1 | /*-
|
---|
2 | * Copyright (c) 1992, 1993
|
---|
3 | * The Regents of the University of California. All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | * 1. Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer in the
|
---|
12 | * documentation and/or other materials provided with the distribution.
|
---|
13 | * 3. All advertising materials mentioning features or use of this software
|
---|
14 | * must display the following acknowledgement:
|
---|
15 | * This product includes software developed by the University of
|
---|
16 | * California, Berkeley and its contributors.
|
---|
17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
18 | * may be used to endorse or promote products derived from this software
|
---|
19 | * without specific prior written permission.
|
---|
20 | *
|
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
31 | * SUCH DAMAGE.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #ifndef lint
|
---|
35 | static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93";
|
---|
36 | #endif /* not lint */
|
---|
37 | #include <sys/cdefs.h>
|
---|
38 | __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.6 2004/12/16 20:40:37 das Exp $");
|
---|
39 |
|
---|
40 | /*
|
---|
41 | * This code by P. McIlroy, Oct 1992;
|
---|
42 | *
|
---|
43 | * The financial support of UUNET Communications Services is greatfully
|
---|
44 | * acknowledged.
|
---|
45 | */
|
---|
46 |
|
---|
47 | #include <math.h>
|
---|
48 | #include "mathimpl.h"
|
---|
49 | #include <errno.h>
|
---|
50 |
|
---|
51 | /* METHOD:
|
---|
52 | * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
|
---|
53 | * At negative integers, return +Inf, and set errno.
|
---|
54 | *
|
---|
55 | * x < 6.5:
|
---|
56 | * Use argument reduction G(x+1) = xG(x) to reach the
|
---|
57 | * range [1.066124,2.066124]. Use a rational
|
---|
58 | * approximation centered at the minimum (x0+1) to
|
---|
59 | * ensure monotonicity.
|
---|
60 | *
|
---|
61 | * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
|
---|
62 | * adjusted for equal-ripples:
|
---|
63 | *
|
---|
64 | * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
|
---|
65 | *
|
---|
66 | * Keep extra precision in multiplying (x-.5)(log(x)-1), to
|
---|
67 | * avoid premature round-off.
|
---|
68 | *
|
---|
69 | * Special values:
|
---|
70 | * non-positive integer: Set overflow trap; return +Inf;
|
---|
71 | * x > 171.63: Set overflow trap; return +Inf;
|
---|
72 | * NaN: Set invalid trap; return NaN
|
---|
73 | *
|
---|
74 | * Accuracy: Gamma(x) is accurate to within
|
---|
75 | * x > 0: error provably < 0.9ulp.
|
---|
76 | * Maximum observed in 1,000,000 trials was .87ulp.
|
---|
77 | * x < 0:
|
---|
78 | * Maximum observed error < 4ulp in 1,000,000 trials.
|
---|
79 | */
|
---|
80 |
|
---|
81 | static double neg_gam(double);
|
---|
82 | static double small_gam(double);
|
---|
83 | static double smaller_gam(double);
|
---|
84 | static struct Double large_gam(double);
|
---|
85 | static struct Double ratfun_gam(double, double);
|
---|
86 |
|
---|
87 | /*
|
---|
88 | * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
|
---|
89 | * [1.066.., 2.066..] accurate to 4.25e-19.
|
---|
90 | */
|
---|
91 | #define LEFT -.3955078125 /* left boundary for rat. approx */
|
---|
92 | #define x0 .461632144968362356785 /* xmin - 1 */
|
---|
93 |
|
---|
94 | #define a0_hi 0.88560319441088874992
|
---|
95 | #define a0_lo -.00000000000000004996427036469019695
|
---|
96 | #define P0 6.21389571821820863029017800727e-01
|
---|
97 | #define P1 2.65757198651533466104979197553e-01
|
---|
98 | #define P2 5.53859446429917461063308081748e-03
|
---|
99 | #define P3 1.38456698304096573887145282811e-03
|
---|
100 | #define P4 2.40659950032711365819348969808e-03
|
---|
101 | #define Q0 1.45019531250000000000000000000e+00
|
---|
102 | #define Q1 1.06258521948016171343454061571e+00
|
---|
103 | #define Q2 -2.07474561943859936441469926649e-01
|
---|
104 | #define Q3 -1.46734131782005422506287573015e-01
|
---|
105 | #define Q4 3.07878176156175520361557573779e-02
|
---|
106 | #define Q5 5.12449347980666221336054633184e-03
|
---|
107 | #define Q6 -1.76012741431666995019222898833e-03
|
---|
108 | #define Q7 9.35021023573788935372153030556e-05
|
---|
109 | #define Q8 6.13275507472443958924745652239e-06
|
---|
110 | /*
|
---|
111 | * Constants for large x approximation (x in [6, Inf])
|
---|
112 | * (Accurate to 2.8*10^-19 absolute)
|
---|
113 | */
|
---|
114 | #define lns2pi_hi 0.418945312500000
|
---|
115 | #define lns2pi_lo -.000006779295327258219670263595
|
---|
116 | #define Pa0 8.33333333333333148296162562474e-02
|
---|
117 | #define Pa1 -2.77777777774548123579378966497e-03
|
---|
118 | #define Pa2 7.93650778754435631476282786423e-04
|
---|
119 | #define Pa3 -5.95235082566672847950717262222e-04
|
---|
120 | #define Pa4 8.41428560346653702135821806252e-04
|
---|
121 | #define Pa5 -1.89773526463879200348872089421e-03
|
---|
122 | #define Pa6 5.69394463439411649408050664078e-03
|
---|
123 | #define Pa7 -1.44705562421428915453880392761e-02
|
---|
124 |
|
---|
125 | static const double zero = 0., one = 1.0, tiny = 1e-300;
|
---|
126 | static int endian;
|
---|
127 |
|
---|
128 | /*
|
---|
129 | * TRUNC sets trailing bits in a floating-point number to zero.
