source: vendor/FreeBSD-msun/current/bsdsrc/b_log.c

Last change on this file was 2006, checked in by bird, 20 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 13.9 KB
Line 
1/*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#ifndef lint
35static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
36#endif /* not lint */
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_log.c,v 1.7 2004/12/16 20:40:37 das Exp $");
39
40#include <math.h>
41#include <errno.h>
42
43#include "mathimpl.h"
44
45/* Table-driven natural logarithm.
46 *
47 * This code was derived, with minor modifications, from:
48 * Peter Tang, "Table-Driven Implementation of the
49 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
50 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
51 *
52 * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
53 * where F = j/128 for j an integer in [0, 128].
54 *
55 * log(2^m) = log2_hi*m + log2_tail*m
56 * since m is an integer, the dominant term is exact.
57 * m has at most 10 digits (for subnormal numbers),
58 * and log2_hi has 11 trailing zero bits.
59 *
60 * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
61 * logF_hi[] + 512 is exact.
62 *
63 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
64 * the leading term is calculated to extra precision in two
65 * parts, the larger of which adds exactly to the dominant
66 * m and F terms.
67 * There are two cases:
68 * 1. when m, j are non-zero (m | j), use absolute
69 * precision for the leading term.
70 * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
71 * In this case, use a relative precision of 24 bits.
72 * (This is done differently in the original paper)
73 *
74 * Special cases:
75 * 0 return signalling -Inf
76 * neg return signalling NaN
77 * +Inf return +Inf
78*/
79
80#define endian (((*(int *) &one)) ? 1 : 0)
81#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
82
83#define N 128
84
85/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
86 * Used for generation of extend precision logarithms.
87 * The constant 35184372088832 is 2^45, so the divide is exact.
88 * It ensures correct reading of logF_head, even for inaccurate
89 * decimal-to-binary conversion routines. (Everybody gets the
90 * right answer for integers less than 2^53.)
91 * Values for log(F) were generated using error < 10^-57 absolute
92 * with the bc -l package.
93*/
94static double A1 = .08333333333333178827;
95static double A2 = .01250000000377174923;
96static double A3 = .002232139987919447809;
97static double A4 = .0004348877777076145742;
98
99static double logF_head[N+1] = {
100 0.,
101 .007782140442060381246,
102 .015504186535963526694,
103 .023167059281547608406,
104 .030771658666765233647,
105 .038318864302141264488,
106 .045809536031242714670,
107 .053244514518837604555,
108 .060624621816486978786,
109 .067950661908525944454,
110 .075223421237524235039,
111 .082443669210988446138,
112 .089612158689760690322,
113 .096729626458454731618,
114 .103796793681567578460,
115 .110814366340264314203,
116 .117783035656430001836,
117 .124703478501032805070,
118 .131576357788617315236,
119 .138402322859292326029,
120 .145182009844575077295,
121 .151916042025732167530,
122 .158605030176659056451,
123 .165249572895390883786,
124 .171850256926518341060,
125 .178407657472689606947,
126 .184922338493834104156,
127 .191394852999565046047,
128 .197825743329758552135,
129 .204215541428766300668,
130 .210564769107350002741,
131 .216873938300523150246,
132 .223143551314024080056,
133 .229374101064877322642,
134 .235566071312860003672,
135 .241719936886966024758,
136 .247836163904594286577,
137 .253915209980732470285,
138 .259957524436686071567,
139 .265963548496984003577,
140 .271933715484010463114,
141 .277868451003087102435,
142 .283768173130738432519,
143 .289633292582948342896,
144 .295464212893421063199,
145 .301261330578199704177,
146 .307025035294827830512,
147 .312755710004239517729,
148 .318453731118097493890,
149 .324119468654316733591,
150 .329753286372579168528,
151 .335355541920762334484,
152 .340926586970454081892,
153 .346466767346100823488,
154 .351976423156884266063,
155 .357455888922231679316,
156 .362905493689140712376,
157 .368325561158599157352,
158 .373716409793814818840,
159 .379078352934811846353,
160 .384411698910298582632,
161 .389716751140440464951,
162 .394993808240542421117,
163 .400243164127459749579,
164 .405465108107819105498,
165 .410659924985338875558,
166 .415827895143593195825,
167 .420969294644237379543,
168 .426084395310681429691,
169 .431173464818130014464,
170 .436236766774527495726,
171 .441274560805140936281,
