1 | /*
|
---|
2 | * Copyright (c) 1983 Regents of the University of California.
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | * 1. Redistributions of source code must retain the above copyright
|
---|
9 | * notice, this list of conditions and the following disclaimer.
|
---|
10 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer in the
|
---|
12 | * documentation and/or other materials provided with the distribution.
|
---|
13 | * 3. [rescinded 22 July 1999]
|
---|
14 | * 4. Neither the name of the University nor the names of its contributors
|
---|
15 | * may be used to endorse or promote products derived from this software
|
---|
16 | * without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
---|
19 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
20 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
---|
21 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
---|
22 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
---|
23 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
---|
24 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
---|
25 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
---|
26 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
---|
27 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
---|
28 | * SUCH DAMAGE.
|
---|
29 | */
|
---|
30 |
|
---|
31 | /*
|
---|
32 | * This is derived from the Berkeley source:
|
---|
33 | * @(#)random.c 5.5 (Berkeley) 7/6/88
|
---|
34 | * It was reworked for the GNU C Library by Roland McGrath.
|
---|
35 | */
|
---|
36 |
|
---|
37 | #include <errno.h>
|
---|
38 |
|
---|
39 | #if 0
|
---|
40 |
|
---|
41 | #include <ansidecl.h>
|
---|
42 | #include <limits.h>
|
---|
43 | #include <stddef.h>
|
---|
44 | #include <stdlib.h>
|
---|
45 |
|
---|
46 | #else
|
---|
47 |
|
---|
48 | #define ULONG_MAX ((unsigned long)(~0L)) /* 0xFFFFFFFF for 32-bits */
|
---|
49 | #define LONG_MAX ((long)(ULONG_MAX >> 1)) /* 0x7FFFFFFF for 32-bits*/
|
---|
50 |
|
---|
51 | #ifdef __STDC__
|
---|
52 | # define PTR void *
|
---|
53 | # ifndef NULL
|
---|
54 | # define NULL (void *) 0
|
---|
55 | # endif
|
---|
56 | #else
|
---|
57 | # define PTR char *
|
---|
58 | # ifndef NULL
|
---|
59 | # define NULL (void *) 0
|
---|
60 | # endif
|
---|
61 | #endif
|
---|
62 |
|
---|
63 | #endif
|
---|
64 |
|
---|
65 | long int random ();
|
---|
66 |
|
---|
67 | /* An improved random number generation package. In addition to the standard
|
---|
68 | rand()/srand() like interface, this package also has a special state info
|
---|
69 | interface. The initstate() routine is called with a seed, an array of
|
---|
70 | bytes, and a count of how many bytes are being passed in; this array is
|
---|
71 | then initialized to contain information for random number generation with
|
---|
72 | that much state information. Good sizes for the amount of state
|
---|
73 | information are 32, 64, 128, and 256 bytes. The state can be switched by
|
---|
74 | calling the setstate() function with the same array as was initiallized
|
---|
75 | with initstate(). By default, the package runs with 128 bytes of state
|
---|
76 | information and generates far better random numbers than a linear
|
---|
77 | congruential generator. If the amount of state information is less than
|
---|
78 | 32 bytes, a simple linear congruential R.N.G. is used. Internally, the
|
---|
79 | state information is treated as an array of longs; the zeroeth element of
|
---|
80 | the array is the type of R.N.G. being used (small integer); the remainder
|
---|
81 | of the array is the state information for the R.N.G. Thus, 32 bytes of
|
---|
82 | state information will give 7 longs worth of state information, which will
|
---|
83 | allow a degree seven polynomial. (Note: The zeroeth word of state
|
---|
84 | information also has some other information stored in it; see setstate
|
---|
85 | for details). The random number generation technique is a linear feedback
|
---|
86 | shift register approach, employing trinomials (since there are fewer terms
|
---|
87 | to sum up that way). In this approach, the least significant bit of all
|
---|
88 | the numbers in the state table will act as a linear feedback shift register,
|
---|
89 | and will have period 2^deg - 1 (where deg is the degree of the polynomial
|
---|
90 | being used, assuming that the polynomial is irreducible and primitive).
