1 | /* e_j1f.c -- float version of e_j1.c.
|
---|
2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
---|
3 | */
|
---|
4 |
|
---|
5 | /*
|
---|
6 | * ====================================================
|
---|
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
8 | *
|
---|
9 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
---|
10 | * Permission to use, copy, modify, and distribute this
|
---|
11 | * software is freely granted, provided that this notice
|
---|
12 | * is preserved.
|
---|
13 | * ====================================================
|
---|
14 | */
|
---|
15 |
|
---|
16 | #ifndef lint
|
---|
17 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j1f.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "math.h"
|
---|
21 | #include "math_private.h"
|
---|
22 |
|
---|
23 | static float ponef(float), qonef(float);
|
---|
24 |
|
---|
25 | static const float
|
---|
26 | huge = 1e30,
|
---|
27 | one = 1.0,
|
---|
28 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
|
---|
29 | tpi = 6.3661974669e-01, /* 0x3f22f983 */
|
---|
30 | /* R0/S0 on [0,2] */
|
---|
31 | r00 = -6.2500000000e-02, /* 0xbd800000 */
|
---|
32 | r01 = 1.4070566976e-03, /* 0x3ab86cfd */
|
---|
33 | r02 = -1.5995563444e-05, /* 0xb7862e36 */
|
---|
34 | r03 = 4.9672799207e-08, /* 0x335557d2 */
|
---|
35 | s01 = 1.9153760746e-02, /* 0x3c9ce859 */
|
---|
36 | s02 = 1.8594678841e-04, /* 0x3942fab6 */
|
---|
37 | s03 = 1.1771846857e-06, /* 0x359dffc2 */
|
---|
38 | s04 = 5.0463624390e-09, /* 0x31ad6446 */
|
---|
39 | s05 = 1.2354227016e-11; /* 0x2d59567e */
|
---|
40 |
|
---|
41 | static const float zero = 0.0;
|
---|
42 |
|
---|
43 | float
|
---|
44 | __ieee754_j1f(float x)
|
---|
45 | {
|
---|
46 | float z, s,c,ss,cc,r,u,v,y;
|
---|
47 | int32_t hx,ix;
|
---|
48 |
|
---|
49 | GET_FLOAT_WORD(hx,x);
|
---|
50 | ix = hx&0x7fffffff;
|
---|
51 | if(ix>=0x7f800000) return one/x;
|
---|
52 | y = fabsf(x);
|
---|
53 | if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
---|
54 | s = sinf(y);
|
---|
55 | c = cosf(y);
|
---|
56 | ss = -s-c;
|
---|
57 | cc = s-c;
|
---|
58 | if(ix<0x7f000000) { /* make sure y+y not overflow */
|
---|
59 | z = cosf(y+y);
|
---|
60 | if ((s*c)>zero) cc = z/ss;
|
---|
61 | else ss = z/cc;
|
---|
62 | }
|
---|
63 | /*
|
---|
64 | * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
---|
65 | * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
---|
66 | */
|
---|
67 | if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
|
---|
68 | else {
|
---|
69 | u = ponef(y); v = qonef(y);
|
---|
70 | z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
|
---|
71 | }
|
---|
72 | if(hx<0) return -z;
|
---|
73 | else return z;
|
---|
74 | }
|
---|
75 | if(ix<0x32000000) { /* |x|<2**-27 */
|
---|
76 | if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
|
---|
77 | }
|
---|
78 | z = x*x;
|
---|
79 | r = z*(r00+z*(r01+z*(r02+z*r03)));
|
---|
80 | s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
|
---|
81 | r *= x;
|
---|
82 | return(x*(float)0.5+r/s);
|
---|
83 | }
|
---|
84 |
|
---|
85 | static const float U0[5] = {
|
---|
86 | -1.9605709612e-01, /* 0xbe48c331 */
|
---|
87 | 5.0443872809e-02, /* 0x3d4e9e3c */
|
---|
88 | -1.9125689287e-03, /* 0xbafaaf2a */
|
---|
89 | 2.3525259166e-05, /* 0x37c5581c */
|
---|
90 | -9.1909917899e-08, /* 0xb3c56003 */
|
---|
