| 1 | /* An expandable hash tables datatype. | 
|---|
| 2 | Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc. | 
|---|
| 3 | Contributed by Vladimir Makarov (vmakarov@cygnus.com). | 
|---|
| 4 |  | 
|---|
| 5 | This file is part of the libiberty library. | 
|---|
| 6 | Libiberty is free software; you can redistribute it and/or | 
|---|
| 7 | modify it under the terms of the GNU Library General Public | 
|---|
| 8 | License as published by the Free Software Foundation; either | 
|---|
| 9 | version 2 of the License, or (at your option) any later version. | 
|---|
| 10 |  | 
|---|
| 11 | Libiberty is distributed in the hope that it will be useful, | 
|---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|---|
| 14 | Library General Public License for more details. | 
|---|
| 15 |  | 
|---|
| 16 | You should have received a copy of the GNU Library General Public | 
|---|
| 17 | License along with libiberty; see the file COPYING.LIB.  If | 
|---|
| 18 | not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|---|
| 19 | Boston, MA 02111-1307, USA.  */ | 
|---|
| 20 |  | 
|---|
| 21 | /* This package implements basic hash table functionality.  It is possible | 
|---|
| 22 | to search for an entry, create an entry and destroy an entry. | 
|---|
| 23 |  | 
|---|
| 24 | Elements in the table are generic pointers. | 
|---|
| 25 |  | 
|---|
| 26 | The size of the table is not fixed; if the occupancy of the table | 
|---|
| 27 | grows too high the hash table will be expanded. | 
|---|
| 28 |  | 
|---|
| 29 | The abstract data implementation is based on generalized Algorithm D | 
|---|
| 30 | from Knuth's book "The art of computer programming".  Hash table is | 
|---|
| 31 | expanded by creation of new hash table and transferring elements from | 
|---|
| 32 | the old table to the new table. */ | 
|---|
| 33 |  | 
|---|
| 34 | #ifdef HAVE_CONFIG_H | 
|---|
| 35 | #include "config.h" | 
|---|
| 36 | #endif | 
|---|
| 37 |  | 
|---|
| 38 | #include <sys/types.h> | 
|---|
| 39 |  | 
|---|
| 40 | #ifdef HAVE_STDLIB_H | 
|---|
| 41 | #include <stdlib.h> | 
|---|
| 42 | #endif | 
|---|
| 43 |  | 
|---|
| 44 | #ifdef HAVE_STRING_H | 
|---|
| 45 | #include <string.h> | 
|---|
| 46 | #endif | 
|---|
| 47 |  | 
|---|
| 48 | #include <stdio.h> | 
|---|
| 49 |  | 
|---|
| 50 | #include "libiberty.h" | 
|---|
| 51 | #include "hashtab.h" | 
|---|
| 52 |  | 
|---|
| 53 | /* This macro defines reserved value for empty table entry. */ | 
|---|
| 54 |  | 
|---|
| 55 | #define EMPTY_ENTRY    ((PTR) 0) | 
|---|
| 56 |  | 
|---|
| 57 | /* This macro defines reserved value for table entry which contained | 
|---|
| 58 | a deleted element. */ | 
|---|
| 59 |  | 
|---|
| 60 | #define DELETED_ENTRY  ((PTR) 1) | 
|---|
| 61 |  | 
|---|
| 62 | static unsigned long higher_prime_number PARAMS ((unsigned long)); | 
|---|
| 63 | static hashval_t hash_pointer PARAMS ((const void *)); | 
|---|
| 64 | static int eq_pointer PARAMS ((const void *, const void *)); | 
|---|
| 65 | static int htab_expand PARAMS ((htab_t)); | 
|---|