|
---|
91 | The higher order bits will have longer periods, since their values are
|
---|
92 | also influenced by pseudo-random carries out of the lower bits. The
|
---|
93 | total period of the generator is approximately deg*(2**deg - 1); thus
|
---|
94 | doubling the amount of state information has a vast influence on the
|
---|
95 | period of the generator. Note: The deg*(2**deg - 1) is an approximation
|
---|
96 | only good for large deg, when the period of the shift register is the
|
---|
97 | dominant factor. With deg equal to seven, the period is actually much
|
---|
98 | longer than the 7*(2**7 - 1) predicted by this formula. */
|
---|
99 |
|
---|
100 |
|
---|
101 |
|
---|
102 | /* For each of the currently supported random number generators, we have a
|
---|
103 | break value on the amount of state information (you need at least thi
|
---|
104 | bytes of state info to support this random number generator), a degree for
|
---|
105 | the polynomial (actually a trinomial) that the R.N.G. is based on, and
|
---|
106 | separation between the two lower order coefficients of the trinomial. */
|
---|
107 |
|
---|
108 | /* Linear congruential. */
|
---|
109 | #define TYPE_0 0
|
---|
110 | #define BREAK_0 8
|
---|
111 | #define DEG_0 0
|
---|
112 | #define SEP_0 0
|
---|
113 |
|
---|
114 | /* x**7 + x**3 + 1. */
|
---|
115 | #define TYPE_1 1
|
---|
116 | #define BREAK_1 32
|
---|
117 | #define DEG_1 7
|
---|
118 | #define SEP_1 3
|
---|
119 |
|
---|
120 | /* x**15 + x + 1. */
|
---|
121 | #define TYPE_2 2
|
---|
122 | #define BREAK_2 64
|
---|
123 | #define DEG_2 15
|
---|
124 | #define SEP_2 1
|
---|
125 |
|
---|
126 | /* x**31 + x**3 + 1. */
|
---|
127 | #define TYPE_3 3
|
---|
128 | #define BREAK_3 128
|
---|
129 | #define DEG_3 31
|
---|
130 | #define SEP_3 3
|
---|
131 |
|
---|
132 | /* x**63 + x + 1. */
|
---|
133 | #define TYPE_4 4
|
---|
134 | #define BREAK_4 256
|
---|
135 | #define DEG_4 63
|
---|
136 | #define SEP_4 1
|
---|
137 |
|
---|
138 |
|
---|
139 | /* Array versions of the above information to make code run faster.
|
---|
140 | Relies on fact that TYPE_i == i. */
|
---|
141 |
|
---|
142 | #define MAX_TYPES 5 /* Max number of types above. */
|
---|
143 |
|
---|
144 | static int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
|
---|
145 | static int seps[MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
|
---|
146 |
|
---|
147 |
|
---|
148 |
|
---|
149 | /* Initially, everything is set up as if from:
|
---|
150 | initstate(1, randtbl, 128);
|
---|
151 | Note that this initialization takes advantage of the fact that srandom
|
---|
152 | advances the front and rear pointers 10*rand_deg times, and hence the
|
---|
153 | rear pointer which starts at 0 will also end up at zero; thus the zeroeth
|
---|
154 | element of the state information, which contains info about the current
|
---|
155 | position of the rear pointer is just
|
---|
156 | (MAX_TYPES * (rptr - state)) + TYPE_3 == TYPE_3. */
|
---|
157 |
|
---|
158 | static long int randtbl[DEG_3 + 1] =
|
---|
159 | { TYPE_3,
|
---|
160 | 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
|
---|
161 | 0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
|
---|
162 | 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
|
---|
163 | 0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
|
---|
164 | 0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
|
---|
165 | 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
|
---|
166 | 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
|
---|
167 | 0xf5ad9d0e, 0x8999220b, 0x27fb47b9
|
---|
168 | };
|
---|
169 |
|
---|
170 | /* FPTR and RPTR are two pointers into the state info, a front and a rear
|
---|
171 | pointer. These two pointers are always rand_sep places aparts, as they
|
---|
172 | cycle through the state information. (Yes, this does mean we could get
|
---|
173 | away with just one pointer, but the code for random is more efficient
|
---|
174 | this way). The pointers are left positioned as they would be from the call:
|
---|
175 | initstate(1, randtbl, 128);
|
---|
176 | (The position of the rear pointer, rptr, is really 0 (as explained above
|
---|
177 | in the initialization of randtbl) because the state table pointer is set
|
---|
178 | to point to randtbl[1] (as explained below).) */
|
---|
179 |
|
---|
180 | static long int *fptr = &randtbl[SEP_3 + 1];
|
---|
181 | static long int *rptr = &randtbl[1];
|
---|
182 |
|
---|
183 |
|
---|
184 |
|
---|
185 | /* The following things are the pointer to the state information table,
|
---|
186 | the type of the current generator, the degree of the current polynomial
|
---|
187 | being used, and the separation between the two pointers.
|
---|
188 | Note that for efficiency of random, we remember the first location of
|
---|
189 | the state information, not the zeroeth. Hence it is valid to access
|
---|
190 | state[-1], which is used to store the type of the R.N.G.