|
---|
130 | * is a temporary variable.
|
---|
131 | */
|
---|
132 | #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
|
---|
133 |
|
---|
134 | double
|
---|
135 | tgamma(x)
|
---|
136 | double x;
|
---|
137 | {
|
---|
138 | struct Double u;
|
---|
139 | endian = (*(int *) &one) ? 1 : 0;
|
---|
140 |
|
---|
141 | if (x >= 6) {
|
---|
142 | if(x > 171.63)
|
---|
143 | return(one/zero);
|
---|
144 | u = large_gam(x);
|
---|
145 | return(__exp__D(u.a, u.b));
|
---|
146 | } else if (x >= 1.0 + LEFT + x0)
|
---|
147 | return (small_gam(x));
|
---|
148 | else if (x > 1.e-17)
|
---|
149 | return (smaller_gam(x));
|
---|
150 | else if (x > -1.e-17) {
|
---|
151 | if (x == 0.0)
|
---|
152 | return (one/x);
|
---|
153 | one+1e-20; /* Raise inexact flag. */
|
---|
154 | return (one/x);
|
---|
155 | } else if (!finite(x))
|
---|
156 | return (x*x); /* x = NaN, -Inf */
|
---|
157 | else
|
---|
158 | return (neg_gam(x));
|
---|
159 | }
|
---|
160 | /*
|
---|
161 | * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
|
---|
162 | */
|
---|
163 | static struct Double
|
---|
164 | large_gam(x)
|
---|
165 | double x;
|
---|
166 | {
|
---|
167 | double z, p;
|
---|
168 | struct Double t, u, v;
|
---|
169 |
|
---|
170 | z = one/(x*x);
|
---|
171 | p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
|
---|
172 | p = p/x;
|
---|
173 |
|
---|
174 | u = __log__D(x);
|
---|
175 | u.a -= one;
|
---|
176 | v.a = (x -= .5);
|
---|
177 | TRUNC(v.a);
|
---|
178 | v.b = x - v.a;
|
---|
179 | t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
|
---|
180 | t.b = v.b*u.a + x*u.b;
|
---|
181 | /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
|
---|
182 | t.b += lns2pi_lo; t.b += p;
|
---|
183 | u.a = lns2pi_hi + t.b; u.a += t.a;
|
---|
184 | u.b = t.a - u.a;
|
---|
185 | u.b += lns2pi_hi; u.b += t.b;
|
---|
186 | return (u);
|
---|
187 | }
|
---|
188 | /*
|
---|
189 | * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
|
---|
190 | * It also has correct monotonicity.