| 66 | static PTR *find_empty_slot_for_expand  PARAMS ((htab_t, hashval_t)); | 
|---|
| 67 |  | 
|---|
| 68 | /* At some point, we could make these be NULL, and modify the | 
|---|
| 69 | hash-table routines to handle NULL specially; that would avoid | 
|---|
| 70 | function-call overhead for the common case of hashing pointers.  */ | 
|---|
| 71 | htab_hash htab_hash_pointer = hash_pointer; | 
|---|
| 72 | htab_eq htab_eq_pointer = eq_pointer; | 
|---|
| 73 |  | 
|---|
| 74 | /* The following function returns a nearest prime number which is | 
|---|
| 75 | greater than N, and near a power of two. */ | 
|---|
| 76 |  | 
|---|
| 77 | static unsigned long | 
|---|
| 78 | higher_prime_number (n) | 
|---|
| 79 | unsigned long n; | 
|---|
| 80 | { | 
|---|
| 81 | /* These are primes that are near, but slightly smaller than, a | 
|---|
| 82 | power of two.  */ | 
|---|
| 83 | static const unsigned long primes[] = { | 
|---|
| 84 | (unsigned long) 7, | 
|---|
| 85 | (unsigned long) 13, | 
|---|
| 86 | (unsigned long) 31, | 
|---|
| 87 | (unsigned long) 61, | 
|---|
| 88 | (unsigned long) 127, | 
|---|
| 89 | (unsigned long) 251, | 
|---|
| 90 | (unsigned long) 509, | 
|---|
| 91 | (unsigned long) 1021, | 
|---|
| 92 | (unsigned long) 2039, | 
|---|
| 93 | (unsigned long) 4093, | 
|---|
| 94 | (unsigned long) 8191, | 
|---|
| 95 | (unsigned long) 16381, | 
|---|
| 96 | (unsigned long) 32749, | 
|---|
| 97 | (unsigned long) 65521, | 
|---|
| 98 | (unsigned long) 131071, | 
|---|
| 99 | (unsigned long) 262139, | 
|---|
| 100 | (unsigned long) 524287, | 
|---|
| 101 | (unsigned long) 1048573, | 
|---|
| 102 | (unsigned long) 2097143, | 
|---|
| 103 | (unsigned long) 4194301, | 
|---|
| 104 | (unsigned long) 8388593, | 
|---|
| 105 | (unsigned long) 16777213, | 
|---|
| 106 | (unsigned long) 33554393, | 
|---|
| 107 | (unsigned long) 67108859, | 
|---|
| 108 | (unsigned long) 134217689, | 
|---|
| 109 | (unsigned long) 268435399, | 
|---|
| 110 | (unsigned long) 536870909, | 
|---|
| 111 | (unsigned long) 1073741789, | 
|---|
| 112 | (unsigned long) 2147483647, | 
|---|
| 113 | /* 4294967291L */ | 
|---|
| 114 | ((unsigned long) 2147483647) + ((unsigned long) 2147483644), | 
|---|
| 115 | }; | 
|---|
| 116 |  | 
|---|
| 117 | const unsigned long *low = &primes[0]; | 
|---|
| 118 | const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])]; | 
|---|
| 119 |  | 
|---|
| 120 | while (low != high) | 
|---|
| 121 | { | 
|---|
| 122 | const unsigned long *mid = low + (high - low) / 2; | 
|---|
| 123 | if (n > *mid) | 
|---|
| 124 | low = mid + 1; | 
|---|
| 125 | else | 
|---|
| 126 | high = mid; | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | /* If we've run out of primes, abort.  */ | 
|---|
| 130 | if (n > *low) | 
|---|
| 131 | { | 
|---|
| 132 | fprintf (stderr, "Cannot find prime bigger than %lu\n", n); | 
|---|
| 133 | abort (); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | return *low; | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | /* Returns a hash code for P.  */ | 
|---|
| 140 |  | 
|---|
| 141 | static hashval_t | 
