source: vendor/FreeBSD-msun/current/src/k_tan.c

Last change on this file was 2006, checked in by bird, 20 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 4.3 KB
Line 
1/* @(#)k_tan.c 1.5 04/04/22 SMI */
2
3/*
4 * ====================================================
5 * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13/* INDENT OFF */
14#ifndef lint
15static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tan.c,v 1.10 2005/02/04 18:26:06 das Exp $";
16#endif
17
18/* __kernel_tan( x, y, k )
19 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
20 * Input x is assumed to be bounded by ~pi/4 in magnitude.
21 * Input y is the tail of x.
22 * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
23 *
24 * Algorithm
25 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
26 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
27 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
28 * [0,0.67434]
29 * 3 27
30 * tan(x) ~ x + T1*x + ... + T13*x
31 * where
32 *
33 * |tan(x) 2 4 26 | -59.2
34 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
35 * | x |
36 *
37 * Note: tan(x+y) = tan(x) + tan'(x)*y
38 * ~ tan(x) + (1+x*x)*y
39 * Therefore, for better accuracy in computing tan(x+y), let
40 * 3 2 2 2 2
41 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
42 * then
43 * 3 2
44 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
45 *
46 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
47 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
48 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
49 */
50
51#include "math.h"
52#include "math_private.h"
53static const double xxx[] = {
54 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
55 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
56 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
57 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
58 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
59 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
60 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
61 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
62 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
63 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
64 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
65 -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
66 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
67/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
68/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
69/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
70};
71#define one xxx[13]
72#define pio4 xxx[14]
73#define pio4lo xxx[15]
74#define T xxx
75/* INDENT ON */
76
77double
78__kernel_tan(double x, double y, int iy) {
79 double z, r, v, w, s;
80 int32_t ix, hx;
81
82 GET_HIGH_WORD(hx,x);
83 ix = hx & 0x7fffffff; /* high word of |x| */
84 if (ix < 0x3e300000) { /* x < 2**-28 */
85 if ((int) x == 0) { /* generate inexact */
86 u_int32_t low;
87 GET_LOW_WORD(low,x);
88 if (((ix | low) | (iy + 1)) == 0)
89 return one / fabs(x);
90 else {
91 if (iy == 1)
92 return x;
93 else { /* compute -1 / (x+y) carefully */
94 double a, t;
95
96 z = w = x + y;
97 SET_LOW_WORD(z, 0);
98 v = y - (z - x);
99 t = a = -one / w;
100 SET_LOW_WORD(t, 0);
101 s = one + t * z;
102 return t + a * (s + t * v);
103 }
104 }
105 }
106 }
107 if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
108 if (hx < 0) {
109 x = -x;
110 y = -y;
111 }
112 z = pio4 - x;
113 w = pio4lo - y;
114 x = z + w;
115 y = 0.0;
116 }
117 z = x * x;
118 w = z * z;
119 /*
120 * Break x^5*(T[1]+x^2*T[2]+...) into
121 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
122 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
123 */
124 r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
125 w * T[11]))));
126 v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
127 w * T[12])))));
128 s = z * x;
129 r = y + z * (s * (r + v) + y);
130 r += T[0] * s;
131 w = x + r;
132 if (ix >= 0x3FE59428) {
133 v = (double) iy;
134 return (double) (1 - ((hx >> 30) & 2)) *
135 (v - 2.0 * (x - (w * w / (w + v) - r)));
136 }
137 if (iy == 1)
138 return w;
139 else {
140 /*
141 * if allow error up to 2 ulp, simply return
142 * -1.0 / (x+r) here
143 */
144 /* compute -1.0 / (x+r) accurately */
145 double a, t;
146 z = w;
147 SET_LOW_WORD(z,0);
148 v = r - (z - x); /* z+v = r+x */
149 t = a = -1.0 / w; /* a = -1.0/w */
150 SET_LOW_WORD(t,0);
151 s = 1.0 + t * z;
152 return t + a * (s + t * v);
153 }
154}
Note: See TracBrowser for help on using the repository browser.