|
---|
191 | Also, we remember the last location, since this is more efficient than
|
---|
192 | indexing every time to find the address of the last element to see if
|
---|
193 | the front and rear pointers have wrapped. */
|
---|
194 |
|
---|
195 | static long int *state = &randtbl[1];
|
---|
196 |
|
---|
197 | static int rand_type = TYPE_3;
|
---|
198 | static int rand_deg = DEG_3;
|
---|
199 | static int rand_sep = SEP_3;
|
---|
200 |
|
---|
201 | static long int *end_ptr = &randtbl[sizeof(randtbl) / sizeof(randtbl[0])];
|
---|
202 | |
---|
203 |
|
---|
204 | /* Initialize the random number generator based on the given seed. If the
|
---|
205 | type is the trivial no-state-information type, just remember the seed.
|
---|
206 | Otherwise, initializes state[] based on the given "seed" via a linear
|
---|
207 | congruential generator. Then, the pointers are set to known locations
|
---|
208 | that are exactly rand_sep places apart. Lastly, it cycles the state
|
---|
209 | information a given number of times to get rid of any initial dependencies
|
---|
210 | introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
---|
211 | for default usage relies on values produced by this routine. */
|
---|
212 | void
|
---|
213 | srandom (x)
|
---|
214 | unsigned int x;
|
---|
215 | {
|
---|
216 | state[0] = x;
|
---|
217 | if (rand_type != TYPE_0)
|
---|
218 | {
|
---|
219 | register long int i;
|
---|
220 | for (i = 1; i < rand_deg; ++i)
|
---|
221 | state[i] = (1103515145 * state[i - 1]) + 12345;
|
---|
222 | fptr = &state[rand_sep];
|
---|
223 | rptr = &state[0];
|
---|
224 | for (i = 0; i < 10 * rand_deg; ++i)
|
---|
225 | random();
|
---|
226 | }
|
---|
227 | }
|
---|
228 | |
---|
229 |
|
---|
230 | /* Initialize the state information in the given array of N bytes for
|
---|
231 | future random number generation. Based on the number of bytes we
|
---|
232 | are given, and the break values for the different R.N.G.'s, we choose
|
---|
233 | the best (largest) one we can and set things up for it. srandom is
|
---|
234 | then called to initialize the state information. Note that on return
|
---|
235 | from srandom, we set state[-1] to be the type multiplexed with the current
|
---|
236 | value of the rear pointer; this is so successive calls to initstate won't
|
---|
237 | lose this information and will be able to restart with setstate.
|
---|
238 | Note: The first thing we do is save the current state, if any, just like
|
---|
239 | setstate so that it doesn't matter when initstate is called.
|
---|
240 | Returns a pointer to the old state. */
|
---|
241 | PTR
|
---|
242 | initstate (seed, arg_state, n)
|
---|
243 | unsigned int seed;
|
---|
244 | PTR arg_state;
|
---|
245 | unsigned long n;
|
---|
246 | {
|
---|
247 | PTR ostate = (PTR) &state[-1];
|
---|
248 |
|
---|
249 | if (rand_type == TYPE_0)
|
---|
250 | state[-1] = rand_type;
|
---|
251 | else
|
---|
252 | state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
|
---|
253 | if (n < BREAK_1)
|
---|
254 | {
|
---|
255 | if (n < BREAK_0)
|
---|
256 | {
|
---|
257 | errno = EINVAL;
|
---|
258 | return NULL;
|
---|
259 | }
|
---|
260 | rand_type = TYPE_0;
|
---|
261 | rand_deg = DEG_0;
|
---|
262 | rand_sep = SEP_0;
|
---|
263 | }
|
---|
264 | else if (n < BREAK_2)
|
---|
265 | {
|
---|
266 | rand_type = TYPE_1;
|
---|
267 | rand_deg = DEG_1;
|
---|
268 | rand_sep = SEP_1;
|
---|
269 | }
|
---|
270 | else if (n < BREAK_3)
|
---|
271 | {
|
---|
272 | rand_type = TYPE_2;
|
---|
273 | rand_deg = DEG_2;
|
---|
274 | rand_sep = SEP_2;
|
---|
275 | }
|
---|
276 | else if (n < BREAK_4)
|
---|
277 | {
|
---|
278 | rand_type = TYPE_3;
|
---|
279 | rand_deg = DEG_3;
|
---|
280 | rand_sep = SEP_3;
|
---|
281 | }
|
---|
282 | else
|
---|
283 | {
|
---|
284 | rand_type = TYPE_4;
|
---|
285 | rand_deg = DEG_4;
|
---|
286 | rand_sep = SEP_4;
|
---|
287 | }
|
---|
288 |
|
---|
289 | state = &((long int *) arg_state)[1]; /* First location. */
|
---|
290 | /* Must set END_PTR before srandom. */
|
---|
291 | end_ptr = &state[rand_deg];
|
---|
292 | srandom(seed);
|
---|
293 | if (rand_type == TYPE_0)
|
---|
294 | state[-1] = rand_type;
|
---|
295 | else
|
---|
296 | state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
|
---|
297 |
|
---|
298 | return ostate;
|
---|
299 | }
|
---|
300 | |
---|
301 |
|
---|
302 | /* Restore the state from the given state array.