|---|
| 142 | hash_pointer (p) | 
|---|
| 143 | const PTR p; | 
|---|
| 144 | { | 
|---|
| 145 | return (hashval_t) ((long)p >> 3); | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | /* Returns non-zero if P1 and P2 are equal.  */ | 
|---|
| 149 |  | 
|---|
| 150 | static int | 
|---|
| 151 | eq_pointer (p1, p2) | 
|---|
| 152 | const PTR p1; | 
|---|
| 153 | const PTR p2; | 
|---|
| 154 | { | 
|---|
| 155 | return p1 == p2; | 
|---|
| 156 | } | 
|---|
| 157 |  | 
|---|
| 158 | /* This function creates table with length slightly longer than given | 
|---|
| 159 | source length.  Created hash table is initiated as empty (all the | 
|---|
| 160 | hash table entries are EMPTY_ENTRY).  The function returns the | 
|---|
| 161 | created hash table.  Memory allocation must not fail.  */ | 
|---|
| 162 |  | 
|---|
| 163 | htab_t | 
|---|
| 164 | htab_create (size, hash_f, eq_f, del_f) | 
|---|
| 165 | size_t size; | 
|---|
| 166 | htab_hash hash_f; | 
|---|
| 167 | htab_eq eq_f; | 
|---|
| 168 | htab_del del_f; | 
|---|
| 169 | { | 
|---|
| 170 | htab_t result; | 
|---|
| 171 |  | 
|---|
| 172 | size = higher_prime_number (size); | 
|---|
| 173 | result = (htab_t) xcalloc (1, sizeof (struct htab)); | 
|---|
| 174 | result->entries = (PTR *) xcalloc (size, sizeof (PTR)); | 
|---|
| 175 | result->size = size; | 
|---|
| 176 | result->hash_f = hash_f; | 
|---|
| 177 | result->eq_f = eq_f; | 
|---|
| 178 | result->del_f = del_f; | 
|---|
| 179 | result->return_allocation_failure = 0; | 
|---|
| 180 | return result; | 
|---|
| 181 | } | 
|---|
| 182 |  | 
|---|
| 183 | /* This function creates table with length slightly longer than given | 
|---|
| 184 | source length.  The created hash table is initiated as empty (all the | 
|---|
| 185 | hash table entries are EMPTY_ENTRY).  The function returns the created | 
|---|
| 186 | hash table.  Memory allocation may fail; it may return NULL.  */ | 
|---|
| 187 |  | 
|---|
| 188 | htab_t | 
|---|
| 189 | htab_try_create (size, hash_f, eq_f, del_f) | 
|---|
| 190 | size_t size; | 
|---|
| 191 | htab_hash hash_f; | 
|---|
| 192 | htab_eq eq_f; | 
|---|
| 193 | htab_del del_f; | 
|---|
| 194 | { | 
|---|
| 195 | htab_t result; | 
|---|
| 196 |  | 
|---|
| 197 | size = higher_prime_number (size); | 
|---|
| 198 | result = (htab_t) calloc (1, sizeof (struct htab)); | 
|---|
| 199 | if (result == NULL) | 
|---|
| 200 | return NULL; | 
|---|
| 201 |  | 
|---|
| 202 | result->entries = (PTR *) calloc (size, sizeof (PTR)); | 
|---|
| 203 | if (result->entries == NULL) | 
|---|
| 204 | { | 
|---|
| 205 | free (result); | 
|---|
| 206 | return NULL; | 
|---|
| 207 | } | 
|---|
| 208 |  | 
|---|
| 209 | result->size = size; | 
|---|
| 210 | result->hash_f = hash_f; | 
|---|
| 211 | result->eq_f = eq_f; | 
|---|
| 212 | result->del_f = del_f; | 
|---|
| 213 | result->return_allocation_failure = 1; | 
|---|
| 214 | return result; | 
|---|
| 215 | } | 
|---|
| 216 |  | 
|---|
| 217 | /* This function frees all memory allocated for given hash table. | 
|---|