91 | };
|
---|
92 | static const float V0[5] = {
|
---|
93 | 1.9916731864e-02, /* 0x3ca3286a */
|
---|
94 | 2.0255257550e-04, /* 0x3954644b */
|
---|
95 | 1.3560879779e-06, /* 0x35b602d4 */
|
---|
96 | 6.2274145840e-09, /* 0x31d5f8eb */
|
---|
97 | 1.6655924903e-11, /* 0x2d9281cf */
|
---|
98 | };
|
---|
99 |
|
---|
100 | float
|
---|
101 | __ieee754_y1f(float x)
|
---|
102 | {
|
---|
103 | float z, s,c,ss,cc,u,v;
|
---|
104 | int32_t hx,ix;
|
---|
105 |
|
---|
106 | GET_FLOAT_WORD(hx,x);
|
---|
107 | ix = 0x7fffffff&hx;
|
---|
108 | /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
---|
109 | if(ix>=0x7f800000) return one/(x+x*x);
|
---|
110 | if(ix==0) return -one/zero;
|
---|
111 | if(hx<0) return zero/zero;
|
---|
112 | if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
---|
113 | s = sinf(x);
|
---|
114 | c = cosf(x);
|
---|
115 | ss = -s-c;
|
---|
116 | cc = s-c;
|
---|
117 | if(ix<0x7f000000) { /* make sure x+x not overflow */
|
---|
118 | z = cosf(x+x);
|
---|
119 | if ((s*c)>zero) cc = z/ss;
|
---|
120 | else ss = z/cc;
|
---|
121 | }
|
---|
122 | /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
---|
123 | * where x0 = x-3pi/4
|
---|
124 | * Better formula:
|
---|
125 | * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
---|
126 | * = 1/sqrt(2) * (sin(x) - cos(x))
|
---|
127 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
---|
128 | * = -1/sqrt(2) * (cos(x) + sin(x))
|
---|
129 | * To avoid cancellation, use
|
---|
130 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
---|
131 | * to compute the worse one.
|
---|
132 | */
|
---|
133 | if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
|
---|
134 | else {
|
---|
135 | u = ponef(x); v = qonef(x);
|
---|
136 | z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
|
---|
137 | }
|
---|
138 | return z;
|
---|
139 | }
|
---|
140 | if(ix<=0x24800000) { /* x < 2**-54 */
|
---|
141 | return(-tpi/x);
|
---|
142 | }
|
---|
143 | z = x*x;
|
---|
144 | u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
|
---|
145 | v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
|
---|
146 | return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
|
---|
147 | }
|
---|
148 |
|
---|
149 | /* For x >= 8, the asymptotic expansions of pone is
|
---|
150 | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
---|
151 | * We approximate pone by
|
---|
152 | * pone(x) = 1 + (R/S)
|
---|
153 | * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
---|
154 | * S = 1 + ps0*s^2 + ... + ps4*s^10
|
---|
155 | * and
|
---|
156 | * | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
---|
157 | */
|
---|
158 |
|
---|
159 | static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
---|
160 | 0.0000000000e+00, /* 0x00000000 */
|
---|
161 | 1.1718750000e-01, /* 0x3df00000 */
|
---|
162 | 1.3239480972e+01, /* 0x4153d4ea */
|
---|
163 | 4.1205184937e+02, /* 0x43ce06a3 */
|
---|
164 | 3.8747453613e+03, /* 0x45722bed */
|
---|
165 | 7.9144794922e+03, /* 0x45f753d6 */
|
---|
166 | };
|
---|
167 | static const float ps8[5] = {
|
---|
168 | 1.1420736694e+02, /* 0x42e46a2c */
|
---|
169 | 3.6509309082e+03, /* 0x45642ee5 */
|
---|
170 | 3.6956207031e+04, /* 0x47105c35 */
|
---|
171 | 9.7602796875e+04, /* 0x47bea166 */
|
---|
172 | 3.0804271484e+04, /* 0x46f0a88b */
|
---|
173 | };
|
---|
174 |
|
---|
