1 | /*
|
---|
2 | * Copyright (c) 1992, 1993
|
---|
3 | * The Regents of the University of California. All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | * 1. Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer in the
|
---|
12 | * documentation and/or other materials provided with the distribution.
|
---|
13 | * 3. All advertising materials mentioning features or use of this software
|
---|
14 | * must display the following acknowledgement:
|
---|
15 | * This product includes software developed by the University of
|
---|
16 | * California, Berkeley and its contributors.
|
---|
17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
18 | * may be used to endorse or promote products derived from this software
|
---|
19 | * without specific prior written permission.
|
---|
20 | *
|
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
31 | * SUCH DAMAGE.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #ifndef lint
|
---|
35 | static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
|
---|
36 | #endif /* not lint */
|
---|
37 | #include <sys/cdefs.h>
|
---|
38 | __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_log.c,v 1.7 2004/12/16 20:40:37 das Exp $");
|
---|
39 |
|
---|
40 | #include <math.h>
|
---|
41 | #include <errno.h>
|
---|
42 |
|
---|
43 | #include "mathimpl.h"
|
---|
44 |
|
---|
45 | /* Table-driven natural logarithm.
|
---|
46 | *
|
---|
47 | * This code was derived, with minor modifications, from:
|
---|
48 | * Peter Tang, "Table-Driven Implementation of the
|
---|
49 | * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
|
---|
50 | * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
|
---|
51 | *
|
---|
52 | * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
|
---|
53 | * where F = j/128 for j an integer in [0, 128].
|
---|
54 | *
|
---|
55 | * log(2^m) = log2_hi*m + log2_tail*m
|
---|
56 | * since m is an integer, the dominant term is exact.
|
---|
57 | * m has at most 10 digits (for subnormal numbers),
|
---|
58 | * and log2_hi has 11 trailing zero bits.
|
---|
59 | *
|
---|
60 | * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
|
---|
61 | * logF_hi[] + 512 is exact.
|
---|
62 | *
|
---|
63 | * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
|
---|
64 | * the leading term is calculated to extra precision in two
|
---|
65 | * parts, the larger of which adds exactly to the dominant
|
---|
66 | * m and F terms.
|
---|
67 | * There are two cases:
|
---|
68 | * 1. when m, j are non-zero (m | j), use absolute
|
---|
69 | * precision for the leading term.
|
---|
70 | * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
|
---|
71 | * In this case, use a relative precision of 24 bits.
|
---|
72 | * (This is done differently in the original paper)
|
---|
73 | *
|
---|
74 | * Special cases:
|
---|
75 | * 0 return signalling -Inf
|
---|
76 | * neg return signalling NaN
|
---|
77 | * +Inf return +Inf
|
---|
78 | */
|
---|
79 |
|
---|
80 | #define endian (((*(int *) &one)) ? 1 : 0)
|
---|
81 | #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
|
---|
82 |
|
---|
83 | #define N 128
|
---|
84 |
|
---|
85 | /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
|
---|
86 | * Used for generation of extend precision logarithms.
|
---|
87 | * The constant 35184372088832 is 2^45, so the divide is exact.
|
---|
88 | * It ensures correct reading of logF_head, even for inaccurate
|
---|
89 | * decimal-to-binary conversion routines. (Everybody gets the
|
---|
90 | * right answer for integers less than 2^53.)
|
---|
91 | * Values for log(F) were generated using error < 10^-57 absolute
|
---|
92 | * with the bc -l package.
