1 | /* e_jnf.c -- float version of e_jn.c.
|
---|
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
---|
3 | */
|
---|
4 |
|
---|
5 | /*
|
---|
6 | * ====================================================
|
---|
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
8 | *
|
---|
9 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
---|
10 | * Permission to use, copy, modify, and distribute this
|
---|
11 | * software is freely granted, provided that this notice
|
---|
12 | * is preserved.
|
---|
13 | * ====================================================
|
---|
14 | */
|
---|
15 |
|
---|
16 | #ifndef lint
|
---|
17 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.8 2002/05/28 18:15:04 alfred Exp $";
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "math.h"
|
---|
21 | #include "math_private.h"
|
---|
22 |
|
---|
23 | static const float
|
---|
24 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
---|
25 | two = 2.0000000000e+00, /* 0x40000000 */
|
---|
26 | one = 1.0000000000e+00; /* 0x3F800000 */
|
---|
27 |
|
---|
28 | static const float zero = 0.0000000000e+00;
|
---|
29 |
|
---|
30 | float
|
---|
31 | __ieee754_jnf(int n, float x)
|
---|
32 | {
|
---|
33 | int32_t i,hx,ix, sgn;
|
---|
34 | float a, b, temp, di;
|
---|
35 | float z, w;
|
---|
36 |
|
---|
37 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
---|
38 | * Thus, J(-n,x) = J(n,-x)
|
---|
39 | */
|
---|
40 | GET_FLOAT_WORD(hx,x);
|
---|
41 | ix = 0x7fffffff&hx;
|
---|
42 | /* if J(n,NaN) is NaN */
|
---|
43 | if(ix>0x7f800000) return x+x;
|
---|
44 | if(n<0){
|
---|
45 | n = -n;
|
---|
46 | x = -x;
|
---|
47 | hx ^= 0x80000000;
|
---|
48 | }
|
---|
49 | if(n==0) return(__ieee754_j0f(x));
|
---|
50 | if(n==1) return(__ieee754_j1f(x));
|
---|
51 | sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
---|
52 | x = fabsf(x);
|
---|
53 | if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
|
---|
54 | b = zero;
|
---|
55 | else if((float)n<=x) {
|
---|
56 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
---|
57 | a = __ieee754_j0f(x);
|
---|
58 | b = __ieee754_j1f(x);
|
---|
59 | for(i=1;i<n;i++){
|
---|
60 | temp = b;
|
---|
61 | b = b*((float)(i+i)/x) - a; /* avoid underflow */
|
---|
62 | a = temp;
|
---|
63 | }
|
---|
64 | } else {
|
---|
65 | if(ix<0x30800000) { /* x < 2**-29 */
|
---|
66 | /* x is tiny, return the first Taylor expansion of J(n,x)
|
---|
67 | * J(n,x) = 1/n!*(x/2)^n - ...
|
---|
68 | */
|
---|
69 | if(n>33) /* underflow */
|
---|
70 | b = zero;
|
---|
71 | else {
|
---|
72 | temp = x*(float)0.5; b = temp;
|
---|
73 | for (a=one,i=2;i<=n;i++) {
|
---|
74 | a *= (float)i; /* a = n! */
|
---|
75 | b *= temp; /* b = (x/2)^n */
|
---|
76 | }
|
---|
77 | b = b/a;
|
---|
78 | }
|
---|
79 | } else {
|
---|
80 | /* use backward recurrence */
|
---|
81 | /* x x^2 x^2
|
---|
82 | * J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
---|
83 | * 2n - 2(n+1) - 2(n+2)
|
---|
84 | *
|
---|
85 | * 1 1 1
|
---|
86 | * (for large x) = ---- ------ ------ .....
|
---|
87 | * 2n 2(n+1) 2(n+2)
|
---|
88 | * -- - ------ - ------ -
|
---|
89 | * x x x
|
---|
90 | *
|
---|
91 | * Let w = 2n/x and h=2/x, then the above quotient
|
---|
92 | * is equal to the continued fraction:
|
---|
93 | * 1
|
---|
94 | * = -----------------------
|
---|
95 | * 1
|
---|
96 | * w - -----------------
|
---|
97 | * 1
|
---|
98 | * w+h - ---------
|
---|
99 | * w+2h - ...