175 | static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
---|
176 | 1.3199052094e-11, /* 0x2d68333f */
|
---|
177 | 1.1718749255e-01, /* 0x3defffff */
|
---|
178 | 6.8027510643e+00, /* 0x40d9b023 */
|
---|
179 | 1.0830818176e+02, /* 0x42d89dca */
|
---|
180 | 5.1763616943e+02, /* 0x440168b7 */
|
---|
181 | 5.2871520996e+02, /* 0x44042dc6 */
|
---|
182 | };
|
---|
183 | static const float ps5[5] = {
|
---|
184 | 5.9280597687e+01, /* 0x426d1f55 */
|
---|
185 | 9.9140142822e+02, /* 0x4477d9b1 */
|
---|
186 | 5.3532670898e+03, /* 0x45a74a23 */
|
---|
187 | 7.8446904297e+03, /* 0x45f52586 */
|
---|
188 | 1.5040468750e+03, /* 0x44bc0180 */
|
---|
189 | };
|
---|
190 |
|
---|
191 | static const float pr3[6] = {
|
---|
192 | 3.0250391081e-09, /* 0x314fe10d */
|
---|
193 | 1.1718686670e-01, /* 0x3defffab */
|
---|
194 | 3.9329774380e+00, /* 0x407bb5e7 */
|
---|
195 | 3.5119403839e+01, /* 0x420c7a45 */
|
---|
196 | 9.1055007935e+01, /* 0x42b61c2a */
|
---|
197 | 4.8559066772e+01, /* 0x42423c7c */
|
---|
198 | };
|
---|
199 | static const float ps3[5] = {
|
---|
200 | 3.4791309357e+01, /* 0x420b2a4d */
|
---|
201 | 3.3676245117e+02, /* 0x43a86198 */
|
---|
202 | 1.0468714600e+03, /* 0x4482dbe3 */
|
---|
203 | 8.9081134033e+02, /* 0x445eb3ed */
|
---|
204 | 1.0378793335e+02, /* 0x42cf936c */
|
---|
205 | };
|
---|
206 |
|
---|
207 | static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
---|
208 | 1.0771083225e-07, /* 0x33e74ea8 */
|
---|
209 | 1.1717621982e-01, /* 0x3deffa16 */
|
---|
210 | 2.3685150146e+00, /* 0x401795c0 */
|
---|
211 | 1.2242610931e+01, /* 0x4143e1bc */
|
---|
212 | 1.7693971634e+01, /* 0x418d8d41 */
|
---|
213 | 5.0735230446e+00, /* 0x40a25a4d */
|
---|
214 | };
|
---|
215 | static const float ps2[5] = {
|
---|
216 | 2.1436485291e+01, /* 0x41ab7dec */
|
---|
217 | 1.2529022980e+02, /* 0x42fa9499 */
|
---|
218 | 2.3227647400e+02, /* 0x436846c7 */
|
---|
219 | 1.1767937469e+02, /* 0x42eb5bd7 */
|
---|
220 | 8.3646392822e+00, /* 0x4105d590 */
|
---|
221 | };
|
---|
222 |
|
---|
223 | static float ponef(float x)
|
---|
224 | {
|
---|
225 | const float *p,*q;
|
---|
226 | float z,r,s;
|
---|
227 | int32_t ix;
|
---|
228 | GET_FLOAT_WORD(ix,x);
|
---|
229 | ix &= 0x7fffffff;
|
---|
230 | if(ix>=0x41000000) {p = pr8; q= ps8;}
|
---|
231 | else if(ix>=0x40f71c58){p = pr5; q= ps5;}
|
---|
232 | else if(ix>=0x4036db68){p = pr3; q= ps3;}
|
---|
233 | else if(ix>=0x40000000){p = pr2; q= ps2;}
|
---|
234 | z = one/(x*x);
|
---|
235 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
---|
236 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
---|
237 | return one+ r/s;
|
---|
238 | }
|
---|
239 |
|
---|
240 |
|
---|
241 | /* For x >= 8, the asymptotic expansions of qone is
|
---|
242 | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
---|
243 | * We approximate pone by
|
---|
244 | * qone(x) = s*(0.375 + (R/S))
|
---|
245 | * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
---|
246 | * S = 1 + qs1*s^2 + ... + qs6*s^12
|
---|
247 | * and
|
---|
248 | * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
---|
249 | */
|
---|
250 |
|
---|
251 | static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
---|
252 | 0.0000000000e+00, /* 0x00000000 */
|
---|
253 | -1.0253906250e-01, /* 0xbdd20000 */
|
---|
254 | -1.6271753311e+01, /* 0xc1822c8d */
|
---|
