1 | /* Utility routines for data type conversion for GNU C.
|
---|
2 | Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997,
|
---|
3 | 1998 Free Software Foundation, Inc.
|
---|
4 |
|
---|
5 | This file is part of GCC.
|
---|
6 |
|
---|
7 | GCC is free software; you can redistribute it and/or modify it under
|
---|
8 | the terms of the GNU General Public License as published by the Free
|
---|
9 | Software Foundation; either version 2, or (at your option) any later
|
---|
10 | version.
|
---|
11 |
|
---|
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
---|
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
---|
15 | for more details.
|
---|
16 |
|
---|
17 | You should have received a copy of the GNU General Public License
|
---|
18 | along with GCC; see the file COPYING. If not, write to the Free
|
---|
19 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
---|
20 | 02111-1307, USA. */
|
---|
21 |
|
---|
22 |
|
---|
23 | /* These routines are somewhat language-independent utility function
|
---|
24 | intended to be called by the language-specific convert () functions. */
|
---|
25 |
|
---|
26 | #include "config.h"
|
---|
27 | #include "system.h"
|
---|
28 | #include "tree.h"
|
---|
29 | #include "flags.h"
|
---|
30 | #include "convert.h"
|
---|
31 | #include "toplev.h"
|
---|
32 | #include "langhooks.h"
|
---|
33 |
|
---|
34 | /* Convert EXPR to some pointer or reference type TYPE.
|
---|
35 |
|
---|
36 | EXPR must be pointer, reference, integer, enumeral, or literal zero;
|
---|
37 | in other cases error is called. */
|
---|
38 |
|
---|
39 | tree
|
---|
40 | convert_to_pointer (type, expr)
|
---|
41 | tree type, expr;
|
---|
42 | {
|
---|
43 | if (integer_zerop (expr))
|
---|
44 | {
|
---|
45 | expr = build_int_2 (0, 0);
|
---|
46 | TREE_TYPE (expr) = type;
|
---|
47 | return expr;
|
---|
48 | }
|
---|
49 |
|
---|
50 | switch (TREE_CODE (TREE_TYPE (expr)))
|
---|
51 | {
|
---|
52 | case POINTER_TYPE:
|
---|
53 | case REFERENCE_TYPE:
|
---|
54 | return build1 (NOP_EXPR, type, expr);
|
---|
55 |
|
---|
56 | case INTEGER_TYPE:
|
---|
57 | case ENUMERAL_TYPE:
|
---|
58 | case BOOLEAN_TYPE:
|
---|
59 | case CHAR_TYPE:
|
---|
60 | if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
|
---|
61 | return build1 (CONVERT_EXPR, type, expr);
|
---|
62 |
|
---|
63 | return
|
---|
64 | convert_to_pointer (type,
|
---|
65 | convert ((*lang_hooks.types.type_for_size)
|
---|
66 | (POINTER_SIZE, 0), expr));
|
---|
67 |
|
---|
68 | default:
|
---|
69 | error ("cannot convert to a pointer type");
|
---|
70 | return convert_to_pointer (type, integer_zero_node);
|
---|
71 | }
|
---|
72 | }
|
---|
73 |
|
---|
74 | /* Convert EXPR to some floating-point type TYPE.