|
---|
303 | Note: It is important that we also remember the locations of the pointers
|
---|
304 | in the current state information, and restore the locations of the pointers
|
---|
305 | from the old state information. This is done by multiplexing the pointer
|
---|
306 | location into the zeroeth word of the state information. Note that due
|
---|
307 | to the order in which things are done, it is OK to call setstate with the
|
---|
308 | same state as the current state
|
---|
309 | Returns a pointer to the old state information. */
|
---|
310 |
|
---|
311 | PTR
|
---|
312 | setstate (arg_state)
|
---|
313 | PTR arg_state;
|
---|
314 | {
|
---|
315 | register long int *new_state = (long int *) arg_state;
|
---|
316 | register int type = new_state[0] % MAX_TYPES;
|
---|
317 | register int rear = new_state[0] / MAX_TYPES;
|
---|
318 | PTR ostate = (PTR) &state[-1];
|
---|
319 |
|
---|
320 | if (rand_type == TYPE_0)
|
---|
321 | state[-1] = rand_type;
|
---|
322 | else
|
---|
323 | state[-1] = (MAX_TYPES * (rptr - state)) + rand_type;
|
---|
324 |
|
---|
325 | switch (type)
|
---|
326 | {
|
---|
327 | case TYPE_0:
|
---|
328 | case TYPE_1:
|
---|
329 | case TYPE_2:
|
---|
330 | case TYPE_3:
|
---|
331 | case TYPE_4:
|
---|
332 | rand_type = type;
|
---|
333 | rand_deg = degrees[type];
|
---|
334 | rand_sep = seps[type];
|
---|
335 | break;
|
---|
336 | default:
|
---|
337 | /* State info munged. */
|
---|
338 | errno = EINVAL;
|
---|
339 | return NULL;
|
---|
340 | }
|
---|
341 |
|
---|
342 | state = &new_state[1];
|
---|
343 | if (rand_type != TYPE_0)
|
---|
344 | {
|
---|
345 | rptr = &state[rear];
|
---|
346 | fptr = &state[(rear + rand_sep) % rand_deg];
|
---|
347 | }
|
---|
348 | /* Set end_ptr too. */
|
---|
349 | end_ptr = &state[rand_deg];
|
---|
350 |
|
---|
351 | return ostate;
|
---|
352 | }
|
---|
353 | |
---|
354 |
|
---|
355 | /* If we are using the trivial TYPE_0 R.N.G., just do the old linear
|
---|
356 | congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
|
---|
357 | same in all ther other cases due to all the global variables that have been
|
---|
358 | set up. The basic operation is to add the number at the rear pointer into
|
---|
359 | the one at the front pointer. Then both pointers are advanced to the next
|
---|
360 | location cyclically in the table. The value returned is the sum generated,
|
---|
361 | reduced to 31 bits by throwing away the "least random" low bit.
|
---|
362 | Note: The code takes advantage of the fact that both the front and
|
---|
363 | rear pointers can't wrap on the same call by not testing the rear
|
---|
364 | pointer if the front one has wrapped. Returns a 31-bit random number. */
|
---|
365 |
|
---|
366 | long int
|
---|
367 | random ()
|
---|
368 | {
|
---|
369 | if (rand_type == TYPE_0)
|
---|
370 | {
|
---|
371 | state[0] = ((state[0] * 1103515245) + 12345) & LONG_MAX;
|
---|
372 | return state[0];
|
---|
373 | }
|
---|
374 | else
|
---|
375 | {
|
---|
376 | long int i;
|
---|
377 | *fptr += *rptr;
|
---|
378 | /* Chucking least random bit. */
|
---|
379 | i = (*fptr >> 1) & LONG_MAX;
|
---|
380 | ++fptr;
|
---|
381 | if (fptr >= end_ptr)
|
---|
382 | {
|
---|
383 | fptr = state;
|
---|
384 | ++rptr;
|
---|
385 | }
|
---|
386 | else
|
---|
387 | {
|
---|
388 | ++rptr;
|
---|
389 | if (rptr >= end_ptr)
|
---|
390 | rptr = state;
|
---|
391 | }
|
---|
392 | return i;
|
---|
393 | }
|
---|
394 | }
|
---|