255 | -7.5960174561e+02, /* 0xc43de683 */
|
---|
256 | -1.1849806641e+04, /* 0xc639273a */
|
---|
257 | -4.8438511719e+04, /* 0xc73d3683 */
|
---|
258 | };
|
---|
259 | static const float qs8[6] = {
|
---|
260 | 1.6139537048e+02, /* 0x43216537 */
|
---|
261 | 7.8253862305e+03, /* 0x45f48b17 */
|
---|
262 | 1.3387534375e+05, /* 0x4802bcd6 */
|
---|
263 | 7.1965775000e+05, /* 0x492fb29c */
|
---|
264 | 6.6660125000e+05, /* 0x4922be94 */
|
---|
265 | -2.9449025000e+05, /* 0xc88fcb48 */
|
---|
266 | };
|
---|
267 |
|
---|
268 | static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
---|
269 | -2.0897993405e-11, /* 0xadb7d219 */
|
---|
270 | -1.0253904760e-01, /* 0xbdd1fffe */
|
---|
271 | -8.0564479828e+00, /* 0xc100e736 */
|
---|
272 | -1.8366960144e+02, /* 0xc337ab6b */
|
---|
273 | -1.3731937256e+03, /* 0xc4aba633 */
|
---|
274 | -2.6124443359e+03, /* 0xc523471c */
|
---|
275 | };
|
---|
276 | static const float qs5[6] = {
|
---|
277 | 8.1276550293e+01, /* 0x42a28d98 */
|
---|
278 | 1.9917987061e+03, /* 0x44f8f98f */
|
---|
279 | 1.7468484375e+04, /* 0x468878f8 */
|
---|
280 | 4.9851425781e+04, /* 0x4742bb6d */
|
---|
281 | 2.7948074219e+04, /* 0x46da5826 */
|
---|
282 | -4.7191835938e+03, /* 0xc5937978 */
|
---|
283 | };
|
---|
284 |
|
---|
285 | static const float qr3[6] = {
|
---|
286 | -5.0783124372e-09, /* 0xb1ae7d4f */
|
---|
287 | -1.0253783315e-01, /* 0xbdd1ff5b */
|
---|
288 | -4.6101160049e+00, /* 0xc0938612 */
|
---|
289 | -5.7847221375e+01, /* 0xc267638e */
|
---|
290 | -2.2824453735e+02, /* 0xc3643e9a */
|
---|
291 | -2.1921012878e+02, /* 0xc35b35cb */
|
---|
292 | };
|
---|
293 | static const float qs3[6] = {
|
---|
294 | 4.7665153503e+01, /* 0x423ea91e */
|
---|
295 | 6.7386511230e+02, /* 0x4428775e */
|
---|
296 | 3.3801528320e+03, /* 0x45534272 */
|
---|
297 | 5.5477290039e+03, /* 0x45ad5dd5 */
|
---|
298 | 1.9031191406e+03, /* 0x44ede3d0 */
|
---|
299 | -1.3520118713e+02, /* 0xc3073381 */
|
---|
300 | };
|
---|
301 |
|
---|
302 | static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
---|
303 | -1.7838172539e-07, /* 0xb43f8932 */
|
---|
304 | -1.0251704603e-01, /* 0xbdd1f475 */
|
---|
305 | -2.7522056103e+00, /* 0xc0302423 */
|
---|
306 | -1.9663616180e+01, /* 0xc19d4f16 */
|
---|
307 | -4.2325313568e+01, /* 0xc2294d1f */
|
---|
308 | -2.1371921539e+01, /* 0xc1aaf9b2 */
|
---|
309 | };
|
---|
310 | static const float qs2[6] = {
|
---|
311 | 2.9533363342e+01, /* 0x41ec4454 */
|
---|
312 | 2.5298155212e+02, /* 0x437cfb47 */
|
---|
313 | 7.5750280762e+02, /* 0x443d602e */
|
---|
314 | 7.3939318848e+02, /* 0x4438d92a */
|
---|
315 | 1.5594900513e+02, /* 0x431bf2f2 */
|
---|
316 | -4.9594988823e+00, /* 0xc09eb437 */
|
---|
317 | };
|
---|
318 |
|
---|
319 | static float qonef(float x)
|
---|
320 | {
|
---|
321 | const float *p,*q;
|
---|
322 | float s,r,z;
|
---|
323 | int32_t ix;
|
---|
324 | GET_FLOAT_WORD(ix,x);
|
---|
325 | ix &= 0x7fffffff;
|
---|
326 | if(ix>=0x40200000) {p = qr8; q= qs8;}
|
---|
327 | else if(ix>=0x40f71c58){p = qr5; q= qs5;}
|
---|
328 | else if(ix>=0x4036db68){p = qr3; q= qs3;}
|
---|
329 | else if(ix>=0x40000000){p = qr2; q= qs2;}
|
---|
330 | z = one/(x*x);
|
---|
331 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
---|
332 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
---|
333 | return ((float).375 + r/s)/x;
|
---|
334 | }
|
---|