| 218 | Naturally the hash table must already exist. */ | 
|---|
| 219 |  | 
|---|
| 220 | void | 
|---|
| 221 | htab_delete (htab) | 
|---|
| 222 | htab_t htab; | 
|---|
| 223 | { | 
|---|
| 224 | int i; | 
|---|
| 225 |  | 
|---|
| 226 | if (htab->del_f) | 
|---|
| 227 | for (i = htab->size - 1; i >= 0; i--) | 
|---|
| 228 | if (htab->entries[i] != EMPTY_ENTRY | 
|---|
| 229 | && htab->entries[i] != DELETED_ENTRY) | 
|---|
| 230 | (*htab->del_f) (htab->entries[i]); | 
|---|
| 231 |  | 
|---|
| 232 | free (htab->entries); | 
|---|
| 233 | free (htab); | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | /* This function clears all entries in the given hash table.  */ | 
|---|
| 237 |  | 
|---|
| 238 | void | 
|---|
| 239 | htab_empty (htab) | 
|---|
| 240 | htab_t htab; | 
|---|
| 241 | { | 
|---|
| 242 | int i; | 
|---|
| 243 |  | 
|---|
| 244 | if (htab->del_f) | 
|---|
| 245 | for (i = htab->size - 1; i >= 0; i--) | 
|---|
| 246 | if (htab->entries[i] != EMPTY_ENTRY | 
|---|
| 247 | && htab->entries[i] != DELETED_ENTRY) | 
|---|
| 248 | (*htab->del_f) (htab->entries[i]); | 
|---|
| 249 |  | 
|---|
| 250 | memset (htab->entries, 0, htab->size * sizeof (PTR)); | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | /* Similar to htab_find_slot, but without several unwanted side effects: | 
|---|
| 254 | - Does not call htab->eq_f when it finds an existing entry. | 
|---|
| 255 | - Does not change the count of elements/searches/collisions in the | 
|---|
| 256 | hash table. | 
|---|
| 257 | This function also assumes there are no deleted entries in the table. | 
|---|
| 258 | HASH is the hash value for the element to be inserted.  */ | 
|---|
| 259 |  | 
|---|
| 260 | static PTR * | 
|---|
| 261 | find_empty_slot_for_expand (htab, hash) | 
|---|
| 262 | htab_t htab; | 
|---|
| 263 | hashval_t hash; | 
|---|
| 264 | { | 
|---|
| 265 | size_t size = htab->size; | 
|---|
| 266 | unsigned int index = hash % size; | 
|---|
| 267 | PTR *slot = htab->entries + index; | 
|---|
| 268 | hashval_t hash2; | 
|---|
| 269 |  | 
|---|
| 270 | if (*slot == EMPTY_ENTRY) | 
|---|
| 271 | return slot; | 
|---|
| 272 | else if (*slot == DELETED_ENTRY) | 
|---|
| 273 | abort (); | 
|---|
| 274 |  | 
|---|
| 275 | hash2 = 1 + hash % (size - 2); | 
|---|
| 276 | for (;;) | 
|---|
| 277 | { | 
|---|
| 278 | index += hash2; | 
|---|
| 279 | if (index >= size) | 
|---|
| 280 | index -= size; | 
|---|
| 281 |  | 
|---|
| 282 | slot = htab->entries + index; | 
|---|
| 283 | if (*slot == EMPTY_ENTRY) | 
|---|
| 284 | return slot; | 
|---|
| 285 | else if (*slot == DELETED_ENTRY) | 
|---|
| 286 | abort (); | 
|---|
| 287 | } | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | /* The following function changes size of memory allocated for the | 
|---|
| 291 | entries and repeatedly inserts the table elements.  The occupancy | 
|---|
| 292 | of the table after the call will be about 50%.  Naturally the hash | 
|---|
| 293 | table must already exist.  Remember also that the place of the | 
|---|
| 294 | table entries is changed.  If memory allocation failures are allowed, | 