|
---|
93 | */
|
---|
94 | static double A1 = .08333333333333178827;
|
---|
95 | static double A2 = .01250000000377174923;
|
---|
96 | static double A3 = .002232139987919447809;
|
---|
97 | static double A4 = .0004348877777076145742;
|
---|
98 |
|
---|
99 | static double logF_head[N+1] = {
|
---|
100 | 0.,
|
---|
101 | .007782140442060381246,
|
---|
102 | .015504186535963526694,
|
---|
103 | .023167059281547608406,
|
---|
104 | .030771658666765233647,
|
---|
105 | .038318864302141264488,
|
---|
106 | .045809536031242714670,
|
---|
107 | .053244514518837604555,
|
---|
108 | .060624621816486978786,
|
---|
109 | .067950661908525944454,
|
---|
110 | .075223421237524235039,
|
---|
111 | .082443669210988446138,
|
---|
112 | .089612158689760690322,
|
---|
113 | .096729626458454731618,
|
---|
114 | .103796793681567578460,
|
---|
115 | .110814366340264314203,
|
---|
116 | .117783035656430001836,
|
---|
117 | .124703478501032805070,
|
---|
118 | .131576357788617315236,
|
---|
119 | .138402322859292326029,
|
---|
120 | .145182009844575077295,
|
---|
121 | .151916042025732167530,
|
---|
122 | .158605030176659056451,
|
---|
123 | .165249572895390883786,
|
---|
124 | .171850256926518341060,
|
---|
125 | .178407657472689606947,
|
---|
126 | .184922338493834104156,
|
---|
127 | .191394852999565046047,
|
---|
128 | .197825743329758552135,
|
---|
129 | .204215541428766300668,
|
---|
130 | .210564769107350002741,
|
---|
131 | .216873938300523150246,
|
---|
132 | .223143551314024080056,
|
---|
133 | .229374101064877322642,
|
---|
134 | .235566071312860003672,
|
---|
135 | .241719936886966024758,
|
---|
136 | .247836163904594286577,
|
---|
137 | .253915209980732470285,
|
---|
138 | .259957524436686071567,
|
---|
139 | .265963548496984003577,
|
---|
140 | .271933715484010463114,
|
---|
141 | .277868451003087102435,
|
---|
142 | .283768173130738432519,
|
---|
143 | .289633292582948342896,
|
---|
144 | .295464212893421063199,
|
---|
145 | .301261330578199704177,
|
---|
146 | .307025035294827830512,
|
---|
147 | .312755710004239517729,
|
---|
148 | .318453731118097493890,
|
---|
149 | .324119468654316733591,
|
---|
150 | .329753286372579168528,
|
---|
151 | .335355541920762334484,
|
---|
152 | .340926586970454081892,
|
---|
153 | .346466767346100823488,
|
---|
154 | .351976423156884266063,
|
---|
155 | .357455888922231679316,
|
---|
156 | .362905493689140712376,
|
---|
157 | .368325561158599157352,
|
---|
158 | .373716409793814818840,
|
---|
159 | .379078352934811846353,
|
---|
160 | .384411698910298582632,
|
---|
161 | .389716751140440464951,
|
---|
162 | .394993808240542421117,
|
---|
163 | .400243164127459749579,
|
---|
164 | .405465108107819105498,
|
---|
165 | .410659924985338875558,
|
---|
166 | .415827895143593195825,
|
---|
167 | .420969294644237379543,
|
---|
168 | .426084395310681429691,
|
---|
169 | .431173464818130014464,
|
---|
170 | .436236766774527495726,
|
---|
171 | .441274560805140936281,
|
---|
172 | .446287102628048160113,
|
---|
173 | .451274644139630254358,
|
---|
174 | .456237433481874177232,
|
---|
175 | .461175715122408291790,
|
---|
176 | .466089729924533457960,
|
---|
177 | .470979715219073113985,
|
---|
178 | .475845904869856894947,
|
---|
179 | .480688529345570714212,
|
---|
180 | .485507815781602403149,
|
---|
181 | .490303988045525329653,
|
---|
182 | .495077266798034543171,
|
---|
183 | .499827869556611403822,
|
---|
184 | .504556010751912253908,
|
---|
185 | .509261901790523552335,
|
---|
186 | .513945751101346104405,
|
---|
187 | .518607764208354637958,
|
---|
188 | .523248143765158602036,
|
---|
189 | .527867089620485785417,
|
---|
190 | .532464798869114019908,
|
---|
191 | .537041465897345915436,
|
---|
192 | .541597282432121573947,
|
---|
193 | .546132437597407260909,
|
---|
194 | .550647117952394182793,
|
---|
195 | .555141507540611200965,
|
---|
196 | .559615787935399566777,
|
---|
197 | .564070138285387656651,
|
---|
198 | .568504735352689749561,
|
---|
199 | .572919753562018740922,
|
---|
200 | .577315365035246941260,
|
---|
201 | .581691739635061821900,
|
---|
202 | .586049045003164792433,
|
---|
203 | .590387446602107957005,
|
---|
204 | .594707107746216934174,
|
---|
205 | .599008189645246602594,
|
---|
206 | .603290851438941899687,
