source: vendor/FreeBSD-msun/current/bsdsrc/b_tgamma.c

Last change on this file was 2006, checked in by bird, 20 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 8.9 KB
Line 
1/*-
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#ifndef lint
35static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93";
36#endif /* not lint */
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.6 2004/12/16 20:40:37 das Exp $");
39
40/*
41 * This code by P. McIlroy, Oct 1992;
42 *
43 * The financial support of UUNET Communications Services is greatfully
44 * acknowledged.
45 */
46
47#include <math.h>
48#include "mathimpl.h"
49#include <errno.h>
50
51/* METHOD:
52 * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
53 * At negative integers, return +Inf, and set errno.
54 *
55 * x < 6.5:
56 * Use argument reduction G(x+1) = xG(x) to reach the
57 * range [1.066124,2.066124]. Use a rational
58 * approximation centered at the minimum (x0+1) to
59 * ensure monotonicity.
60 *
61 * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
62 * adjusted for equal-ripples:
63 *
64 * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
65 *
66 * Keep extra precision in multiplying (x-.5)(log(x)-1), to
67 * avoid premature round-off.
68 *
69 * Special values:
70 * non-positive integer: Set overflow trap; return +Inf;
71 * x > 171.63: Set overflow trap; return +Inf;
72 * NaN: Set invalid trap; return NaN
73 *
74 * Accuracy: Gamma(x) is accurate to within
75 * x > 0: error provably < 0.9ulp.
76 * Maximum observed in 1,000,000 trials was .87ulp.
77 * x < 0:
78 * Maximum observed error < 4ulp in 1,000,000 trials.
79 */
80
81static double neg_gam(double);
82static double small_gam(double);
83static double smaller_gam(double);
84static struct Double large_gam(double);
85static struct Double ratfun_gam(double, double);
86
87/*
88 * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
89 * [1.066.., 2.066..] accurate to 4.25e-19.
90 */
91#define LEFT -.3955078125 /* left boundary for rat. approx */
92#define x0 .461632144968362356785 /* xmin - 1 */
93
94#define a0_hi 0.88560319441088874992
95#define a0_lo -.00000000000000004996427036469019695
96#define P0 6.21389571821820863029017800727e-01
97#define P1 2.65757198651533466104979197553e-01
98#define P2 5.53859446429917461063308081748e-03
99#define P3 1.38456698304096573887145282811e-03
100#define P4 2.40659950032711365819348969808e-03
101#define Q0 1.45019531250000000000000000000e+00
102#define Q1 1.06258521948016171343454061571e+00
103#define Q2 -2.07474561943859936441469926649e-01
104#define Q3 -1.46734131782005422506287573015e-01
105#define Q4 3.07878176156175520361557573779e-02
106#define Q5 5.12449347980666221336054633184e-03
107#define Q6 -1.76012741431666995019222898833e-03
108#define Q7 9.35021023573788935372153030556e-05
109#define Q8 6.13275507472443958924745652239e-06
110/*
111 * Constants for large x approximation (x in [6, Inf])
112 * (Accurate to 2.8*10^-19 absolute)
113 */
114#define lns2pi_hi 0.418945312500000
115#define lns2pi_lo -.000006779295327258219670263595
116#define Pa0 8.33333333333333148296162562474e-02
117#define Pa1 -2.77777777774548123579378966497e-03
118#define Pa2 7.93650778754435631476282786423e-04
119#define Pa3 -5.95235082566672847950717262222e-04
120#define Pa4 8.41428560346653702135821806252e-04
121#define Pa5 -1.89773526463879200348872089421e-03
122#define Pa6 5.69394463439411649408050664078e-03
123#define Pa7 -1.44705562421428915453880392761e-02
124
125static const double zero = 0., one = 1.0, tiny = 1e-300;
126static int endian;
127
128/*
129 * TRUNC sets trailing bits in a floating-point number to zero.
130 * is a temporary variable.
131 */
132#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
133
134double
135tgamma(x)
136 double x;
137{
138 struct Double u;
139 endian = (*(int *) &one) ? 1 : 0;
140
141 if (x >= 6) {
142 if(x > 171.63)
143 return(one/zero);
144 u = large_gam(x);
145 return(__exp__D(u.a, u.b));
146 } else if (x >= 1.0 + LEFT + x0)
147 return (small_gam(x));
148 else if (x > 1.e-17)
149 return (smaller_gam(x));
150 else if (x > -1.e-17) {
151 if (x == 0.0)
152 return (one/x);
153 one+1e-20; /* Raise inexact flag. */
154 return (one/x);
155 } else if (!finite(x))
156 return (x*x); /* x = NaN, -Inf */
157 else
158 return (neg_gam(x));
159}
160/*
161 * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
162 */
163static struct Double
164large_gam(x)
165 double x;
166{
167 double z, p;
168 struct Double t, u, v;
169
170 z = one/(x*x);
171 p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
172 p = p/x;
173
174 u = __log__D(x);
175 u.a -= one;
176 v.a = (x -= .5);
177 TRUNC(v.a);
178 v.b = x - v.a;
179 t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
180 t.b = v.b*u.a + x*u.b;
181 /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
182 t.b += lns2pi_lo; t.b += p;
183 u.a = lns2pi_hi + t.b; u.a += t.a;
184 u.b = t.a - u.a;
185 u.b += lns2pi_hi; u.b += t.b;
186 return (u);
187}
188/*
189 * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
190 * It also has correct monotonicity.