|---|
| 295 | this function will return zero, indicating that the table could not be | 
|---|
| 296 | expanded.  If all goes well, it will return a non-zero value.  */ | 
|---|
| 297 |  | 
|---|
| 298 | static int | 
|---|
| 299 | htab_expand (htab) | 
|---|
| 300 | htab_t htab; | 
|---|
| 301 | { | 
|---|
| 302 | PTR *oentries; | 
|---|
| 303 | PTR *olimit; | 
|---|
| 304 | PTR *p; | 
|---|
| 305 | size_t nsize; | 
|---|
| 306 |  | 
|---|
| 307 | oentries = htab->entries; | 
|---|
| 308 | olimit = oentries + htab->size; | 
|---|
| 309 |  | 
|---|
| 310 | nsize = higher_prime_number (htab->size * 2); | 
|---|
| 311 |  | 
|---|
| 312 | if (htab->return_allocation_failure) | 
|---|
| 313 | { | 
|---|
| 314 | PTR *nentries = (PTR *) calloc (nsize, sizeof (PTR)); | 
|---|
| 315 | if (nentries == NULL) | 
|---|
| 316 | return 0; | 
|---|
| 317 | htab->entries = nentries; | 
|---|
| 318 | } | 
|---|
| 319 | else | 
|---|
| 320 | htab->entries = (PTR *) xcalloc (nsize, sizeof (PTR)); | 
|---|
| 321 |  | 
|---|
| 322 | htab->size = nsize; | 
|---|
| 323 | htab->n_elements -= htab->n_deleted; | 
|---|
| 324 | htab->n_deleted = 0; | 
|---|
| 325 |  | 
|---|
| 326 | p = oentries; | 
|---|
| 327 | do | 
|---|
| 328 | { | 
|---|
| 329 | PTR x = *p; | 
|---|
| 330 |  | 
|---|
| 331 | if (x != EMPTY_ENTRY && x != DELETED_ENTRY) | 
|---|
| 332 | { | 
|---|
| 333 | PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); | 
|---|
| 334 |  | 
|---|
| 335 | *q = x; | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | p++; | 
|---|
| 339 | } | 
|---|
| 340 | while (p < olimit); | 
|---|
| 341 |  | 
|---|
| 342 | free (oentries); | 
|---|
| 343 | return 1; | 
|---|
| 344 | } | 
|---|
| 345 |  | 
|---|
| 346 | /* This function searches for a hash table entry equal to the given | 
|---|
| 347 | element.  It cannot be used to insert or delete an element.  */ | 
|---|
| 348 |  | 
|---|
| 349 | PTR | 
|---|
| 350 | htab_find_with_hash (htab, element, hash) | 
|---|
| 351 | htab_t htab; | 
|---|
| 352 | const PTR element; | 
|---|
| 353 | hashval_t hash; | 
|---|
| 354 | { | 
|---|
| 355 | unsigned int index; | 
|---|
| 356 | hashval_t hash2; | 
|---|
| 357 | size_t size; | 
|---|
| 358 | PTR entry; | 
|---|
| 359 |  | 
|---|
| 360 | htab->searches++; | 
|---|
| 361 | size = htab->size; | 
|---|
| 362 | index = hash % size; | 
|---|
| 363 |  | 
|---|
| 364 | entry = htab->entries[index]; | 
|---|
| 365 | if (entry == EMPTY_ENTRY | 
|---|
| 366 | || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element))) | 
|---|
| 367 | return entry; | 
|---|
| 368 |  | 
|---|
| 369 | hash2 = 1 + hash % (size - 2); | 
|---|
| 370 |  | 
|---|
| 371 | for (;;) | 
|---|
| 372 | { | 
|---|
| 373 | htab->collisions++; | 
|---|
| 374 | index += hash2; | 
|---|
| 375 | if (index >= size) | 
|---|
| 376 | index -= size; | 
|---|
| 377 |  | 
|---|
| 378 | entry = htab->entries[index]; | 
|---|
| 379 | if (entry == EMPTY_ENTRY | 
|---|
| 380 | || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element))) | 
|---|
