1 |
|
---|
2 | /* @(#)e_atanh.c 1.3 95/01/18 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | *
|
---|
13 | */
|
---|
14 |
|
---|
15 | #ifndef lint
|
---|
16 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_atanh.c,v 1.7 2005/02/04 18:26:05 das Exp $";
|
---|
17 | #endif
|
---|
18 |
|
---|
19 | /* __ieee754_atanh(x)
|
---|
20 | * Method :
|
---|
21 | * 1.Reduced x to positive by atanh(-x) = -atanh(x)
|
---|
22 | * 2.For x>=0.5
|
---|
23 | * 1 2x x
|
---|
24 | * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
---|
25 | * 2 1 - x 1 - x
|
---|
26 | *
|
---|
27 | * For x<0.5
|
---|
28 | * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
---|
29 | *
|
---|
30 | * Special cases:
|
---|
31 | * atanh(x) is NaN if |x| > 1 with signal;
|
---|
32 | * atanh(NaN) is that NaN with no signal;
|
---|
33 | * atanh(+-1) is +-INF with signal.
|
---|
34 | *
|
---|
35 | */
|
---|
36 |
|
---|
37 | #include "math.h"
|
---|
38 | #include "math_private.h"
|
---|
39 |
|
---|
40 | static const double one = 1.0, huge = 1e300;
|
---|
41 | static const double zero = 0.0;
|
---|
42 |
|
---|
43 | double
|
---|
44 | __ieee754_atanh(double x)
|
---|
45 | {
|
---|
46 | double t;
|
---|
47 | int32_t hx,ix;
|
---|
48 | u_int32_t lx;
|
---|
49 | EXTRACT_WORDS(hx,lx,x);
|
---|
50 | ix = hx&0x7fffffff;
|
---|
51 | if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
|
---|
52 | return (x-x)/(x-x);
|
---|
53 | if(ix==0x3ff00000)
|
---|
54 | return x/zero;
|
---|
55 | if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
|
---|
56 | SET_HIGH_WORD(x,ix);
|
---|
57 | if(ix<0x3fe00000) { /* x < 0.5 */
|
---|
58 | t = x+x;
|
---|
59 | t = 0.5*log1p(t+t*x/(one-x));
|
---|
60 | } else
|
---|
61 | t = 0.5*log1p((x+x)/(one-x));
|
---|
62 | if(hx>=0) return t; else return -t;
|
---|
63 | }
|
---|