|
---|
207 | .607555250224322662688,
|
---|
208 | .611801541106615331955,
|
---|
209 | .616029877215623855590,
|
---|
210 | .620240409751204424537,
|
---|
211 | .624433288012369303032,
|
---|
212 | .628608659422752680256,
|
---|
213 | .632766669570628437213,
|
---|
214 | .636907462236194987781,
|
---|
215 | .641031179420679109171,
|
---|
216 | .645137961373620782978,
|
---|
217 | .649227946625615004450,
|
---|
218 | .653301272011958644725,
|
---|
219 | .657358072709030238911,
|
---|
220 | .661398482245203922502,
|
---|
221 | .665422632544505177065,
|
---|
222 | .669430653942981734871,
|
---|
223 | .673422675212350441142,
|
---|
224 | .677398823590920073911,
|
---|
225 | .681359224807238206267,
|
---|
226 | .685304003098281100392,
|
---|
227 | .689233281238557538017,
|
---|
228 | .693147180560117703862
|
---|
229 | };
|
---|
230 |
|
---|
231 | static double logF_tail[N+1] = {
|
---|
232 | 0.,
|
---|
233 | -.00000000000000543229938420049,
|
---|
234 | .00000000000000172745674997061,
|
---|
235 | -.00000000000001323017818229233,
|
---|
236 | -.00000000000001154527628289872,
|
---|
237 | -.00000000000000466529469958300,
|
---|
238 | .00000000000005148849572685810,
|
---|
239 | -.00000000000002532168943117445,
|
---|
240 | -.00000000000005213620639136504,
|
---|
241 | -.00000000000001819506003016881,
|
---|
242 | .00000000000006329065958724544,
|
---|
243 | .00000000000008614512936087814,
|
---|
244 | -.00000000000007355770219435028,
|
---|
245 | .00000000000009638067658552277,
|
---|
246 | .00000000000007598636597194141,
|
---|
247 | .00000000000002579999128306990,
|
---|
248 | -.00000000000004654729747598444,
|
---|
249 | -.00000000000007556920687451336,
|
---|
250 | .00000000000010195735223708472,
|
---|
251 | -.00000000000017319034406422306,
|
---|
252 | -.00000000000007718001336828098,
|
---|
253 | .00000000000010980754099855238,
|
---|
254 | -.00000000000002047235780046195,
|
---|
255 | -.00000000000008372091099235912,
|
---|
256 | .00000000000014088127937111135,
|
---|
257 | .00000000000012869017157588257,
|
---|
258 | .00000000000017788850778198106,
|
---|
259 | .00000000000006440856150696891,
|
---|
260 | .00000000000016132822667240822,
|
---|
261 | -.00000000000007540916511956188,
|
---|
262 | -.00000000000000036507188831790,
|
---|
263 | .00000000000009120937249914984,
|
---|
264 | .00000000000018567570959796010,
|
---|
265 | -.00000000000003149265065191483,
|
---|
266 | -.00000000000009309459495196889,
|
---|
267 | .00000000000017914338601329117,
|
---|
268 | -.00000000000001302979717330866,
|
---|
269 | .00000000000023097385217586939,
|
---|
270 | .00000000000023999540484211737,
|
---|
271 | .00000000000015393776174455408,
|
---|
272 | -.00000000000036870428315837678,
|
---|
273 | .00000000000036920375082080089,
|
---|
274 | -.00000000000009383417223663699,
|
---|
275 | .00000000000009433398189512690,
|
---|
276 | .00000000000041481318704258568,
|
---|
277 | -.00000000000003792316480209314,
|
---|
278 | .00000000000008403156304792424,
|
---|
279 | -.00000000000034262934348285429,
|
---|
280 | .00000000000043712191957429145,
|
---|
281 | -.00000000000010475750058776541,
|
---|
282 | -.00000000000011118671389559323,
|
---|
283 | .00000000000037549577257259853,
|
---|
284 | .00000000000013912841212197565,
|
---|
285 | .00000000000010775743037572640,
|
---|
286 | .00000000000029391859187648000,
|
---|
287 | -.00000000000042790509060060774,
|
---|
288 | .00000000000022774076114039555,
|
---|
289 | .00000000000010849569622967912,
|
---|
290 | -.00000000000023073801945705758,
|
---|
291 | .00000000000015761203773969435,
|
---|
292 | .00000000000003345710269544082,
|
---|
293 | -.00000000000041525158063436123,
|
---|
294 | .00000000000032655698896907146,
|
---|
295 | -.00000000000044704265010452446,
|
---|
296 | .00000000000034527647952039772,
|
---|
297 | -.00000000000007048962392109746,
|
---|
298 | .00000000000011776978751369214,
|
---|
299 | -.00000000000010774341461609578,
|
---|
300 | .00000000000021863343293215910,
|
---|
301 | .00000000000024132639491333131,
|
---|
302 | .00000000000039057462209830700,
|
---|
303 | -.00000000000026570679203560751,
|
---|
304 | .00000000000037135141919592021,
|
---|
305 | -.00000000000017166921336082431,
