1 |
|
---|
2 | /* @(#)e_acosh.c 1.3 95/01/18 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | *
|
---|
13 | */
|
---|
14 |
|
---|
15 | #ifndef lint
|
---|
16 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_acosh.c,v 1.8 2005/02/04 18:26:05 das Exp $";
|
---|
17 | #endif
|
---|
18 |
|
---|
19 | /* __ieee754_acosh(x)
|
---|
20 | * Method :
|
---|
21 | * Based on
|
---|
22 | * acosh(x) = log [ x + sqrt(x*x-1) ]
|
---|
23 | * we have
|
---|
24 | * acosh(x) := log(x)+ln2, if x is large; else
|
---|
25 | * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
---|
26 | * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
---|
27 | *
|
---|
28 | * Special cases:
|
---|
29 | * acosh(x) is NaN with signal if x<1.
|
---|
30 | * acosh(NaN) is NaN without signal.
|
---|
31 | */
|
---|
32 |
|
---|
33 | #include "math.h"
|
---|
34 | #include "math_private.h"
|
---|
35 |
|
---|
36 | static const double
|
---|
37 | one = 1.0,
|
---|
38 | ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
|
---|
39 |
|
---|
40 | double
|
---|
41 | __ieee754_acosh(double x)
|
---|
42 | {
|
---|
43 | double t;
|
---|
44 | int32_t hx;
|
---|
45 | u_int32_t lx;
|
---|
46 | EXTRACT_WORDS(hx,lx,x);
|
---|
47 | if(hx<0x3ff00000) { /* x < 1 */
|
---|
48 | return (x-x)/(x-x);
|
---|
49 | } else if(hx >=0x41b00000) { /* x > 2**28 */
|
---|
50 | if(hx >=0x7ff00000) { /* x is inf of NaN */
|
---|
51 | return x+x;
|
---|
52 | } else
|
---|
53 | return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
|
---|
54 | } else if(((hx-0x3ff00000)|lx)==0) {
|
---|
55 | return 0.0; /* acosh(1) = 0 */
|
---|
56 | } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
|
---|
57 | t=x*x;
|
---|
58 | return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
|
---|
59 | } else { /* 1<x<2 */
|
---|
60 | t = x-one;
|
---|
61 | return log1p(t+sqrt(2.0*t+t*t));
|
---|
62 | }
|
---|
63 | }
|
---|