|
---|
75 |
|
---|
76 | EXPR must be float, integer, or enumeral;
|
---|
77 | in other cases error is called. */
|
---|
78 |
|
---|
79 | tree
|
---|
80 | convert_to_real (type, expr)
|
---|
81 | tree type, expr;
|
---|
82 | {
|
---|
83 | switch (TREE_CODE (TREE_TYPE (expr)))
|
---|
84 | {
|
---|
85 | case REAL_TYPE:
|
---|
86 | return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
|
---|
87 | type, expr);
|
---|
88 |
|
---|
89 | case INTEGER_TYPE:
|
---|
90 | case ENUMERAL_TYPE:
|
---|
91 | case BOOLEAN_TYPE:
|
---|
92 | case CHAR_TYPE:
|
---|
93 | return build1 (FLOAT_EXPR, type, expr);
|
---|
94 |
|
---|
95 | case COMPLEX_TYPE:
|
---|
96 | return convert (type,
|
---|
97 | fold (build1 (REALPART_EXPR,
|
---|
98 | TREE_TYPE (TREE_TYPE (expr)), expr)));
|
---|
99 |
|
---|
100 | case POINTER_TYPE:
|
---|
101 | case REFERENCE_TYPE:
|
---|
102 | error ("pointer value used where a floating point value was expected");
|
---|
103 | return convert_to_real (type, integer_zero_node);
|
---|
104 |
|
---|
105 | default:
|
---|
106 | error ("aggregate value used where a float was expected");
|
---|
107 | return convert_to_real (type, integer_zero_node);
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | /* Convert EXPR to some integer (or enum) type TYPE.
|
---|
112 |
|
---|
113 | EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
|
---|
114 | vector; in other cases error is called.
|
---|
115 |
|
---|
116 | The result of this is always supposed to be a newly created tree node
|
---|
117 | not in use in any existing structure. */
|
---|
118 |
|
---|
119 | tree
|
---|
120 | convert_to_integer (type, expr)
|
---|
121 | tree type, expr;
|
---|
122 | {
|
---|
123 | enum tree_code ex_form = TREE_CODE (expr);
|
---|
124 | tree intype = TREE_TYPE (expr);
|
---|
125 | unsigned int inprec = TYPE_PRECISION (intype);
|
---|
126 | unsigned int outprec = TYPE_PRECISION (type);
|
---|
127 |
|
---|
128 | /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
|
---|
129 | be. Consider `enum E = { a, b = (enum E) 3 };'. */
|
---|
130 | if (!COMPLETE_TYPE_P (type))
|
---|
131 | {
|
---|
132 | error ("conversion to incomplete type");
|
---|
133 | return error_mark_node;
|
---|
134 | }
|
---|
135 |
|
---|
136 | switch (TREE_CODE (intype))
|
---|
137 | {
|
---|
138 | case POINTER_TYPE:
|
---|
139 | case REFERENCE_TYPE:
|
---|
140 | if (integer_zerop (expr))
|
---|
141 | expr = integer_zero_node;
|
---|
142 | else
|
---|
143 | expr = fold (build1 (CONVERT_EXPR, (*lang_hooks.types.type_for_size)
|
---|
144 | (POINTER_SIZE, 0), expr));
|
---|
145 |
|
---|
146 | return convert_to_integer (type, expr);
|
---|
147 |
|
---|
148 | case INTEGER_TYPE:
|
---|
149 | case ENUMERAL_TYPE:
|
---|
150 | case BOOLEAN_TYPE:
|
---|
151 | case CHAR_TYPE:
|
---|
152 | /* If this is a logical operation, which just returns 0 or 1, we can
|
---|
153 | change the type of the expression. For some logical operations,
|
---|
154 | we must also change the types of the operands to maintain type
|
---|
155 | correctness. */
|
---|
156 |
|
---|
157 | if (TREE_CODE_CLASS (ex_form) == '<')
|
---|
158 | {
|
---|
159 | TREE_TYPE (expr) = type;
|
---|
160 | return expr;
|
---|
161 | }
|
---|
162 |
|
---|
163 | else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR
|
---|
164 | || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR
|
---|
165 | || ex_form == TRUTH_XOR_EXPR)
|
---|
166 | {
|
---|
167 | TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
|
---|
168 | TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1));
|
---|
169 | TREE_TYPE (expr) = type;
|
---|
170 | return expr;
|
---|
171 | }
|
---|
172 |
|
---|
173 | else if (ex_form == TRUTH_NOT_EXPR)
|
---|
174 | {
|
---|
175 | TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
|
---|
176 | TREE_TYPE (expr) = type;
|
---|
177 | return expr;
|
---|
178 | }
|
---|
179 |
|
---|
180 | /* If we are widening the type, put in an explicit conversion.