|
---|
306 | -.00000000000028658285157914353,
|
---|
307 | -.00000000000023812542263446809,
|
---|
308 | .00000000000006576659768580062,
|
---|
309 | -.00000000000028210143846181267,
|
---|
310 | .00000000000010701931762114254,
|
---|
311 | .00000000000018119346366441110,
|
---|
312 | .00000000000009840465278232627,
|
---|
313 | -.00000000000033149150282752542,
|
---|
314 | -.00000000000018302857356041668,
|
---|
315 | -.00000000000016207400156744949,
|
---|
316 | .00000000000048303314949553201,
|
---|
317 | -.00000000000071560553172382115,
|
---|
318 | .00000000000088821239518571855,
|
---|
319 | -.00000000000030900580513238244,
|
---|
320 | -.00000000000061076551972851496,
|
---|
321 | .00000000000035659969663347830,
|
---|
322 | .00000000000035782396591276383,
|
---|
323 | -.00000000000046226087001544578,
|
---|
324 | .00000000000062279762917225156,
|
---|
325 | .00000000000072838947272065741,
|
---|
326 | .00000000000026809646615211673,
|
---|
327 | -.00000000000010960825046059278,
|
---|
328 | .00000000000002311949383800537,
|
---|
329 | -.00000000000058469058005299247,
|
---|
330 | -.00000000000002103748251144494,
|
---|
331 | -.00000000000023323182945587408,
|
---|
332 | -.00000000000042333694288141916,
|
---|
333 | -.00000000000043933937969737844,
|
---|
334 | .00000000000041341647073835565,
|
---|
335 | .00000000000006841763641591466,
|
---|
336 | .00000000000047585534004430641,
|
---|
337 | .00000000000083679678674757695,
|
---|
338 | -.00000000000085763734646658640,
|
---|
339 | .00000000000021913281229340092,
|
---|
340 | -.00000000000062242842536431148,
|
---|
341 | -.00000000000010983594325438430,
|
---|
342 | .00000000000065310431377633651,
|
---|
343 | -.00000000000047580199021710769,
|
---|
344 | -.00000000000037854251265457040,
|
---|
345 | .00000000000040939233218678664,
|
---|
346 | .00000000000087424383914858291,
|
---|
347 | .00000000000025218188456842882,
|
---|
348 | -.00000000000003608131360422557,
|
---|
349 | -.00000000000050518555924280902,
|
---|
350 | .00000000000078699403323355317,
|
---|
351 | -.00000000000067020876961949060,
|
---|
352 | .00000000000016108575753932458,
|
---|
353 | .00000000000058527188436251509,
|
---|
354 | -.00000000000035246757297904791,
|
---|
355 | -.00000000000018372084495629058,
|
---|
356 | .00000000000088606689813494916,
|
---|
357 | .00000000000066486268071468700,
|
---|
358 | .00000000000063831615170646519,
|
---|
359 | .00000000000025144230728376072,
|
---|
360 | -.00000000000017239444525614834
|
---|
361 | };
|
---|
362 |
|
---|
363 | #if 0
|
---|
364 | double
|
---|
365 | #ifdef _ANSI_SOURCE
|
---|
366 | log(double x)
|
---|
367 | #else
|
---|
368 | log(x) double x;
|
---|
369 | #endif
|
---|
370 | {
|
---|
371 | int m, j;
|
---|
372 | double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
|
---|
373 | volatile double u1;
|
---|
374 |
|
---|
375 | /* Catch special cases */
|
---|
376 | if (x <= 0)
|
---|
377 | if (x == zero) /* log(0) = -Inf */
|
---|
378 | return (-one/zero);
|
---|
379 | else /* log(neg) = NaN */
|
---|
380 | return (zero/zero);
|
---|
381 | else if (!finite(x))
|
---|
382 | return (x+x); /* x = NaN, Inf */
|
---|
383 |
|
---|
384 | /* Argument reduction: 1 <= g < 2; x/2^m = g; */
|
---|
385 | /* y = F*(1 + f/F) for |f| <= 2^-8 */
|
---|
386 |
|
---|
387 | m = logb(x);
|
---|
388 | g = ldexp(x, -m);
|
---|
389 | if (m == -1022) {
|
---|
390 | j = logb(g), m += j;
|
---|
391 | g = ldexp(g, -j);
|
---|
392 | }
|
---|
393 | j = N*(g-1) + .5;
|
---|
394 | F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
|
---|
395 | f = g - F;
|
---|
396 |
|
---|
397 | /* Approximate expansion for log(1+f/F) ~= u + q */
|
---|
398 | g = 1/(2*F+f);
|
---|
399 | u = 2*f*g;
|
---|
400 | v = u*u;
|
---|
401 | q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
|
---|
402 |
|
---|
403 | /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
|
---|
404 | * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
|
---|
405 | * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
|
---|
406 | */
|
---|
407 | if (m | j)
|
---|
408 | u1 = u + 513, u1 -= 513;
|
---|
409 |
|
---|
410 | /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
|
---|
411 | * u1 = u to 24 bits.
