1 |
|
---|
2 | /* @(#)e_acos.c 1.3 95/01/18 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 | #ifndef lint
|
---|
15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_acos.c,v 1.10 2005/02/04 18:26:05 das Exp $";
|
---|
16 | #endif
|
---|
17 |
|
---|
18 | /* __ieee754_acos(x)
|
---|
19 | * Method :
|
---|
20 | * acos(x) = pi/2 - asin(x)
|
---|
21 | * acos(-x) = pi/2 + asin(x)
|
---|
22 | * For |x|<=0.5
|
---|
23 | * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
---|
24 | * For x>0.5
|
---|
25 | * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
---|
26 | * = 2asin(sqrt((1-x)/2))
|
---|
27 | * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
---|
28 | * = 2f + (2c + 2s*z*R(z))
|
---|
29 | * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
---|
30 | * for f so that f+c ~ sqrt(z).
|
---|
31 | * For x<-0.5
|
---|
32 | * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
---|
33 | * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
---|
34 | *
|
---|
35 | * Special cases:
|
---|
36 | * if x is NaN, return x itself;
|
---|
37 | * if |x|>1, return NaN with invalid signal.
|
---|
38 | *
|
---|
39 | * Function needed: sqrt
|
---|
40 | */
|
---|
41 |
|
---|
42 | #include "math.h"
|
---|
43 | #include "math_private.h"
|
---|
44 |
|
---|
45 | static const double
|
---|
46 | one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
---|
47 | pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
---|
48 | pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
---|
49 | pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
---|
50 | pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
---|
51 | pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
---|
52 | pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
---|
53 | pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
---|
54 | pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
---|
55 | pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
---|
56 | qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
---|
57 | qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
---|
58 | qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
---|
59 | qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
---|
60 |
|
---|
61 | double
|
---|
62 | __ieee754_acos(double x)
|
---|
63 | {
|
---|
64 | double z,p,q,r,w,s,c,df;
|
---|
65 | int32_t hx,ix;
|
---|
66 | GET_HIGH_WORD(hx,x);
|
---|
67 | ix = hx&0x7fffffff;
|
---|
68 | if(ix>=0x3ff00000) { /* |x| >= 1 */
|
---|
69 | u_int32_t lx;
|
---|
70 | GET_LOW_WORD(lx,x);
|
---|
71 | if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
|
---|
72 | if(hx>0) return 0.0; /* acos(1) = 0 */
|
---|
73 | else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
---|
74 | }
|
---|
75 | return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
---|
76 | }
|
---|
77 | if(ix<0x3fe00000) { /* |x| < 0.5 */
|
---|
78 | if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
---|
79 | z = x*x;
|
---|
80 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
---|
81 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
---|
82 | r = p/q;
|
---|
83 | return pio2_hi - (x - (pio2_lo-x*r));
|
---|
84 | } else if (hx<0) { /* x < -0.5 */
|
---|
85 | z = (one+x)*0.5;
|
---|
86 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
---|
87 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
---|
88 | s = sqrt(z);
|
---|
89 | r = p/q;
|
---|
90 | w = r*s-pio2_lo;
|
---|
91 | return pi - 2.0*(s+w);
|
---|
92 | } else { /* x > 0.5 */
|
---|
93 | z = (one-x)*0.5;
|
---|
94 | s = sqrt(z);
|
---|
95 | df = s;
|
---|
96 | SET_LOW_WORD(df,0);
|
---|
97 | c = (z-df*df)/(s+df);
|
---|
98 | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
---|
99 | q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
---|
100 | r = p/q;
|
---|
101 | w = r*s+c;
|
---|
102 | return 2.0*(df+w);
|
---|
103 | }
|
---|
104 | }
|
---|