|
---|
191 | */
|
---|
192 | static double
|
---|
193 | small_gam(x)
|
---|
194 | double x;
|
---|
195 | {
|
---|
196 | double y, ym1, t;
|
---|
197 | struct Double yy, r;
|
---|
198 | y = x - one;
|
---|
199 | ym1 = y - one;
|
---|
200 | if (y <= 1.0 + (LEFT + x0)) {
|
---|
201 | yy = ratfun_gam(y - x0, 0);
|
---|
202 | return (yy.a + yy.b);
|
---|
203 | }
|
---|
204 | r.a = y;
|
---|
205 | TRUNC(r.a);
|
---|
206 | yy.a = r.a - one;
|
---|
207 | y = ym1;
|
---|
208 | yy.b = r.b = y - yy.a;
|
---|
209 | /* Argument reduction: G(x+1) = x*G(x) */
|
---|
210 | for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
|
---|
211 | t = r.a*yy.a;
|
---|
212 | r.b = r.a*yy.b + y*r.b;
|
---|
213 | r.a = t;
|
---|
214 | TRUNC(r.a);
|
---|
215 | r.b += (t - r.a);
|
---|
216 | }
|
---|
217 | /* Return r*tgamma(y). */
|
---|
218 | yy = ratfun_gam(y - x0, 0);
|
---|
219 | y = r.b*(yy.a + yy.b) + r.a*yy.b;
|
---|
220 | y += yy.a*r.a;
|
---|
221 | return (y);
|
---|
222 | }
|
---|
223 | /*
|
---|
224 | * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
|
---|
225 | */
|
---|
226 | static double
|
---|
227 | smaller_gam(x)
|
---|
228 | double x;
|
---|
229 | {
|
---|
230 | double t, d;
|
---|
231 | struct Double r, xx;
|
---|
232 | if (x < x0 + LEFT) {
|
---|
233 | t = x, TRUNC(t);
|
---|
234 | d = (t+x)*(x-t);
|
---|
235 | t *= t;
|
---|
236 | xx.a = (t + x), TRUNC(xx.a);
|
---|
237 | xx.b = x - xx.a; xx.b += t; xx.b += d;
|
---|
238 | t = (one-x0); t += x;
|
---|
239 | d = (one-x0); d -= t; d += x;
|
---|
240 | x = xx.a + xx.b;
|
---|
241 | } else {
|
---|
242 | xx.a = x, TRUNC(xx.a);
|
---|
243 | xx.b = x - xx.a;
|
---|
244 | t = x - x0;
|
---|
245 | d = (-x0 -t); d += x;
|
---|
246 | }
|
---|
247 | r = ratfun_gam(t, d);
|
---|
248 | d = r.a/x, TRUNC(d);
|
---|
249 | r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
|
---|
250 | return (d + r.a/x);
|
---|
251 | }
|
---|
252 | /*
|
---|
253 | * returns (z+c)^2 * P(z)/Q(z) + a0
|
---|
254 | */
|
---|
255 | static struct Double
|
---|
256 | ratfun_gam(z, c)
|
---|
257 | double z, c;
|
---|
258 | {
|
---|
259 | double p, q;
|
---|
260 | struct Double r, t;
|
---|
261 |
|
---|
262 | q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
|
---|
263 | p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
|
---|
264 |
|
---|
265 | /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
|
---|
266 | p = p/q;
|
---|
267 | t.a = z, TRUNC(t.a); /* t ~= z + c */
|
---|
268 | t.b = (z - t.a) + c;
|
---|
269 | t.b *= (t.a + z);
|
---|
270 | q = (t.a *= t.a); /* t = (z+c)^2 */
|
---|
271 | TRUNC(t.a);
|
---|
272 | t.b += (q - t.a);
|
---|
273 | r.a = p, TRUNC(r.a); /* r = P/Q */
|
---|
274 | r.b = p - r.a;
|
---|
275 | t.b = t.b*p + t.a*r.b + a0_lo;
|
---|
276 | t.a *= r.a; /* t = (z+c)^2*(P/Q) */
|
---|
277 | r.a = t.a + a0_hi, TRUNC(r.a);
|
---|
278 | r.b = ((a0_hi-r.a) + t.a) + t.b;
|
---|
279 | return (r); /* r = a0 + t */
|
---|
280 | }
|
---|
281 |
|
---|
282 | static double
|
---|
283 | neg_gam(x)
|
---|
284 | double x;
|
---|
285 | {
|
---|
286 | int sgn = 1;
|
---|
287 | struct Double lg, lsine;
|
---|
288 | double y, z;
|
---|
289 |
|
---|
290 | y = floor(x + .5);
|
---|
291 | if (y == x) /* Negative integer. */
|
---|
292 | return (one/zero);
|
---|
293 | z = fabs(x - y);
|
---|
294 | y = .5*ceil(x);
|
---|
295 | if (y == ceil(y))
|
---|
296 | sgn = -1;
|
---|
297 | if (z < .25)
|
---|
298 | z = sin(M_PI*z);
|
---|
299 | else
|
---|
300 | z = cos(M_PI*(0.5-z));
|
---|
301 | /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
|
---|
302 | if (x < -170) {
|
---|
303 | if (x < -190)
|
---|
304 | return ((double)sgn*tiny*tiny);
|
---|
305 | y = one - x; /* exact: 128 < |x| < 255 */
|
---|
306 | lg = large_gam(y);
|
---|
307 | lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
|
---|
308 | lg.a -= lsine.a; /* exact (opposite signs) */
|
---|
309 | lg.b -= lsine.b;
|
---|
310 | y = -(lg.a + lg.b);
|
---|
311 | z = (y + lg.a) + lg.b;
|
---|
312 | y = __exp__D(y, z);
|
---|
313 | if (sgn < 0) y = -y;
|
---|
314 | return (y);
|
---|
315 | }
|
---|
316 | y = one-x;
|
---|
317 | if (one-y == x)
|
---|
318 | y = tgamma(y);
|
---|
319 | else /* 1-x is inexact */
|
---|
320 | y = -x*tgamma(-x);
|
---|
321 | if (sgn < 0) y = -y;
|
---|
322 | return (M_PI / (y*z));
|
---|
323 | }
|
---|