|
---|
412 | */
|
---|
413 | else
|
---|
414 | u1 = u, TRUNC(u1);
|
---|
415 | u2 = (2.0*(f - F*u1) - u1*f) * g;
|
---|
416 | /* u1 + u2 = 2f/(2F+f) to extra precision. */
|
---|
417 |
|
---|
418 | /* log(x) = log(2^m*F*(1+f/F)) = */
|
---|
419 | /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
|
---|
420 | /* (exact) + (tiny) */
|
---|
421 |
|
---|
422 | u1 += m*logF_head[N] + logF_head[j]; /* exact */
|
---|
423 | u2 = (u2 + logF_tail[j]) + q; /* tiny */
|
---|
424 | u2 += logF_tail[N]*m;
|
---|
425 | return (u1 + u2);
|
---|
426 | }
|
---|
427 | #endif
|
---|
428 |
|
---|
429 | /*
|
---|
430 | * Extra precision variant, returning struct {double a, b;};
|
---|
431 | * log(x) = a+b to 63 bits, with a rounded to 26 bits.
|
---|
432 | */
|
---|
433 | struct Double
|
---|
434 | #ifdef _ANSI_SOURCE
|
---|
435 | __log__D(double x)
|
---|
436 | #else
|
---|
437 | __log__D(x) double x;
|
---|
438 | #endif
|
---|
439 | {
|
---|
440 | int m, j;
|
---|
441 | double F, f, g, q, u, v, u2, one = 1.0;
|
---|
442 | volatile double u1;
|
---|
443 | struct Double r;
|
---|
444 |
|
---|
445 | /* Argument reduction: 1 <= g < 2; x/2^m = g; */
|
---|
446 | /* y = F*(1 + f/F) for |f| <= 2^-8 */
|
---|
447 |
|
---|
448 | m = logb(x);
|
---|
449 | g = ldexp(x, -m);
|
---|
450 | if (m == -1022) {
|
---|
451 | j = logb(g), m += j;
|
---|
452 | g = ldexp(g, -j);
|
---|
453 | }
|
---|
454 | j = N*(g-1) + .5;
|
---|
455 | F = (1.0/N) * j + 1;
|
---|
456 | f = g - F;
|
---|
457 |
|
---|
458 | g = 1/(2*F+f);
|
---|
459 | u = 2*f*g;
|
---|
460 | v = u*u;
|
---|
461 | q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
|
---|
462 | if (m | j)
|
---|
463 | u1 = u + 513, u1 -= 513;
|
---|
464 | else
|
---|
465 | u1 = u, TRUNC(u1);
|
---|
466 | u2 = (2.0*(f - F*u1) - u1*f) * g;
|
---|
467 |
|
---|
468 | u1 += m*logF_head[N] + logF_head[j];
|
---|
469 |
|
---|
470 | u2 += logF_tail[j]; u2 += q;
|
---|
471 | u2 += logF_tail[N]*m;
|
---|
472 | r.a = u1 + u2; /* Only difference is here */
|
---|
473 | TRUNC(r.a);
|
---|
474 | r.b = (u1 - r.a) + u2;
|
---|
475 | return (r);
|
---|
476 | }
|
---|