191 */
192static double
193small_gam(x)
194 double x;
195{
196 double y, ym1, t;
197 struct Double yy, r;
198 y = x - one;
199 ym1 = y - one;
200 if (y <= 1.0 + (LEFT + x0)) {
201 yy = ratfun_gam(y - x0, 0);
202 return (yy.a + yy.b);
203 }
204 r.a = y;
205 TRUNC(r.a);
206 yy.a = r.a - one;
207 y = ym1;
208 yy.b = r.b = y - yy.a;
209 /* Argument reduction: G(x+1) = x*G(x) */
210 for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
211 t = r.a*yy.a;
212 r.b = r.a*yy.b + y*r.b;
213 r.a = t;
214 TRUNC(r.a);
215 r.b += (t - r.a);
216 }
217 /* Return r*tgamma(y). */
218 yy = ratfun_gam(y - x0, 0);
219 y = r.b*(yy.a + yy.b) + r.a*yy.b;
220 y += yy.a*r.a;
221 return (y);
222}
223/*
224 * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
225 */
226static double
227smaller_gam(x)
228 double x;
229{
230 double t, d;
231 struct Double r, xx;
232 if (x < x0 + LEFT) {
233 t = x, TRUNC(t);
234 d = (t+x)*(x-t);
235 t *= t;
236 xx.a = (t + x), TRUNC(xx.a);
237 xx.b = x - xx.a; xx.b += t; xx.b += d;
238 t = (one-x0); t += x;
239 d = (one-x0); d -= t; d += x;
240 x = xx.a + xx.b;
241 } else {
242 xx.a = x, TRUNC(xx.a);
243 xx.b = x - xx.a;
244 t = x - x0;
245 d = (-x0 -t); d += x;
246 }
247 r = ratfun_gam(t, d);
248 d = r.a/x, TRUNC(d);
249 r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
250 return (d + r.a/x);
251}
252/*
253 * returns (z+c)^2 * P(z)/Q(z) + a0
254 */
255static struct Double
256ratfun_gam(z, c)
257 double z, c;
258{
259 double p, q;
260 struct Double r, t;
261
262 q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
263 p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
264
265 /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
266 p = p/q;
267 t.a = z, TRUNC(t.a); /* t ~= z + c */
268 t.b = (z - t.a) + c;
269 t.b *= (t.a + z);
270 q = (t.a *= t.a); /* t = (z+c)^2 */
271 TRUNC(t.a);
272 t.b += (q - t.a);
273 r.a = p, TRUNC(r.a); /* r = P/Q */
274 r.b = p - r.a;
275 t.b = t.b*p + t.a*r.b + a0_lo;
276 t.a *= r.a; /* t = (z+c)^2*(P/Q) */
277 r.a = t.a + a0_hi, TRUNC(r.a);
278 r.b = ((a0_hi-r.a) + t.a) + t.b;
279 return (r); /* r = a0 + t */
280}
281
282static double
283neg_gam(x)
284 double x;
285{
286 int sgn = 1;
287 struct Double lg, lsine;
288 double y, z;
289
290 y = floor(x + .5);
291 if (y == x) /* Negative integer. */
292 return (one/zero);
293 z = fabs(x - y);
294 y = .5*ceil(x);
295 if (y == ceil(y))
296 sgn = -1;
297 if (z < .25)
298 z = sin(M_PI*z);
299 else
300 z = cos(M_PI*(0.5-z));
301 /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
302 if (x < -170) {
303 if (x < -190)
304 return ((double)sgn*tiny*tiny);
305 y = one - x; /* exact: 128 < |x| < 255 */
306 lg = large_gam(y);
307 lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
308 lg.a -= lsine.a; /* exact (opposite signs) */
309 lg.b -= lsine.b;
310 y = -(lg.a + lg.b);
311 z = (y + lg.a) + lg.b;
312 y = __exp__D(y, z);
313 if (sgn < 0) y = -y;
314 return (y);
315 }
316 y = one-x;
317 if (one-y == x)
318 y = tgamma(y);
319 else /* 1-x is inexact */
320 y = -x*tgamma(-x);
321 if (sgn < 0) y = -y;
322 return (M_PI / (y*z));
323}
Note: See TracBrowser for help on using the repository browser.