| 381 | return entry; | 
|---|
| 382 | } | 
|---|
| 383 | } | 
|---|
| 384 |  | 
|---|
| 385 | /* Like htab_find_slot_with_hash, but compute the hash value from the | 
|---|
| 386 | element.  */ | 
|---|
| 387 |  | 
|---|
| 388 | PTR | 
|---|
| 389 | htab_find (htab, element) | 
|---|
| 390 | htab_t htab; | 
|---|
| 391 | const PTR element; | 
|---|
| 392 | { | 
|---|
| 393 | return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | /* This function searches for a hash table slot containing an entry | 
|---|
| 397 | equal to the given element.  To delete an entry, call this with | 
|---|
| 398 | INSERT = 0, then call htab_clear_slot on the slot returned (possibly | 
|---|
| 399 | after doing some checks).  To insert an entry, call this with | 
|---|
| 400 | INSERT = 1, then write the value you want into the returned slot. | 
|---|
| 401 | When inserting an entry, NULL may be returned if memory allocation | 
|---|
| 402 | fails.  */ | 
|---|
| 403 |  | 
|---|
| 404 | PTR * | 
|---|
| 405 | htab_find_slot_with_hash (htab, element, hash, insert) | 
|---|
| 406 | htab_t htab; | 
|---|
| 407 | const PTR element; | 
|---|
| 408 | hashval_t hash; | 
|---|
| 409 | enum insert_option insert; | 
|---|
| 410 | { | 
|---|
| 411 | PTR *first_deleted_slot; | 
|---|
| 412 | unsigned int index; | 
|---|
| 413 | hashval_t hash2; | 
|---|
| 414 | size_t size; | 
|---|
| 415 | PTR entry; | 
|---|
| 416 |  | 
|---|
| 417 | if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4 | 
|---|
| 418 | && htab_expand (htab) == 0) | 
|---|
| 419 | return NULL; | 
|---|
| 420 |  | 
|---|
| 421 | size = htab->size; | 
|---|
| 422 | index = hash % size; | 
|---|
| 423 |  | 
|---|
| 424 | htab->searches++; | 
|---|
| 425 | first_deleted_slot = NULL; | 
|---|
| 426 |  | 
|---|
| 427 | entry = htab->entries[index]; | 
|---|
| 428 | if (entry == EMPTY_ENTRY) | 
|---|
| 429 | goto empty_entry; | 
|---|
| 430 | else if (entry == DELETED_ENTRY) | 
|---|
| 431 | first_deleted_slot = &htab->entries[index]; | 
|---|
| 432 | else if ((*htab->eq_f) (entry, element)) | 
|---|
| 433 | return &htab->entries[index]; | 
|---|
| 434 |  | 
|---|
| 435 | hash2 = 1 + hash % (size - 2); | 
|---|
| 436 | for (;;) | 
|---|
| 437 | { | 
|---|
| 438 | htab->collisions++; | 
|---|
| 439 | index += hash2; | 
|---|
| 440 | if (index >= size) | 
|---|
| 441 | index -= size; | 
|---|
| 442 |  | 
|---|
| 443 | entry = htab->entries[index]; | 
|---|
| 444 | if (entry == EMPTY_ENTRY) | 
|---|
| 445 | goto empty_entry; | 
|---|
| 446 | else if (entry == DELETED_ENTRY) | 
|---|
| 447 | { | 
|---|
| 448 | if (!first_deleted_slot) | 
|---|
| 449 | first_deleted_slot = &htab->entries[index]; | 
|---|
| 450 | } | 
|---|
| 451 | else if ((*htab->eq_f) (entry, element)) | 
|---|
| 452 | return &htab->entries[index]; | 
|---|
| 453 | } | 
|---|
| 454 |  | 
|---|
| 455 | empty_entry: | 
|---|
| 456 | if (insert == NO_INSERT) | 
|---|
| 457 | return NULL; | 
|---|
| 458 |  | 
|---|
| 459 | htab->n_elements++; | 
|---|
| 460 |  | 
|---|
| 461 | if (first_deleted_slot) | 
|---|
| 462 | { | 
