1 |
|
---|
2 | /* @(#)e_jn.c 1.4 95/01/18 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 | #ifndef lint
|
---|
15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jn.c,v 1.9 2005/02/04 18:26:06 das Exp $";
|
---|
16 | #endif
|
---|
17 |
|
---|
18 | /*
|
---|
19 | * __ieee754_jn(n, x), __ieee754_yn(n, x)
|
---|
20 | * floating point Bessel's function of the 1st and 2nd kind
|
---|
21 | * of order n
|
---|
22 | *
|
---|
23 | * Special cases:
|
---|
24 | * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
---|
25 | * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
---|
26 | * Note 2. About jn(n,x), yn(n,x)
|
---|
27 | * For n=0, j0(x) is called,
|
---|
28 | * for n=1, j1(x) is called,
|
---|
29 | * for n<x, forward recursion us used starting
|
---|
30 | * from values of j0(x) and j1(x).
|
---|
31 | * for n>x, a continued fraction approximation to
|
---|
32 | * j(n,x)/j(n-1,x) is evaluated and then backward
|
---|
33 | * recursion is used starting from a supposed value
|
---|
34 | * for j(n,x). The resulting value of j(0,x) is
|
---|
35 | * compared with the actual value to correct the
|
---|
36 | * supposed value of j(n,x).
|
---|
37 | *
|
---|
38 | * yn(n,x) is similar in all respects, except
|
---|
39 | * that forward recursion is used for all
|
---|
40 | * values of n>1.
|
---|
41 | *
|
---|
42 | */
|
---|
43 |
|
---|
44 | #include "math.h"
|
---|
45 | #include "math_private.h"
|
---|
46 |
|
---|
47 | static const double
|
---|
48 | invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
---|
49 | two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
---|
50 | one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
|
---|
51 |
|
---|
52 | static const double zero = 0.00000000000000000000e+00;
|
---|
53 |
|
---|
54 | double
|
---|
55 | __ieee754_jn(int n, double x)
|
---|
56 | {
|
---|
57 | int32_t i,hx,ix,lx, sgn;
|
---|
58 | double a, b, temp, di;
|
---|
59 | double z, w;
|
---|
60 |
|
---|
61 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
---|
62 | * Thus, J(-n,x) = J(n,-x)
|
---|
63 | */
|
---|
64 | EXTRACT_WORDS(hx,lx,x);
|
---|
65 | ix = 0x7fffffff&hx;
|
---|
66 | /* if J(n,NaN) is NaN */
|
---|
67 | if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
|
---|
68 | if(n<0){
|
---|
69 | n = -n;
|
---|
70 | x = -x;
|
---|
71 | hx ^= 0x80000000;
|
---|
72 | }
|
---|
73 | if(n==0) return(__ieee754_j0(x));
|
---|
74 | if(n==1) return(__ieee754_j1(x));
|
---|
75 | sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
---|
76 | x = fabs(x);
|
---|
77 | if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
|
---|
78 | b = zero;
|
---|
79 | else if((double)n<=x) {
|
---|
80 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
---|
81 | if(ix>=0x52D00000) { /* x > 2**302 */
|
---|
82 | /* (x >> n**2)
|
---|
83 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
---|
84 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
---|
85 | * Let s=sin(x), c=cos(x),
|
---|
86 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
---|
87 | *
|
---|
88 | * n sin(xn)*sqt2 cos(xn)*sqt2
|
---|
89 | * ----------------------------------
|
---|
90 | * 0 s-c c+s
|
---|
91 | * 1 -s-c -c+s
|
---|
92 | * 2 -s+c -c-s
|
---|
93 | * 3 s+c c-s
|
---|
94 | */
|
---|
95 | switch(n&3) {
|
---|
96 | case 0: temp = cos(x)+sin(x); break;
|
---|
97 | case 1: temp = -cos(x)+sin(x); break;
|
---|
98 | case 2: temp = -cos(x)-sin(x); break;
|
---|
99 | case 3: temp = cos(x)-sin(x); break;
|
---|
100 | }
|
---|
101 | b = invsqrtpi*temp/sqrt(x);
|
---|
102 | } else {
|
---|
103 | a = __ieee754_j0(x);
|
---|
104 | b = __ieee754_j1(x);
|
---|
105 | for(i=1;i<n;i++){
|
---|
106 | temp = b;
|
---|
107 | b = b*((double)(i+i)/x) - a; /* avoid underflow */
|
---|
108 | a = temp;
|
---|
109 | }
|
---|
110 | }
|
---|
111 | } else {
|
---|
112 | if(ix<0x3e100000) { /* x < 2**-29 */
|
---|
113 | /* x is tiny, return the first Taylor expansion of J(n,x)
|
---|
114 | * J(n,x) = 1/n!*(x/2)^n - ...