|
---|
181 | Similarly if we are not changing the width. After this, we know
|
---|
182 | we are truncating EXPR. */
|
---|
183 |
|
---|
184 | else if (outprec >= inprec)
|
---|
185 | return build1 (NOP_EXPR, type, expr);
|
---|
186 |
|
---|
187 | /* If TYPE is an enumeral type or a type with a precision less
|
---|
188 | than the number of bits in its mode, do the conversion to the
|
---|
189 | type corresponding to its mode, then do a nop conversion
|
---|
190 | to TYPE. */
|
---|
191 | else if (TREE_CODE (type) == ENUMERAL_TYPE
|
---|
192 | || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
|
---|
193 | return build1 (NOP_EXPR, type,
|
---|
194 | convert ((*lang_hooks.types.type_for_mode)
|
---|
195 | (TYPE_MODE (type), TREE_UNSIGNED (type)),
|
---|
196 | expr));
|
---|
197 |
|
---|
198 | /* Here detect when we can distribute the truncation down past some
|
---|
199 | arithmetic. For example, if adding two longs and converting to an
|
---|
200 | int, we can equally well convert both to ints and then add.
|
---|
201 | For the operations handled here, such truncation distribution
|
---|
202 | is always safe.
|
---|
203 | It is desirable in these cases:
|
---|
204 | 1) when truncating down to full-word from a larger size
|
---|
205 | 2) when truncating takes no work.
|
---|
206 | 3) when at least one operand of the arithmetic has been extended
|
---|
207 | (as by C's default conversions). In this case we need two conversions
|
---|
208 | if we do the arithmetic as already requested, so we might as well
|
---|
209 | truncate both and then combine. Perhaps that way we need only one.
|
---|
210 |
|
---|
211 | Note that in general we cannot do the arithmetic in a type
|
---|
212 | shorter than the desired result of conversion, even if the operands
|
---|
213 | are both extended from a shorter type, because they might overflow
|
---|
214 | if combined in that type. The exceptions to this--the times when
|
---|
215 | two narrow values can be combined in their narrow type even to
|
---|
216 | make a wider result--are handled by "shorten" in build_binary_op. */
|
---|
217 |
|
---|
218 | switch (ex_form)
|
---|
219 | {
|
---|
220 | case RSHIFT_EXPR:
|
---|
221 | /* We can pass truncation down through right shifting
|
---|
222 | when the shift count is a nonpositive constant. */
|
---|
223 | if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
|
---|
224 | && tree_int_cst_lt (TREE_OPERAND (expr, 1),
|
---|
225 | convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
|
---|
226 | integer_one_node)))
|
---|
227 | goto trunc1;
|
---|
228 | break;
|
---|
229 |
|
---|
230 | case LSHIFT_EXPR:
|
---|
231 | /* We can pass truncation down through left shifting
|
---|
232 | when the shift count is a nonnegative constant and
|
---|
233 | the target type is unsigned. */
|
---|
234 | if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
|
---|
235 | && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
|
---|
236 | && TREE_UNSIGNED (type)
|
---|
237 | && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
|
---|
238 | {
|
---|
239 | /* If shift count is less than the width of the truncated type,
|
---|
240 | really shift. */
|
---|
241 | if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
|
---|
242 | /* In this case, shifting is like multiplication. */
|
---|
243 | goto trunc1;
|
---|
244 | else
|
---|
245 | {
|
---|
246 | /* If it is >= that width, result is zero.
