1 |
|
---|
2 | /* @(#)e_hypot.c 1.3 95/01/18 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 | #ifndef lint
|
---|
15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_hypot.c,v 1.9 2005/02/04 18:26:05 das Exp $";
|
---|
16 | #endif
|
---|
17 |
|
---|
18 | /* __ieee754_hypot(x,y)
|
---|
19 | *
|
---|
20 | * Method :
|
---|
21 | * If (assume round-to-nearest) z=x*x+y*y
|
---|
22 | * has error less than sqrt(2)/2 ulp, than
|
---|
23 | * sqrt(z) has error less than 1 ulp (exercise).
|
---|
24 | *
|
---|
25 | * So, compute sqrt(x*x+y*y) with some care as
|
---|
26 | * follows to get the error below 1 ulp:
|
---|
27 | *
|
---|
28 | * Assume x>y>0;
|
---|
29 | * (if possible, set rounding to round-to-nearest)
|
---|
30 | * 1. if x > 2y use
|
---|
31 | * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
|
---|
32 | * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
|
---|
33 | * 2. if x <= 2y use
|
---|
34 | * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
|
---|
35 | * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
|
---|
36 | * y1= y with lower 32 bits chopped, y2 = y-y1.
|
---|
37 | *
|
---|
38 | * NOTE: scaling may be necessary if some argument is too
|
---|
39 | * large or too tiny
|
---|
40 | *
|
---|
41 | * Special cases:
|
---|
42 | * hypot(x,y) is INF if x or y is +INF or -INF; else
|
---|
43 | * hypot(x,y) is NAN if x or y is NAN.
|
---|
44 | *
|
---|
45 | * Accuracy:
|
---|
46 | * hypot(x,y) returns sqrt(x^2+y^2) with error less
|
---|
47 | * than 1 ulps (units in the last place)
|
---|
48 | */
|
---|
49 |
|
---|
50 | #include "math.h"
|
---|
51 | #include "math_private.h"
|
---|
52 |
|
---|
53 | double
|
---|
54 | __ieee754_hypot(double x, double y)
|
---|
55 | {
|
---|
56 | double a=x,b=y,t1,t2,y1,y2,w;
|
---|
57 | int32_t j,k,ha,hb;
|
---|
58 |
|
---|
59 | GET_HIGH_WORD(ha,x);
|
---|
60 | ha &= 0x7fffffff;
|
---|
61 | GET_HIGH_WORD(hb,y);
|
---|
62 | hb &= 0x7fffffff;
|
---|
63 | if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
|
---|
64 | SET_HIGH_WORD(a,ha); /* a <- |a| */
|
---|
65 | SET_HIGH_WORD(b,hb); /* b <- |b| */
|
---|
66 | if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
|
---|
67 | k=0;
|
---|
68 | if(ha > 0x5f300000) { /* a>2**500 */
|
---|
69 | if(ha >= 0x7ff00000) { /* Inf or NaN */
|
---|
70 | u_int32_t low;
|
---|
71 | w = a+b; /* for sNaN */
|
---|
72 | GET_LOW_WORD(low,a);
|
---|
73 | if(((ha&0xfffff)|low)==0) w = a;
|
---|
74 | GET_LOW_WORD(low,b);
|
---|
75 | if(((hb^0x7ff00000)|low)==0) w = b;
|
---|
76 | return w;
|
---|
77 | }
|
---|
78 | /* scale a and b by 2**-600 */
|
---|
79 | ha -= 0x25800000; hb -= 0x25800000; k += 600;
|
---|
80 | SET_HIGH_WORD(a,ha);
|
---|
81 | SET_HIGH_WORD(b,hb);
|
---|
82 | }
|
---|
83 | if(hb < 0x20b00000) { /* b < 2**-500 */
|
---|
84 | if(hb <= 0x000fffff) { /* subnormal b or 0 */
|
---|
85 | u_int32_t low;
|
---|
86 | GET_LOW_WORD(low,b);
|
---|
87 | if((hb|low)==0) return a;
|
---|
88 | t1=0;
|
---|
89 | SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
|
---|
90 | b *= t1;
|
---|
91 | a *= t1;
|
---|
92 | k -= 1022;
|
---|
93 | } else { /* scale a and b by 2^600 */
|
---|
94 | ha += 0x25800000; /* a *= 2^600 */
|
---|
95 | hb += 0x25800000; /* b *= 2^600 */
|
---|
96 | k -= 600;
|
---|
97 | SET_HIGH_WORD(a,ha);
|
---|
98 | SET_HIGH_WORD(b,hb);
|
---|
99 | }
|
---|
100 | }
|
---|
101 | /* medium size a and b */
|
---|
102 | w = a-b;
|
---|
103 | if (w>b) {
|
---|
104 | t1 = 0;
|
---|
105 | SET_HIGH_WORD(t1,ha);
|
---|
106 | t2 = a-t1;
|
---|
107 | w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
|
---|
108 | } else {
|
---|
109 | a = a+a;
|
---|
110 | y1 = 0;
|
---|
111 | SET_HIGH_WORD(y1,hb);
|
---|
112 | y2 = b - y1;
|
---|
113 | t1 = 0;
|
---|
114 | SET_HIGH_WORD(t1,ha+0x00100000);
|
---|
115 | t2 = a - t1;
|
---|
116 | w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
---|
117 | }
|
---|
118 | if(k!=0) {
|
---|
119 | u_int32_t high;
|
---|
120 | t1 = 1.0;
|
---|
121 | GET_HIGH_WORD(high,t1);
|
---|
122 | SET_HIGH_WORD(t1,high+(k<<20));
|
---|
123 | return t1*w;
|
---|
124 | } else return w;
|
---|
125 | }
|
---|