|
---|
115 | */
|
---|
116 | if(n>33) /* underflow */
|
---|
117 | b = zero;
|
---|
118 | else {
|
---|
119 | temp = x*0.5; b = temp;
|
---|
120 | for (a=one,i=2;i<=n;i++) {
|
---|
121 | a *= (double)i; /* a = n! */
|
---|
122 | b *= temp; /* b = (x/2)^n */
|
---|
123 | }
|
---|
124 | b = b/a;
|
---|
125 | }
|
---|
126 | } else {
|
---|
127 | /* use backward recurrence */
|
---|
128 | /* x x^2 x^2
|
---|
129 | * J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
---|
130 | * 2n - 2(n+1) - 2(n+2)
|
---|
131 | *
|
---|
132 | * 1 1 1
|
---|
133 | * (for large x) = ---- ------ ------ .....
|
---|
134 | * 2n 2(n+1) 2(n+2)
|
---|
135 | * -- - ------ - ------ -
|
---|
136 | * x x x
|
---|
137 | *
|
---|
138 | * Let w = 2n/x and h=2/x, then the above quotient
|
---|
139 | * is equal to the continued fraction:
|
---|
140 | * 1
|
---|
141 | * = -----------------------
|
---|
142 | * 1
|
---|
143 | * w - -----------------
|
---|
144 | * 1
|
---|
145 | * w+h - ---------
|
---|
146 | * w+2h - ...
|
---|
147 | *
|
---|
148 | * To determine how many terms needed, let
|
---|
149 | * Q(0) = w, Q(1) = w(w+h) - 1,
|
---|
150 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
---|
151 | * When Q(k) > 1e4 good for single
|
---|
152 | * When Q(k) > 1e9 good for double
|
---|
153 | * When Q(k) > 1e17 good for quadruple
|
---|
154 | */
|
---|
155 | /* determine k */
|
---|
156 | double t,v;
|
---|
157 | double q0,q1,h,tmp; int32_t k,m;
|
---|
158 | w = (n+n)/(double)x; h = 2.0/(double)x;
|
---|
159 | q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
|
---|
160 | while(q1<1.0e9) {
|
---|
161 | k += 1; z += h;
|
---|
162 | tmp = z*q1 - q0;
|
---|
163 | q0 = q1;
|
---|
164 | q1 = tmp;
|
---|
165 | }
|
---|
166 | m = n+n;
|
---|
167 | for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
|
---|
168 | a = t;
|
---|
169 | b = one;
|
---|
170 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
---|
171 | * Hence, if n*(log(2n/x)) > ...