|---|
| 463 | *first_deleted_slot = EMPTY_ENTRY; | 
|---|
| 464 | return first_deleted_slot; | 
|---|
| 465 | } | 
|---|
| 466 |  | 
|---|
| 467 | return &htab->entries[index]; | 
|---|
| 468 | } | 
|---|
| 469 |  | 
|---|
| 470 | /* Like htab_find_slot_with_hash, but compute the hash value from the | 
|---|
| 471 | element.  */ | 
|---|
| 472 |  | 
|---|
| 473 | PTR * | 
|---|
| 474 | htab_find_slot (htab, element, insert) | 
|---|
| 475 | htab_t htab; | 
|---|
| 476 | const PTR element; | 
|---|
| 477 | enum insert_option insert; | 
|---|
| 478 | { | 
|---|
| 479 | return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), | 
|---|
| 480 | insert); | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | /* This function deletes an element with the given value from hash | 
|---|
| 484 | table.  If there is no matching element in the hash table, this | 
|---|
| 485 | function does nothing.  */ | 
|---|
| 486 |  | 
|---|
| 487 | void | 
|---|
| 488 | htab_remove_elt (htab, element) | 
|---|
| 489 | htab_t htab; | 
|---|
| 490 | PTR element; | 
|---|
| 491 | { | 
|---|
| 492 | PTR *slot; | 
|---|
| 493 |  | 
|---|
| 494 | slot = htab_find_slot (htab, element, NO_INSERT); | 
|---|
| 495 | if (*slot == EMPTY_ENTRY) | 
|---|
| 496 | return; | 
|---|
| 497 |  | 
|---|
| 498 | if (htab->del_f) | 
|---|
| 499 | (*htab->del_f) (*slot); | 
|---|
| 500 |  | 
|---|
| 501 | *slot = DELETED_ENTRY; | 
|---|
| 502 | htab->n_deleted++; | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | /* This function clears a specified slot in a hash table.  It is | 
|---|
| 506 | useful when you've already done the lookup and don't want to do it | 
|---|
| 507 | again.  */ | 
|---|
| 508 |  | 
|---|
| 509 | void | 
|---|
| 510 | htab_clear_slot (htab, slot) | 
|---|
| 511 | htab_t htab; | 
|---|
| 512 | PTR *slot; | 
|---|
| 513 | { | 
|---|
| 514 | if (slot < htab->entries || slot >= htab->entries + htab->size | 
|---|
| 515 | || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY) | 
|---|
| 516 | abort (); | 
|---|
| 517 |  | 
|---|
| 518 | if (htab->del_f) | 
|---|
| 519 | (*htab->del_f) (*slot); | 
|---|
| 520 |  | 
|---|
| 521 | *slot = DELETED_ENTRY; | 
|---|
| 522 | htab->n_deleted++; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | /* This function scans over the entire hash table calling | 
|---|
| 526 | CALLBACK for each live entry.  If CALLBACK returns false, | 
|---|
| 527 | the iteration stops.  INFO is passed as CALLBACK's second | 
|---|
| 528 | argument.  */ | 
|---|
| 529 |  | 
|---|
| 530 | void | 
|---|
| 531 | htab_traverse (htab, callback, info) | 
|---|
| 532 | htab_t htab; | 
|---|
| 533 | htab_trav callback; | 
|---|
| 534 | PTR info; | 
|---|
| 535 | { | 
|---|
| 536 | PTR *slot = htab->entries; | 
|---|
| 537 | PTR *limit = slot + htab->size; | 
|---|
| 538 |  | 
|---|
| 539 | do | 
|---|
| 540 | { | 
|---|
| 541 | PTR x = *slot; | 
|---|
| 542 |  | 
|---|
| 543 | if (x != EMPTY_ENTRY && x != DELETED_ENTRY) | 
|---|
| 544 | if (!(*callback) (slot, info)) | 
|---|
| 545 | break; | 
|---|
