| 1 |
|
|---|
| 2 | /* @(#)e_exp.c 1.6 04/04/22 */
|
|---|
| 3 | /*
|
|---|
| 4 | * ====================================================
|
|---|
| 5 | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
|---|
| 6 | *
|
|---|
| 7 | * Permission to use, copy, modify, and distribute this
|
|---|
| 8 | * software is freely granted, provided that this notice
|
|---|
| 9 | * is preserved.
|
|---|
| 10 | * ====================================================
|
|---|
| 11 | */
|
|---|
| 12 |
|
|---|
| 13 | #ifndef lint
|
|---|
| 14 | static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_exp.c,v 1.10 2005/02/04 18:26:05 das Exp $";
|
|---|
| 15 | #endif
|
|---|
| 16 |
|
|---|
| 17 | /* __ieee754_exp(x)
|
|---|
| 18 | * Returns the exponential of x.
|
|---|
| 19 | *
|
|---|
| 20 | * Method
|
|---|
| 21 | * 1. Argument reduction:
|
|---|
| 22 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
|---|
| 23 | * Given x, find r and integer k such that
|
|---|
| 24 | *
|
|---|
| 25 | * x = k*ln2 + r, |r| <= 0.5*ln2.
|
|---|
| 26 | *
|
|---|
| 27 | * Here r will be represented as r = hi-lo for better
|
|---|
| 28 | * accuracy.
|
|---|
| 29 | *
|
|---|
| 30 | * 2. Approximation of exp(r) by a special rational function on
|
|---|
| 31 | * the interval [0,0.34658]:
|
|---|
| 32 | * Write
|
|---|
| 33 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|---|
| 34 | * We use a special Remes algorithm on [0,0.34658] to generate
|
|---|
| 35 | * a polynomial of degree 5 to approximate R. The maximum error
|
|---|
| 36 | * of this polynomial approximation is bounded by 2**-59. In
|
|---|
| 37 | * other words,
|
|---|
| 38 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
|---|
| 39 | * (where z=r*r, and the values of P1 to P5 are listed below)
|
|---|
| 40 | * and
|
|---|
| 41 | * | 5 | -59
|
|---|
| 42 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|---|
| 43 | * | |
|
|---|
| 44 | * The computation of exp(r) thus becomes
|
|---|
| 45 | * 2*r
|
|---|
| 46 | * exp(r) = 1 + -------
|
|---|
| 47 | * R - r
|
|---|
| 48 | * r*R1(r)
|
|---|
| 49 | * = 1 + r + ----------- (for better accuracy)
|
|---|
| 50 | * 2 - R1(r)
|
|---|
| 51 | * where
|
|---|
| 52 | * 2 4 10
|
|---|
| 53 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|---|
| 54 | *
|
|---|
| 55 | * 3. Scale back to obtain exp(x):
|
|---|
| 56 | * From step 1, we have
|
|---|
| 57 | * exp(x) = 2^k * exp(r)
|
|---|
| 58 | *
|
|---|
| 59 | * Special cases:
|
|---|
| 60 | * exp(INF) is INF, exp(NaN) is NaN;
|
|---|
| 61 | * exp(-INF) is 0, and
|
|---|
| 62 | * for finite argument, only exp(0)=1 is exact.
|
|---|
| 63 | *
|
|---|
| 64 | * Accuracy:
|
|---|
| 65 | * according to an error analysis, the error is always less than
|
|---|
| 66 | * 1 ulp (unit in the last place).
|
|---|
| 67 | *
|
|---|
| 68 | * Misc. info.
|
|---|
| 69 | * For IEEE double
|
|---|
| 70 | * if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|---|
| 71 | * if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|---|
| 72 | *
|
|---|
| 73 | * Constants:
|
|---|
| 74 | * The hexadecimal values are the intended ones for the following
|
|---|
| 75 | * constants. The decimal values may be used, provided that the
|
|---|
| 76 | * compiler will convert from decimal to binary accurately enough
|
|---|
| 77 | * to produce the hexadecimal values shown.
|
|---|
| 78 | */
|
|---|
| 79 |
|
|---|
| 80 | #include "math.h"
|
|---|
| 81 | #include "math_private.h"
|
|---|
| 82 |
|
|---|
| 83 | static const double
|
|---|
| 84 | one = 1.0,
|
|---|
| 85 | halF[2] = {0.5,-0.5,},
|
|---|
| 86 | huge = 1.0e+300,
|
|---|
| 87 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
|
|---|
| 88 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
|---|
| 89 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
|---|
| 90 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|---|
| 91 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
|
|---|
| 92 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|---|
| 93 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
|
|---|
| 94 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
|---|
| 95 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|---|
| 96 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|---|
| 97 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|---|
| 98 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|---|
| 99 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|---|
| 100 |
|
|---|
| 101 |
|
|---|
| 102 | double
|
|---|
| 103 | __ieee754_exp(double x) /* default IEEE double exp */
|
|---|
| 104 | {
|
|---|
| 105 | double y,hi=0.0,lo=0.0,c,t;
|
|---|
| 106 | int32_t k=0,xsb;
|
|---|
| 107 | u_int32_t hx;
|
|---|
| 108 |
|
|---|
| 109 | GET_HIGH_WORD(hx,x);
|
|---|
| 110 | xsb = (hx>>31)&1; /* sign bit of x */
|
|---|
| 111 | hx &= 0x7fffffff; /* high word of |x| */
|
|---|
| 112 |
|
|---|
| 113 | /* filter out non-finite argument */
|
|---|
| 114 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|---|
| 115 | if(hx>=0x7ff00000) {
|
|---|
| 116 | u_int32_t lx;
|
|---|
| 117 | GET_LOW_WORD(lx,x);
|
|---|
| 118 | if(((hx&0xfffff)|lx)!=0)
|
|---|
| 119 | return x+x; /* NaN */
|
|---|
| 120 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
|---|
| 121 | }
|
|---|
| 122 | if(x > o_threshold) return huge*huge; /* overflow */
|
|---|
| 123 | if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | /* argument reduction */
|
|---|
| 127 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|---|
| 128 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|---|
| 129 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
|---|
| 130 | } else {
|
|---|
| 131 | k = (int)(invln2*x+halF[xsb]);
|
|---|
| 132 | t = k;
|
|---|
| 133 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
|---|
| 134 | lo = t*ln2LO[0];
|
|---|
| 135 | }
|
|---|
| 136 | x = hi - lo;
|
|---|
| 137 | }
|
|---|
| 138 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
|---|
| 139 | if(huge+x>one) return one+x;/* trigger inexact */
|
|---|
| 140 | }
|
|---|
| 141 | else k = 0;
|
|---|
| 142 |
|
|---|
| 143 | /* x is now in primary range */
|
|---|
| 144 | t = x*x;
|
|---|
| 145 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|---|
| 146 | if(k==0) return one-((x*c)/(c-2.0)-x);
|
|---|
| 147 | else y = one-((lo-(x*c)/(2.0-c))-hi);
|
|---|
| 148 | if(k >= -1021) {
|
|---|
| 149 | u_int32_t hy;
|
|---|
| 150 | GET_HIGH_WORD(hy,y);
|
|---|
| 151 | SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
|
|---|
| 152 | return y;
|
|---|
| 153 | } else {
|
|---|
| 154 | u_int32_t hy;
|
|---|
| 155 | GET_HIGH_WORD(hy,y);
|
|---|
| 156 | SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
|
|---|
| 157 | return y*twom1000;
|
|---|
| 158 | }
|
|---|
| 159 | }
|
|---|