|
---|
172 | * single 8.8722839355e+01
|
---|
173 | * double 7.09782712893383973096e+02
|
---|
174 | * long double 1.1356523406294143949491931077970765006170e+04
|
---|
175 | * then recurrent value may overflow and the result is
|
---|
176 | * likely underflow to zero
|
---|
177 | */
|
---|
178 | tmp = n;
|
---|
179 | v = two/x;
|
---|
180 | tmp = tmp*__ieee754_log(fabs(v*tmp));
|
---|
181 | if(tmp<7.09782712893383973096e+02) {
|
---|
182 | for(i=n-1,di=(double)(i+i);i>0;i--){
|
---|
183 | temp = b;
|
---|
184 | b *= di;
|
---|
185 | b = b/x - a;
|
---|
186 | a = temp;
|
---|
187 | di -= two;
|
---|
188 | }
|
---|
189 | } else {
|
---|
190 | for(i=n-1,di=(double)(i+i);i>0;i--){
|
---|
191 | temp = b;
|
---|
192 | b *= di;
|
---|
193 | b = b/x - a;
|
---|
194 | a = temp;
|
---|
195 | di -= two;
|
---|
196 | /* scale b to avoid spurious overflow */
|
---|
197 | if(b>1e100) {
|
---|
198 | a /= b;
|
---|
199 | t /= b;
|
---|
200 | b = one;
|
---|
201 | }
|
---|
202 | }
|
---|
203 | }
|
---|
204 | b = (t*__ieee754_j0(x)/b);
|
---|
205 | }
|
---|
206 | }
|
---|
207 | if(sgn==1) return -b; else return b;
|
---|
208 | }
|
---|
209 |
|
---|
210 | double
|
---|
211 | __ieee754_yn(int n, double x)
|
---|
212 | {
|
---|
213 | int32_t i,hx,ix,lx;
|
---|
214 | int32_t sign;
|
---|
215 | double a, b, temp;
|
---|
216 |
|
---|
217 | EXTRACT_WORDS(hx,lx,x);
|
---|
218 | ix = 0x7fffffff&hx;
|
---|
219 | /* if Y(n,NaN) is NaN */
|
---|
220 | if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
|
---|
221 | if((ix|lx)==0) return -one/zero;
|
---|
222 | if(hx<0) return zero/zero;
|
---|
223 | sign = 1;
|
---|
224 | if(n<0){
|
---|
225 | n = -n;
|
---|
226 | sign = 1 - ((n&1)<<1);
|
---|
227 | }
|
---|
228 | if(n==0) return(__ieee754_y0(x));
|
---|
229 | if(n==1) return(sign*__ieee754_y1(x));
|
---|
230 | if(ix==0x7ff00000) return zero;
|
---|
231 | if(ix>=0x52D00000) { /* x > 2**302 */
|
---|
232 | /* (x >> n**2)
|
---|
233 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
---|
234 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
---|
235 | * Let s=sin(x), c=cos(x),
|
---|
236 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
---|
237 | *
|
---|
238 | * n sin(xn)*sqt2 cos(xn)*sqt2
|
---|
239 | * ----------------------------------
|
---|
240 | * 0 s-c c+s
|
---|
241 | * 1 -s-c -c+s
|
---|
242 | * 2 -s+c -c-s
|
---|
243 | * 3 s+c c-s
|
---|
244 | */
|
---|
245 | switch(n&3) {
|
---|
246 | case 0: temp = sin(x)-cos(x); break;
|
---|
247 | case 1: temp = -sin(x)-cos(x); break;
|
---|
248 | case 2: temp = -sin(x)+cos(x); break;
|
---|
249 | case 3: temp = sin(x)+cos(x); break;
|
---|
250 | }
|
---|
251 | b = invsqrtpi*temp/sqrt(x);
|
---|
252 | } else {
|
---|
253 | u_int32_t high;
|
---|
254 | a = __ieee754_y0(x);
|
---|
255 | b = __ieee754_y1(x);
|
---|
256 | /* quit if b is -inf */
|
---|
257 | GET_HIGH_WORD(high,b);
|
---|
258 | for(i=1;i<n&&high!=0xfff00000;i++){
|
---|
259 | temp = b;
|
---|
260 | b = ((double)(i+i)/x)*b - a;
|
---|
261 | GET_HIGH_WORD(high,b);
|
---|
262 | a = temp;
|
---|
263 | }
|
---|
264 | }
|
---|
265 | if(sign>0) return b; else return -b;
|
---|
266 | }
|
---|