| 546 | } | 
|---|
| 547 | while (++slot < limit); | 
|---|
| 548 | } | 
|---|
| 549 |  | 
|---|
| 550 | /* Return the current size of given hash table. */ | 
|---|
| 551 |  | 
|---|
| 552 | size_t | 
|---|
| 553 | htab_size (htab) | 
|---|
| 554 | htab_t htab; | 
|---|
| 555 | { | 
|---|
| 556 | return htab->size; | 
|---|
| 557 | } | 
|---|
| 558 |  | 
|---|
| 559 | /* Return the current number of elements in given hash table. */ | 
|---|
| 560 |  | 
|---|
| 561 | size_t | 
|---|
| 562 | htab_elements (htab) | 
|---|
| 563 | htab_t htab; | 
|---|
| 564 | { | 
|---|
| 565 | return htab->n_elements - htab->n_deleted; | 
|---|
| 566 | } | 
|---|
| 567 |  | 
|---|
| 568 | /* Return the fraction of fixed collisions during all work with given | 
|---|
| 569 | hash table. */ | 
|---|
| 570 |  | 
|---|
| 571 | double | 
|---|
| 572 | htab_collisions (htab) | 
|---|
| 573 | htab_t htab; | 
|---|
| 574 | { | 
|---|
| 575 | if (htab->searches == 0) | 
|---|
| 576 | return 0.0; | 
|---|
| 577 |  | 
|---|
| 578 | return (double) htab->collisions / (double) htab->searches; | 
|---|
| 579 | } | 
|---|
| 580 |  | 
|---|
| 581 | /* Hash P as a null-terminated string. | 
|---|
| 582 |  | 
|---|
| 583 | Copied from gcc/hashtable.c.  Zack had the following to say with respect | 
|---|
| 584 | to applicability, though note that unlike hashtable.c, this hash table | 
|---|
| 585 | implementation re-hashes rather than chain buckets. | 
|---|
| 586 |  | 
|---|
| 587 | http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html | 
|---|
| 588 | From: Zack Weinberg <zackw@panix.com> | 
|---|
| 589 | Date: Fri, 17 Aug 2001 02:15:56 -0400 | 
|---|
| 590 |  | 
|---|
| 591 | I got it by extracting all the identifiers from all the source code | 
|---|
| 592 | I had lying around in mid-1999, and testing many recurrences of | 
|---|
| 593 | the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either | 
|---|
| 594 | prime numbers or the appropriate identity.  This was the best one. | 
|---|
| 595 | I don't remember exactly what constituted "best", except I was | 
|---|
| 596 | looking at bucket-length distributions mostly. | 
|---|
| 597 |  | 
|---|
| 598 | So it should be very good at hashing identifiers, but might not be | 
|---|
| 599 | as good at arbitrary strings. | 
|---|
| 600 |  | 
|---|
| 601 | I'll add that it thoroughly trounces the hash functions recommended | 
|---|
| 602 | for this use at http://burtleburtle.net/bob/hash/index.html, both | 
|---|
| 603 | on speed and bucket distribution.  I haven't tried it against the | 
|---|
| 604 | function they just started using for Perl's hashes.  */ | 
|---|
| 605 |  | 
|---|
| 606 | hashval_t | 
|---|
| 607 | htab_hash_string (p) | 
|---|
| 608 | const PTR p; | 
|---|
| 609 | { | 
|---|
| 610 | const unsigned char *str = (const unsigned char *) p; | 
|---|
| 611 | hashval_t r = 0; | 
|---|
| 612 | unsigned char c; | 
|---|
| 613 |  | 
|---|
| 614 | while ((c = *str++) != 0) | 
|---|
| 615 | r = r * 67 + c - 113; | 
|---|
| 616 |  | 
|---|
| 617 | return r; | 
|---|
| 618 | } | 
|---|