|
---|
247 | Handling this with trunc1 would give the wrong result:
|
---|
248 | (int) ((long long) a << 32) is well defined (as 0)
|
---|
249 | but (int) a << 32 is undefined and would get a
|
---|
250 | warning. */
|
---|
251 |
|
---|
252 | tree t = convert_to_integer (type, integer_zero_node);
|
---|
253 |
|
---|
254 | /* If the original expression had side-effects, we must
|
---|
255 | preserve it. */
|
---|
256 | if (TREE_SIDE_EFFECTS (expr))
|
---|
257 | return build (COMPOUND_EXPR, type, expr, t);
|
---|
258 | else
|
---|
259 | return t;
|
---|
260 | }
|
---|
261 | }
|
---|
262 | break;
|
---|
263 |
|
---|
264 | case MAX_EXPR:
|
---|
265 | case MIN_EXPR:
|
---|
266 | case MULT_EXPR:
|
---|
267 | {
|
---|
268 | tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
|
---|
269 | tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
|
---|
270 |
|
---|
271 | /* Don't distribute unless the output precision is at least as big
|
---|
272 | as the actual inputs. Otherwise, the comparison of the
|
---|
273 | truncated values will be wrong. */
|
---|
274 | if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
|
---|
275 | && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
|
---|
276 | /* If signedness of arg0 and arg1 don't match,
|
---|
277 | we can't necessarily find a type to compare them in. */
|
---|
278 | && (TREE_UNSIGNED (TREE_TYPE (arg0))
|
---|
279 | == TREE_UNSIGNED (TREE_TYPE (arg1))))
|
---|
280 | goto trunc1;
|
---|
281 | break;
|
---|
282 | }
|
---|
283 |
|
---|
284 | case PLUS_EXPR:
|
---|
285 | case MINUS_EXPR:
|
---|
286 | case BIT_AND_EXPR:
|
---|
287 | case BIT_IOR_EXPR:
|
---|
288 | case BIT_XOR_EXPR:
|
---|
289 | case BIT_ANDTC_EXPR:
|
---|
290 | trunc1:
|
---|
291 | {
|
---|
292 | tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
|
---|
293 | tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
|
---|
294 |
|
---|
295 | if (outprec >= BITS_PER_WORD
|
---|
296 | || TRULY_NOOP_TRUNCATION (outprec, inprec)
|
---|
297 | || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
|
---|
298 | || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
|
---|
299 | {
|
---|
300 | /* Do the arithmetic in type TYPEX,
|
---|
301 | then convert result to TYPE. */
|
---|
302 | tree typex = type;
|
---|
303 |
|
---|
304 | /* Can't do arithmetic in enumeral types
|
---|
305 | so use an integer type that will hold the values. */
|
---|
306 | if (TREE_CODE (typex) == ENUMERAL_TYPE)
|
---|
307 | typex = (*lang_hooks.types.type_for_size)
|
---|
308 | (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
|
---|
309 |
|
---|
310 | /* But now perhaps TYPEX is as wide as INPREC.
|
---|
311 | In that case, do nothing special here.
|
---|
312 | (Otherwise would recurse infinitely in convert. */
|
---|
313 | if (TYPE_PRECISION (typex) != inprec)
|
---|
314 | {
|
---|
315 | /* Don't do unsigned arithmetic where signed was wanted,
|
---|
316 | or vice versa.
|
---|
317 | Exception: if both of the original operands were
|
---|
318 | unsigned then we can safely do the work as unsigned.
|
---|
319 | Exception: shift operations take their type solely
|
---|
320 | from the first argument.
|
---|
321 | Exception: the LSHIFT_EXPR case above requires that
|
---|
322 | we perform this operation unsigned lest we produce
|
---|
323 | signed-overflow undefinedness.