|
---|
100 | *
|
---|
101 | * To determine how many terms needed, let
|
---|
102 | * Q(0) = w, Q(1) = w(w+h) - 1,
|
---|
103 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
---|
104 | * When Q(k) > 1e4 good for single
|
---|
105 | * When Q(k) > 1e9 good for double
|
---|
106 | * When Q(k) > 1e17 good for quadruple
|
---|
107 | */
|
---|
108 | /* determine k */
|
---|
109 | float t,v;
|
---|
110 | float q0,q1,h,tmp; int32_t k,m;
|
---|
111 | w = (n+n)/(float)x; h = (float)2.0/(float)x;
|
---|
112 | q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
|
---|
113 | while(q1<(float)1.0e9) {
|
---|
114 | k += 1; z += h;
|
---|
115 | tmp = z*q1 - q0;
|
---|
116 | q0 = q1;
|
---|
117 | q1 = tmp;
|
---|
118 | }
|
---|
119 | m = n+n;
|
---|
120 | for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
|
---|
121 | a = t;
|
---|
122 | b = one;
|
---|
123 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
---|
124 | * Hence, if n*(log(2n/x)) > ...
|
---|
125 | * single 8.8722839355e+01
|
---|
126 | * double 7.09782712893383973096e+02
|
---|
127 | * long double 1.1356523406294143949491931077970765006170e+04
|
---|
128 | * then recurrent value may overflow and the result is
|
---|
129 | * likely underflow to zero
|
---|
130 | */
|
---|
131 | tmp = n;
|
---|
132 | v = two/x;
|
---|
133 | tmp = tmp*__ieee754_logf(fabsf(v*tmp));
|
---|
134 | if(tmp<(float)8.8721679688e+01) {
|
---|
135 | for(i=n-1,di=(float)(i+i);i>0;i--){
|
---|
136 | temp = b;
|
---|
137 | b *= di;
|
---|
138 | b = b/x - a;
|
---|
139 | a = temp;
|
---|
140 | di -= two;
|
---|
141 | }
|
---|
142 | } else {
|
---|
143 | for(i=n-1,di=(float)(i+i);i>0;i--){
|
---|
144 | temp = b;
|
---|
145 | b *= di;
|
---|
146 | b = b/x - a;
|
---|
147 | a = temp;
|
---|
148 | di -= two;
|
---|
149 | /* scale b to avoid spurious overflow */
|
---|
150 | if(b>(float)1e10) {
|
---|
151 | a /= b;
|
---|
152 | t /= b;
|
---|
153 | b = one;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | }
|
---|
157 | b = (t*__ieee754_j0f(x)/b);
|
---|
158 | }
|
---|
159 | }
|
---|
160 | if(sgn==1) return -b; else return b;
|
---|
161 | }
|
---|
162 |
|
---|
163 | float
|
---|
164 | __ieee754_ynf(int n, float x)
|
---|
165 | {
|
---|
166 | int32_t i,hx,ix,ib;
|
---|
167 | int32_t sign;
|
---|
168 | float a, b, temp;
|
---|
169 |
|
---|
170 | GET_FLOAT_WORD(hx,x);
|
---|
171 | ix = 0x7fffffff&hx;
|
---|
172 | /* if Y(n,NaN) is NaN */
|
---|
173 | if(ix>0x7f800000) return x+x;
|
---|
174 | if(ix==0) return -one/zero;
|
---|
175 | if(hx<0) return zero/zero;
|
---|
176 | sign = 1;
|
---|
177 | if(n<0){
|
---|
178 | n = -n;
|
---|
179 | sign = 1 - ((n&1)<<1);
|
---|
180 | }
|
---|
181 | if(n==0) return(__ieee754_y0f(x));
|
---|
182 | if(n==1) return(sign*__ieee754_y1f(x));
|
---|
183 | if(ix==0x7f800000) return zero;
|
---|
184 |
|
---|
185 | a = __ieee754_y0f(x);
|
---|
186 | b = __ieee754_y1f(x);
|
---|
187 | /* quit if b is -inf */
|
---|
188 | GET_FLOAT_WORD(ib,b);
|
---|
189 | for(i=1;i<n&&ib!=0xff800000;i++){
|
---|
190 | temp = b;
|
---|
191 | b = ((float)(i+i)/x)*b - a;
|
---|
192 | GET_FLOAT_WORD(ib,b);
|
---|
193 | a = temp;
|
---|
194 | }
|
---|
195 | if(sign>0) return b; else return -b;
|
---|
196 | }
|
---|