---|
124 | Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
---|
125 | Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
|
---|
126 | Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
|
---|
127 | Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
---|
128 | Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
---|
129 |
|
---|
130 | double
|
---|
131 | expm1(double x)
|
---|
132 | {
|
---|
133 | double y,hi,lo,c,t,e,hxs,hfx,r1;
|
---|
134 | int32_t k,xsb;
|
---|
135 | u_int32_t hx;
|
---|
136 |
|
---|
137 | GET_HIGH_WORD(hx,x);
|
---|
138 | xsb = hx&0x80000000; /* sign bit of x */
|
---|
139 | if(xsb==0) y=x; else y= -x; /* y = |x| */
|
---|
140 | hx &= 0x7fffffff; /* high word of |x| */
|
---|
141 |
|
---|
142 | /* filter out huge and non-finite argument */
|
---|
143 | if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
---|
144 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
---|
145 | if(hx>=0x7ff00000) {
|
---|
146 | u_int32_t low;
|
---|
147 | GET_LOW_WORD(low,x);
|
---|
148 | if(((hx&0xfffff)|low)!=0)
|
---|
149 | return x+x; /* NaN */
|
---|
150 | else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
---|
151 | }
|
---|
152 | if(x > o_threshold) return huge*huge; /* overflow */
|
---|
153 | }
|
---|
154 | if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
---|
155 | if(x+tiny<0.0) /* raise inexact */
|
---|
156 | return tiny-one; /* return -1 */
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | /* argument reduction */
|
---|
161 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
---|
162 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
---|
163 | if(xsb==0)
|
---|
164 | {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
|
---|
165 | else
|
---|
166 | {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
|
---|
167 | } else {
|
---|
168 | k = invln2*x+((xsb==0)?0.5:-0.5);
|
---|
169 | t = k;
|
---|
170 | hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
---|
171 | lo = t*ln2_lo;
|
---|
172 | }
|
---|
173 | x = hi - lo;
|
---|
174 | c = (hi-x)-lo;
|
---|
175 | }
|
---|
176 | else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
---|
177 | t = huge+x; /* return x with inexact flags when x!=0 */
|
---|
178 | return x - (t-(huge+x));
|
---|
179 | }
|
---|
180 | else k = 0;
|
---|
181 |
|
---|
182 | /* x is now in primary range */
|
---|
183 | hfx = 0.5*x;
|
---|
184 | hxs = x*hfx;
|
---|
185 | r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
---|
186 | t = 3.0-r1*hfx;
|
---|
187 | e = hxs*((r1-t)/(6.0 - x*t));
|
---|
188 | if(k==0) return x - (x*e-hxs); /* c is 0 */
|
---|
189 | else {
|
---|
190 | e = (x*(e-c)-c);
|
---|
191 | e -= hxs;
|
---|
192 | if(k== -1) return 0.5*(x-e)-0.5;
|
---|
193 | if(k==1)
|
---|
194 | if(x < -0.25) return -2.0*(e-(x+0.5));
|
---|
195 | else return one+2.0*(x-e);
|
---|
196 | if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
---|
197 | u_int32_t high;
|
---|
198 | y = one-(e-x);
|
---|
199 | GET_HIGH_WORD(high,y);
|
---|
200 | SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
---|
201 | return y-one;
|
---|
202 | }
|
---|
203 | t = one;
|
---|
204 | if(k<20) {
|
---|
205 | u_int32_t high;
|
---|
206 | SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
|
---|
207 | y = t-(e-x);
|
---|
208 | GET_HIGH_WORD(high,y);
|
---|
209 | SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
---|
210 | } else {
|
---|
211 | u_int32_t high;
|
---|
212 | SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
|
---|
213 | y = x-(e+t);
|
---|
214 | y += one;
|
---|
215 | GET_HIGH_WORD(high,y);
|
---|
216 | SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
---|
217 | }
|
---|
218 | }
|
---|
219 | return y;
|
---|
220 | }
|
---|