|
---|
324 | And we may need to do it as unsigned
|
---|
325 | if we truncate to the original size. */
|
---|
326 | if (TREE_UNSIGNED (TREE_TYPE (expr))
|
---|
327 | || (TREE_UNSIGNED (TREE_TYPE (arg0))
|
---|
328 | && (TREE_UNSIGNED (TREE_TYPE (arg1))
|
---|
329 | || ex_form == LSHIFT_EXPR
|
---|
330 | || ex_form == RSHIFT_EXPR
|
---|
331 | || ex_form == LROTATE_EXPR
|
---|
332 | || ex_form == RROTATE_EXPR))
|
---|
333 | || ex_form == LSHIFT_EXPR)
|
---|
334 | typex = (*lang_hooks.types.unsigned_type) (typex);
|
---|
335 | else
|
---|
336 | typex = (*lang_hooks.types.signed_type) (typex);
|
---|
337 | return convert (type,
|
---|
338 | fold (build (ex_form, typex,
|
---|
339 | convert (typex, arg0),
|
---|
340 | convert (typex, arg1),
|
---|
341 | 0)));
|
---|
342 | }
|
---|
343 | }
|
---|
344 | }
|
---|
345 | break;
|
---|
346 |
|
---|
347 | case NEGATE_EXPR:
|
---|
348 | case BIT_NOT_EXPR:
|
---|
349 | /* This is not correct for ABS_EXPR,
|
---|
350 | since we must test the sign before truncation. */
|
---|
351 | {
|
---|
352 | tree typex = type;
|
---|
353 |
|
---|
354 | /* Can't do arithmetic in enumeral types
|
---|
355 | so use an integer type that will hold the values. */
|
---|
356 | if (TREE_CODE (typex) == ENUMERAL_TYPE)
|
---|
357 | typex = (*lang_hooks.types.type_for_size)
|
---|
358 | (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
|
---|
359 |
|
---|
360 | /* But now perhaps TYPEX is as wide as INPREC.
|
---|
361 | In that case, do nothing special here.
|
---|
362 | (Otherwise would recurse infinitely in convert. */
|
---|
363 | if (TYPE_PRECISION (typex) != inprec)
|
---|
364 | {
|
---|
365 | /* Don't do unsigned arithmetic where signed was wanted,
|
---|
366 | or vice versa. */
|
---|
367 | if (TREE_UNSIGNED (TREE_TYPE (expr)))
|
---|
368 | typex = (*lang_hooks.types.unsigned_type) (typex);
|
---|
369 | else
|
---|
370 | typex = (*lang_hooks.types.signed_type) (typex);
|
---|
371 | return convert (type,
|
---|
372 | fold (build1 (ex_form, typex,
|
---|
373 | convert (typex,
|
---|
374 | TREE_OPERAND (expr, 0)))));
|
---|
375 | }
|
---|
376 | }
|
---|
377 |
|
---|
378 | case NOP_EXPR:
|
---|
379 | /* Don't introduce a
|
---|
380 | "can't convert between vector values of different size" error. */
|
---|
381 | if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
|
---|
382 | && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
---|
383 | != GET_MODE_SIZE (TYPE_MODE (type))))
|
---|
384 | break;
|
---|
385 | /* If truncating after truncating, might as well do all at once.
|
---|
386 | If truncating after extending, we may get rid of wasted work. */
|
---|
387 | return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
|
---|
388 |
|
---|
389 | case COND_EXPR:
|
---|
390 | /* It is sometimes worthwhile to push the narrowing down through
|
---|
391 | the conditional and never loses. */
|
---|
392 | return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0),
|
---|
393 | convert (type, TREE_OPERAND (expr, 1)),
|
---|
394 | convert (type, TREE_OPERAND (expr, 2))));
|
---|
395 |
|
---|
396 | default:
|
---|
397 | break;
|
---|
398 | }
|
---|
399 |
|
---|
400 | return build1 (NOP_EXPR, type, expr);
|
---|
401 |
|
---|
402 | case REAL_TYPE:
|
---|
403 | return build1 (FIX_TRUNC_EXPR, type, expr);
|
---|
404 |
|
---|
405 | case COMPLEX_TYPE:
|
---|
406 | return convert (type,
|
---|
407 | fold (build1 (REALPART_EXPR,
