1 | /*
|
---|
2 | * Copyright (c) 1985, 1993
|
---|
3 | * The Regents of the University of California. All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | * 1. Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer in the
|
---|
12 | * documentation and/or other materials provided with the distribution.
|
---|
13 | * 3. All advertising materials mentioning features or use of this software
|
---|
14 | * must display the following acknowledgement:
|
---|
15 | * This product includes software developed by the University of
|
---|
16 | * California, Berkeley and its contributors.
|
---|
17 | * 4. Neither the name of the University nor the names of its contributors
|
---|
18 | * may be used to endorse or promote products derived from this software
|
---|
19 | * without specific prior written permission.
|
---|
20 | *
|
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
31 | * SUCH DAMAGE.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #ifndef lint
|
---|
35 | static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93";
|
---|
36 | #endif /* not lint */
|
---|
37 | #include <sys/cdefs.h>
|
---|
38 | __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_exp.c,v 1.7 2004/12/16 20:40:37 das Exp $");
|
---|
39 |
|
---|
40 |
|
---|
41 | /* EXP(X)
|
---|
42 | * RETURN THE EXPONENTIAL OF X
|
---|
43 | * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
|
---|
44 | * CODED IN C BY K.C. NG, 1/19/85;
|
---|
45 | * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
|
---|
46 | *
|
---|
47 | * Required system supported functions:
|
---|
48 | * scalb(x,n)
|
---|
49 | * copysign(x,y)
|
---|
50 | * finite(x)
|
---|
51 | *
|
---|
52 | * Method:
|
---|
53 | * 1. Argument Reduction: given the input x, find r and integer k such
|
---|
54 | * that
|
---|
55 | * x = k*ln2 + r, |r| <= 0.5*ln2 .
|
---|
56 | * r will be represented as r := z+c for better accuracy.
|
---|
57 | *
|
---|
58 | * 2. Compute exp(r) by
|
---|
59 | *
|
---|
60 | * exp(r) = 1 + r + r*R1/(2-R1),
|
---|
61 | * where
|
---|
62 | * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
|
---|
63 | *
|
---|
64 | * 3. exp(x) = 2^k * exp(r) .
|
---|
65 | *
|
---|
66 | * Special cases:
|
---|
67 | * exp(INF) is INF, exp(NaN) is NaN;
|
---|
68 | * exp(-INF)= 0;
|
---|
69 | * for finite argument, only exp(0)=1 is exact.
|
---|
70 | *
|
---|
71 | * Accuracy:
|
---|
72 | * exp(x) returns the exponential of x nearly rounded. In a test run
|
---|
73 | * with 1,156,000 random arguments on a VAX, the maximum observed
|
---|
74 | * error was 0.869 ulps (units in the last place).
|
---|
75 | */
|
---|
76 |
|
---|
77 | #include "mathimpl.h"
|
---|
78 |
|
---|
79 | const static double p1 = 0x1.555555555553ep-3;
|
---|
80 | const static double p2 = -0x1.6c16c16bebd93p-9;
|
---|
81 | const static double p3 = 0x1.1566aaf25de2cp-14;
|
---|
82 | const static double p4 = -0x1.bbd41c5d26bf1p-20;
|
---|
83 | const static double p5 = 0x1.6376972bea4d0p-25;
|
---|
84 | const static double ln2hi = 0x1.62e42fee00000p-1;
|
---|
85 | const static double ln2lo = 0x1.a39ef35793c76p-33;
|
---|
86 | const static double lnhuge = 0x1.6602b15b7ecf2p9;
|
---|
87 | const static double lntiny = -0x1.77af8ebeae354p9;
|
---|
88 | const static double invln2 = 0x1.71547652b82fep0;
|
---|
89 |
|
---|
90 | #if 0
|
---|
91 | double exp(x)
|
---|
92 | double x;
|
---|
93 | {
|
---|
94 | double z,hi,lo,c;
|
---|
95 | int k;
|
---|
96 |
|
---|
97 | #if !defined(vax)&&!defined(tahoe)
|
---|
98 | if(x!=x) return(x); /* x is NaN */
|
---|
99 | #endif /* !defined(vax)&&!defined(tahoe) */
|
---|
100 | if( x <= lnhuge ) {
|
---|
101 | if( x >= lntiny ) {
|
---|
102 |
|
---|
103 | /* argument reduction : x --> x - k*ln2 */
|
---|
104 |
|
---|
105 | k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
|
---|
106 |
|
---|
107 | /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
|
---|
108 |
|
---|
109 | hi=x-k*ln2hi;
|
---|
110 | x=hi-(lo=k*ln2lo);
|
---|
111 |
|
---|
112 | /* return 2^k*[1+x+x*c/(2+c)] */
|
---|
113 | z=x*x;
|
---|
114 | c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
|
---|
115 | return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
|
---|
116 |
|
---|
117 | }
|
---|
118 | /* end of x > lntiny */
|
---|
119 |
|
---|
120 | else
|
---|
121 | /* exp(-big#) underflows to zero */
|
---|
122 | if(finite(x)) return(scalb(1.0,-5000));
|
---|
123 |
|
---|
124 | /* exp(-INF) is zero */
|
---|
125 | else return(0.0);
|
---|
126 | }
|
---|
127 | /* end of x < lnhuge */
|
---|
128 |
|
---|
129 | else
|
---|
130 | /* exp(INF) is INF, exp(+big#) overflows to INF */
|
---|
131 | return( finite(x) ? scalb(1.0,5000) : x);
|
---|
132 | }
|
---|
133 | #endif
|
---|
134 |
|
---|
135 | /* returns exp(r = x + c) for |c| < |x| with no overlap. */
|
---|
136 |
|
---|
137 | double __exp__D(x, c)
|
---|
138 | double x, c;
|
---|
139 | {
|
---|
140 | double z,hi,lo;
|
---|
141 | int k;
|
---|
142 |
|
---|
143 | if (x != x) /* x is NaN */
|
---|
144 | return(x);
|
---|
145 | if ( x <= lnhuge ) {
|
---|
146 | if ( x >= lntiny ) {
|
---|
147 |
|
---|
148 | /* argument reduction : x --> x - k*ln2 */
|
---|
149 | z = invln2*x;
|
---|
150 | k = z + copysign(.5, x);
|
---|
151 |
|
---|
152 | /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
|
---|
153 |
|
---|
154 | hi=(x-k*ln2hi); /* Exact. */
|
---|
155 | x= hi - (lo = k*ln2lo-c);
|
---|
156 | /* return 2^k*[1+x+x*c/(2+c)] */
|
---|
157 | z=x*x;
|
---|
158 | c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
|
---|
159 | c = (x*c)/(2.0-c);
|
---|
160 |
|
---|
161 | return scalb(1.+(hi-(lo - c)), k);
|
---|
162 | }
|
---|
163 | /* end of x > lntiny */
|
---|
164 |
|
---|
165 | else
|
---|
166 | /* exp(-big#) underflows to zero */
|
---|
167 | if(finite(x)) return(scalb(1.0,-5000));
|
---|
168 |
|
---|
169 | /* exp(-INF) is zero */
|
---|
170 | else return(0.0);
|
---|
171 | }
|
---|
172 | /* end of x < lnhuge */
|
---|
173 |
|
---|
174 | else
|
---|
175 | /* exp(INF) is INF, exp(+big#) overflows to INF */
|
---|
176 | return( finite(x) ? scalb(1.0,5000) : x);
|
---|
177 | }
|
---|