1 |
|
---|
2 | /* @(#)e_log.c 1.3 95/01/18 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 | #ifndef lint
|
---|
15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_log.c,v 1.10 2005/02/04 18:26:06 das Exp $";
|
---|
16 | #endif
|
---|
17 |
|
---|
18 | /* __ieee754_log(x)
|
---|
19 | * Return the logrithm of x
|
---|
20 | *
|
---|
21 | * Method :
|
---|
22 | * 1. Argument Reduction: find k and f such that
|
---|
23 | * x = 2^k * (1+f),
|
---|
24 | * where sqrt(2)/2 < 1+f < sqrt(2) .
|
---|
25 | *
|
---|
26 | * 2. Approximation of log(1+f).
|
---|
27 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
---|
28 | * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
---|
29 | * = 2s + s*R
|
---|
30 | * We use a special Reme algorithm on [0,0.1716] to generate
|
---|
31 | * a polynomial of degree 14 to approximate R The maximum error
|
---|
32 | * of this polynomial approximation is bounded by 2**-58.45. In
|
---|
33 | * other words,
|
---|
34 | * 2 4 6 8 10 12 14
|
---|
35 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
---|
36 | * (the values of Lg1 to Lg7 are listed in the program)
|
---|
37 | * and
|
---|
38 | * | 2 14 | -58.45
|
---|
39 | * | Lg1*s +...+Lg7*s - R(z) | <= 2
|
---|
40 | * | |
|
---|
41 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
---|
42 | * In order to guarantee error in log below 1ulp, we compute log
|
---|
43 | * by
|
---|
44 | * log(1+f) = f - s*(f - R) (if f is not too large)
|
---|
45 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
---|
46 | *
|
---|
47 | * 3. Finally, log(x) = k*ln2 + log(1+f).
|
---|
48 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
---|
49 | * Here ln2 is split into two floating point number:
|
---|
50 | * ln2_hi + ln2_lo,
|
---|
51 | * where n*ln2_hi is always exact for |n| < 2000.
|
---|
52 | *
|
---|
53 | * Special cases:
|
---|
54 | * log(x) is NaN with signal if x < 0 (including -INF) ;
|
---|
55 | * log(+INF) is +INF; log(0) is -INF with signal;
|
---|
56 | * log(NaN) is that NaN with no signal.
|
---|
57 | *
|
---|
58 | * Accuracy:
|
---|
59 | * according to an error analysis, the error is always less than
|
---|
60 | * 1 ulp (unit in the last place).
|
---|
61 | *
|
---|
62 | * Constants:
|
---|
63 | * The hexadecimal values are the intended ones for the following
|
---|
64 | * constants. The decimal values may be used, provided that the
|
---|
65 | * compiler will convert from decimal to binary accurately enough
|
---|
66 | * to produce the hexadecimal values shown.
|
---|
67 | */
|
---|
68 |
|
---|
69 | #include "math.h"
|
---|
70 | #include "math_private.h"
|
---|
71 |
|
---|
72 | static const double
|
---|
73 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
---|
74 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
---|
75 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
---|
76 | Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
---|
77 | Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
---|
78 | Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
---|
79 | Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
---|
80 | Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
---|
81 | Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
---|
82 | Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
---|
83 |
|
---|
84 | static const double zero = 0.0;
|
---|
85 |
|
---|
86 | double
|
---|
87 | __ieee754_log(double x)
|
---|
88 | {
|
---|
89 | double hfsq,f,s,z,R,w,t1,t2,dk;
|
---|
90 | int32_t k,hx,i,j;
|
---|
91 | u_int32_t lx;
|
---|
92 |
|
---|
93 | EXTRACT_WORDS(hx,lx,x);
|
---|
94 |
|
---|
95 | k=0;
|
---|
96 | if (hx < 0x00100000) { /* x < 2**-1022 */
|
---|
97 | if (((hx&0x7fffffff)|lx)==0)
|
---|
98 | return -two54/zero; /* log(+-0)=-inf */
|
---|
99 | if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
---|
100 | k -= 54; x *= two54; /* subnormal number, scale up x */
|
---|
101 | GET_HIGH_WORD(hx,x);
|
---|
102 | }
|
---|
103 | if (hx >= 0x7ff00000) return x+x;
|
---|
104 | k += (hx>>20)-1023;
|
---|
105 | hx &= 0x000fffff;
|
---|
106 | i = (hx+0x95f64)&0x100000;
|
---|
107 | SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
---|
108 | k += (i>>20);
|
---|
109 | f = x-1.0;
|
---|
110 | if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
|
---|
111 | if(f==zero) if(k==0) return zero; else {dk=(double)k;
|
---|
112 | return dk*ln2_hi+dk*ln2_lo;}
|
---|
113 | R = f*f*(0.5-0.33333333333333333*f);
|
---|
114 | if(k==0) return f-R; else {dk=(double)k;
|
---|
115 | return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
---|
116 | }
|
---|
117 | s = f/(2.0+f);
|
---|
118 | dk = (double)k;
|
---|
119 | z = s*s;
|
---|
120 | i = hx-0x6147a;
|
---|
121 | w = z*z;
|
---|
122 | j = 0x6b851-hx;
|
---|
123 | t1= w*(Lg2+w*(Lg4+w*Lg6));
|
---|
124 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
---|
125 | i |= j;
|
---|
126 | R = t2+t1;
|
---|
127 | if(i>0) {
|
---|
128 | hfsq=0.5*f*f;
|
---|
129 | if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
---|
130 | return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
|
---|
131 | } else {
|
---|
132 | if(k==0) return f-s*(f-R); else
|
---|
133 | return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
|
---|
134 | }
|
---|
135 | }
|
---|