|
---|
408 | TREE_TYPE (TREE_TYPE (expr)), expr)));
|
---|
409 |
|
---|
410 | case VECTOR_TYPE:
|
---|
411 | if (GET_MODE_SIZE (TYPE_MODE (type))
|
---|
412 | != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
|
---|
413 | {
|
---|
414 | error ("can't convert between vector values of different size");
|
---|
415 | return error_mark_node;
|
---|
416 | }
|
---|
417 | return build1 (NOP_EXPR, type, expr);
|
---|
418 |
|
---|
419 | default:
|
---|
420 | error ("aggregate value used where an integer was expected");
|
---|
421 | return convert (type, integer_zero_node);
|
---|
422 | }
|
---|
423 | }
|
---|
424 |
|
---|
425 | /* Convert EXPR to the complex type TYPE in the usual ways. */
|
---|
426 |
|
---|
427 | tree
|
---|
428 | convert_to_complex (type, expr)
|
---|
429 | tree type, expr;
|
---|
430 | {
|
---|
431 | tree subtype = TREE_TYPE (type);
|
---|
432 |
|
---|
433 | switch (TREE_CODE (TREE_TYPE (expr)))
|
---|
434 | {
|
---|
435 | case REAL_TYPE:
|
---|
436 | case INTEGER_TYPE:
|
---|
437 | case ENUMERAL_TYPE:
|
---|
438 | case BOOLEAN_TYPE:
|
---|
439 | case CHAR_TYPE:
|
---|
440 | return build (COMPLEX_EXPR, type, convert (subtype, expr),
|
---|
441 | convert (subtype, integer_zero_node));
|
---|
442 |
|
---|
443 | case COMPLEX_TYPE:
|
---|
444 | {
|
---|
445 | tree elt_type = TREE_TYPE (TREE_TYPE (expr));
|
---|
446 |
|
---|
447 | if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
|
---|
448 | return expr;
|
---|
449 | else if (TREE_CODE (expr) == COMPLEX_EXPR)
|
---|
450 | return fold (build (COMPLEX_EXPR,
|
---|
451 | type,
|
---|
452 | convert (subtype, TREE_OPERAND (expr, 0)),
|
---|
453 | convert (subtype, TREE_OPERAND (expr, 1))));
|
---|
454 | else
|
---|
455 | {
|
---|
456 | expr = save_expr (expr);
|
---|
457 | return
|
---|
458 | fold (build (COMPLEX_EXPR,
|
---|
459 | type, convert (subtype,
|
---|
460 | fold (build1 (REALPART_EXPR,
|
---|
461 | TREE_TYPE (TREE_TYPE (expr)),
|
---|
462 | expr))),
|
---|
463 | convert (subtype,
|
---|
464 | fold (build1 (IMAGPART_EXPR,
|
---|
465 | TREE_TYPE (TREE_TYPE (expr)),
|
---|
466 | expr)))));
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 | case POINTER_TYPE:
|
---|
471 | case REFERENCE_TYPE:
|
---|
472 | error ("pointer value used where a complex was expected");
|
---|
473 | return convert_to_complex (type, integer_zero_node);
|
---|
474 |
|
---|
475 | default:
|
---|
476 | error ("aggregate value used where a complex was expected");
|
---|
477 | return convert_to_complex (type, integer_zero_node);
|
---|
478 | }
|
---|
479 | }
|
---|
480 |
|
---|
481 | /* Convert EXPR to the vector type TYPE in the usual ways. */
|
---|
482 |
|
---|
483 | tree
|
---|
484 | convert_to_vector (type, expr)
|
---|
485 | tree type, expr;
|
---|
486 | {
|
---|
487 | switch (TREE_CODE (TREE_TYPE (expr)))
|
---|
488 | {
|
---|
489 | case INTEGER_TYPE:
|
---|
490 | case VECTOR_TYPE:
|
---|
491 | if (GET_MODE_SIZE (TYPE_MODE (type))
|
---|
492 | != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
|
---|
493 | {
|
---|
494 | error ("can't convert between vector values of different size");
|
---|
495 | return error_mark_node;
|
---|
496 | }
|
---|
497 | return build1 (NOP_EXPR, type, expr);
|
---|
498 |
|
---|
499 | default:
|
---|
500 | error ("can't convert value to a vector");
|
---|
501 | return convert_to_vector (type, integer_zero_node);
|
---|
502 | }
|
---|
503 | }
|
---|