| 1 |
|
|---|
| 2 | /* @(#)k_cos.c 1.3 95/01/18 */
|
|---|
| 3 | /*
|
|---|
| 4 | * ====================================================
|
|---|
| 5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|---|
| 6 | *
|
|---|
| 7 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|---|
| 8 | * Permission to use, copy, modify, and distribute this
|
|---|
| 9 | * software is freely granted, provided that this notice
|
|---|
| 10 | * is preserved.
|
|---|
| 11 | * ====================================================
|
|---|
| 12 | */
|
|---|
| 13 |
|
|---|
| 14 | #ifndef lint
|
|---|
| 15 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_cos.c,v 1.8 2005/02/04 18:26:06 das Exp $";
|
|---|
| 16 | #endif
|
|---|
| 17 |
|
|---|
| 18 | /*
|
|---|
| 19 | * __kernel_cos( x, y )
|
|---|
| 20 | * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
|---|
| 21 | * Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|---|
| 22 | * Input y is the tail of x.
|
|---|
| 23 | *
|
|---|
| 24 | * Algorithm
|
|---|
| 25 | * 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
|---|
| 26 | * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
|---|
| 27 | * 3. cos(x) is approximated by a polynomial of degree 14 on
|
|---|
| 28 | * [0,pi/4]
|
|---|
| 29 | * 4 14
|
|---|
| 30 | * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
|---|
| 31 | * where the remez error is
|
|---|
| 32 | *
|
|---|
| 33 | * | 2 4 6 8 10 12 14 | -58
|
|---|
| 34 | * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
|---|
| 35 | * | |
|
|---|
| 36 | *
|
|---|
| 37 | * 4 6 8 10 12 14
|
|---|
| 38 | * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
|---|
| 39 | * cos(x) = 1 - x*x/2 + r
|
|---|
| 40 | * since cos(x+y) ~ cos(x) - sin(x)*y
|
|---|
| 41 | * ~ cos(x) - x*y,
|
|---|
| 42 | * a correction term is necessary in cos(x) and hence
|
|---|
| 43 | * cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
|---|
| 44 | * For better accuracy when x > 0.3, let qx = |x|/4 with
|
|---|
| 45 | * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
|---|
| 46 | * Then
|
|---|
| 47 | * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
|---|
| 48 | * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
|---|
| 49 | * magnitude of the latter is at least a quarter of x*x/2,
|
|---|
| 50 | * thus, reducing the rounding error in the subtraction.
|
|---|
| 51 | */
|
|---|
| 52 |
|
|---|
| 53 | #include "math.h"
|
|---|
| 54 | #include "math_private.h"
|
|---|
| 55 |
|
|---|
| 56 | static const double
|
|---|
| 57 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|---|
| 58 | C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
|---|
| 59 | C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
|---|
| 60 | C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
|---|
| 61 | C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
|---|
| 62 | C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
|---|
| 63 | C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
|---|
| 64 |
|
|---|
| 65 | double
|
|---|
| 66 | __kernel_cos(double x, double y)
|
|---|
| 67 | {
|
|---|
| 68 | double a,hz,z,r,qx;
|
|---|
| 69 | int32_t ix;
|
|---|
| 70 | GET_HIGH_WORD(ix,x);
|
|---|
| 71 | ix &= 0x7fffffff; /* ix = |x|'s high word*/
|
|---|
| 72 | if(ix<0x3e400000) { /* if x < 2**27 */
|
|---|
| 73 | if(((int)x)==0) return one; /* generate inexact */
|
|---|
| 74 | }
|
|---|
| 75 | z = x*x;
|
|---|
| 76 | r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
|---|
| 77 | if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
|---|
| 78 | return one - (0.5*z - (z*r - x*y));
|
|---|
| 79 | else {
|
|---|
| 80 | if(ix > 0x3fe90000) { /* x > 0.78125 */
|
|---|
| 81 | qx = 0.28125;
|
|---|
| 82 | } else {
|
|---|
| 83 | INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
|
|---|
| 84 | }
|
|---|
| 85 | hz = 0.5*z-qx;
|
|---|
| 86 | a = one-qx;
|
|---|
| 87 | return a - (hz - (z*r-x*y));
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|