172 .446287102628048160113,
173 .451274644139630254358,
174 .456237433481874177232,
175 .461175715122408291790,
176 .466089729924533457960,
177 .470979715219073113985,
178 .475845904869856894947,
179 .480688529345570714212,
180 .485507815781602403149,
181 .490303988045525329653,
182 .495077266798034543171,
183 .499827869556611403822,
184 .504556010751912253908,
185 .509261901790523552335,
186 .513945751101346104405,
187 .518607764208354637958,
188 .523248143765158602036,
189 .527867089620485785417,
190 .532464798869114019908,
191 .537041465897345915436,
192 .541597282432121573947,
193 .546132437597407260909,
194 .550647117952394182793,
195 .555141507540611200965,
196 .559615787935399566777,
197 .564070138285387656651,
198 .568504735352689749561,
199 .572919753562018740922,
200 .577315365035246941260,
201 .581691739635061821900,
202 .586049045003164792433,
203 .590387446602107957005,
204 .594707107746216934174,
205 .599008189645246602594,
206 .603290851438941899687,
207 .607555250224322662688,
208 .611801541106615331955,
209 .616029877215623855590,
210 .620240409751204424537,
211 .624433288012369303032,
212 .628608659422752680256,
213 .632766669570628437213,
214 .636907462236194987781,
215 .641031179420679109171,
216 .645137961373620782978,
217 .649227946625615004450,
218 .653301272011958644725,
219 .657358072709030238911,
220 .661398482245203922502,
221 .665422632544505177065,
222 .669430653942981734871,
223 .673422675212350441142,
224 .677398823590920073911,
225 .681359224807238206267,
226 .685304003098281100392,
227 .689233281238557538017,
228 .693147180560117703862
229};
230
231static double logF_tail[N+1] = {
232 0.,
233 -.00000000000000543229938420049,
234 .00000000000000172745674997061,
235 -.00000000000001323017818229233,
236 -.00000000000001154527628289872,
237 -.00000000000000466529469958300,
238 .00000000000005148849572685810,
239 -.00000000000002532168943117445,
240 -.00000000000005213620639136504,
241 -.00000000000001819506003016881,
242 .00000000000006329065958724544,
243 .00000000000008614512936087814,
244 -.00000000000007355770219435028,
245 .00000000000009638067658552277,
246 .00000000000007598636597194141,
247 .00000000000002579999128306990,
248 -.00000000000004654729747598444,
249 -.00000000000007556920687451336,
250 .00000000000010195735223708472,
251 -.00000000000017319034406422306,
252 -.00000000000007718001336828098,
253 .00000000000010980754099855238,
254 -.00000000000002047235780046195,
255 -.00000000000008372091099235912,
256 .00000000000014088127937111135,
257 .00000000000012869017157588257,
258 .00000000000017788850778198106,
259 .00000000000006440856150696891,
260 .00000000000016132822667240822,
261 -.00000000000007540916511956188,
262 -.00000000000000036507188831790,
263 .00000000000009120937249914984,
264 .00000000000018567570959796010,
265 -.00000000000003149265065191483,
266 -.00000000000009309459495196889,
267 .00000000000017914338601329117,
268 -.00000000000001302979717330866,
269 .00000000000023097385217586939,
270 .00000000000023999540484211737,
271 .00000000000015393776174455408,
272 -.00000000000036870428315837678,
273 .00000000000036920375082080089,
274 -.00000000000009383417223663699,
275 .00000000000009433398189512690,
276 .00000000000041481318704258568,
277 -.00000000000003792316480209314,
278 .00000000000008403156304792424,
279 -.00000000000034262934348285429,
280 .00000000000043712191957429145,
281 -.00000000000010475750058776541,
282 -.00000000000011118671389559323,
283 .00000000000037549577257259853,
284 .00000000000013912841212197565,
285 .00000000000010775743037572640,
286 .00000000000029391859187648000,
287 -.00000000000042790509060060774,
288 .00000000000022774076114039555,
289 .00000000000010849569622967912,
290 -.00000000000023073801945705758,
291 .00000000000015761203773969435,
292 .00000000000003345710269544082,
293 -.00000000000041525158063436123,
294 .00000000000032655698896907146,
295 -.00000000000044704265010452446,
296 .00000000000034527647952039772,
297 -.00000000000007048962392109746,
298 .00000000000011776978751369214,
299 -.00000000000010774341461609578,
300 .00000000000021863343293215910,
301 .00000000000024132639491333131,
302 .00000000000039057462209830700,
303 -.00000000000026570679203560751,
304 .00000000000037135141919592021,
305 -.00000000000017166921336082431,
306 -.00000000000028658285157914353,
307 -.00000000000023812542263446809,
308 .00000000000006576659768580062,
309 -.00000000000028210143846181267,
310 .00000000000010701931762114254,
311 .00000000000018119346366441110,
312 .00000000000009840465278232627,
313 -.00000000000033149150282752542,
314 -.00000000000018302857356041668,
315 -.00000000000016207400156744949,
316 .00000000000048303314949553201,
317 -.00000000000071560553172382115,
318 .00000000000088821239518571855,
319 -.00000000000030900580513238244,
320 -.00000000000061076551972851496,
321 .00000000000035659969663347830,
322 .00000000000035782396591276383,
323 -.00000000000046226087001544578,
324 .00000000000062279762917225156,
325 .00000000000072838947272065741,
326 .00000000000026809646615211673,
327 -.00000000000010960825046059278,
328 .00000000000002311949383800537,
329 -.00000000000058469058005299247,
330 -.00000000000002103748251144494,
331 -.00000000000023323182945587408,
332 -.00000000000042333694288141916,
333 -.00000000000043933937969737844,
334 .00000000000041341647073835565,
335 .00000000000006841763641591466,
336 .00000000000047585534004430641,
337 .00000000000083679678674757695,
338 -.00000000000085763734646658640,
339 .00000000000021913281229340092,
340 -.00000000000062242842536431148,
341 -.00000000000010983594325438430,
342 .00000000000065310431377633651,
343 -.00000000000047580199021710769,
344 -.00000000000037854251265457040,
345 .00000000000040939233218678664,
346 .00000000000087424383914858291,
347 .00000000000025218188456842882,
348 -.00000000000003608131360422557,
349 -.00000000000050518555924280902,
350 .00000000000078699403323355317,
351 -.00000000000067020876961949060,
352 .00000000000016108575753932458,
353 .00000000000058527188436251509,
354 -.00000000000035246757297904791,
355 -.00000000000018372084495629058,
356 .00000000000088606689813494916,
357 .00000000000066486268071468700,
358 .00000000000063831615170646519,
359 .00000000000025144230728376072,
360 -.00000000000017239444525614834
361};
362
363#if 0
364double
365#ifdef _ANSI_SOURCE
366log(double x)
367#else
368log(x) double x;
369#endif
370{
371 int m, j;
372 double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
373 volatile double u1;
374
375 /* Catch special cases */
376 if (x <= 0)
377 if (x == zero) /* log(0) = -Inf */
378 return (-one/zero);
379 else /* log(neg) = NaN */
380 return (zero/zero);
381 else if (!finite(x))
382 return (x+x); /* x = NaN, Inf */
383
384 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
385 /* y = F*(1 + f/F) for |f| <= 2^-8 */
386
387 m = logb(x);
388 g = ldexp(x, -m);
389 if (m == -1022) {
390 j = logb(g), m += j;
391 g = ldexp(g, -j);
392 }
393 j = N*(g-1) + .5;
394 F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
395 f = g - F;
396
397 /* Approximate expansion for log(1+f/F) ~= u + q */
398 g = 1/(2*F+f);
399 u = 2*f*g;
400 v = u*u;
401 q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
402
403 /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
404 * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
405 * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
406 */
407 if (m | j)
408 u1 = u + 513, u1 -= 513;
409
410 /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
411 * u1 = u to 24 bits.
412 */
413 else
414 u1 = u, TRUNC(u1);
415 u2 = (2.0*(f - F*u1) - u1*f) * g;
416 /* u1 + u2 = 2f/(2F+f) to extra precision. */
417
418 /* log(x) = log(2^m*F*(1+f/F)) = */
419 /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
420 /* (exact) + (tiny) */
421
422 u1 += m*logF_head[N] + logF_head[j]; /* exact */
423 u2 = (u2 + logF_tail[j]) + q; /* tiny */
424 u2 += logF_tail[N]*m;
425 return (u1 + u2);
426}
427#endif
428
429/*
430 * Extra precision variant, returning struct {double a, b;};
431 * log(x) = a+b to 63 bits, with a rounded to 26 bits.
432 */
433struct Double
434#ifdef _ANSI_SOURCE
435__log__D(double x)
436#else
437__log__D(x) double x;
438#endif
439{
440 int m, j;
441 double F, f, g, q, u, v, u2, one = 1.0;
442 volatile double u1;
443 struct Double r;
444
445 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
446 /* y = F*(1 + f/F) for |f| <= 2^-8 */
447
448 m = logb(x);
449 g = ldexp(x, -m);
450 if (m == -1022) {
451 j = logb(g), m += j;
452 g = ldexp(g, -j);
453 }
454 j = N*(g-1) + .5;
455 F = (1.0/N) * j + 1;
456 f = g - F;
457
458 g = 1/(2*F+f);
459 u = 2*f*g;
460 v = u*u;
461 q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
462 if (m | j)
463 u1 = u + 513, u1 -= 513;
464 else
465 u1 = u, TRUNC(u1);
466 u2 = (2.0*(f - F*u1) - u1*f) * g;
467
468 u1 += m*logF_head[N] + logF_head[j];
469
470 u2 += logF_tail[j]; u2 += q;
471 u2 += logF_tail[N]*m;
472 r.a = u1 + u2; /* Only difference is here */
473 TRUNC(r.a);
474 r.b = (u1 - r.a) + u2;
475 return (r);
476}
Note: See TracBrowser for help on using the repository browser.