source: trunk/src/binutils/bfd/syms.c@ 1256

Last change on this file since 1256 was 618, checked in by bird, 22 years ago

Joined the port of 2.11.2 with 2.14.

  • Property cvs2svn:cvs-rev set to 1.3
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 37.5 KB
Line 
1/* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50@menu
51@* Reading Symbols::
52@* Writing Symbols::
53@* Mini Symbols::
54@* typedef asymbol::
55@* symbol handling functions::
56@end menu
57
58INODE
59Reading Symbols, Writing Symbols, Symbols, Symbols
60SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67| long storage_needed;
68| asymbol **symbol_table;
69| long number_of_symbols;
70| long i;
71|
72| storage_needed = bfd_get_symtab_upper_bound (abfd);
73|
74| if (storage_needed < 0)
75| FAIL
76|
77| if (storage_needed == 0)
78| return;
79|
80| symbol_table = (asymbol **) xmalloc (storage_needed);
81| ...
82| number_of_symbols =
83| bfd_canonicalize_symtab (abfd, symbol_table);
84|
85| if (number_of_symbols < 0)
86| FAIL
87|
88| for (i = 0; i < number_of_symbols; i++)
89| process_symbol (symbol_table[i]);
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94INODE
95Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96SUBSECTION
97 Writing symbols
98
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
108
109| #include "bfd.h"
110| int main (void)
111| {
112| bfd *abfd;
113| asymbol *ptrs[2];
114| asymbol *new;
115|
116| abfd = bfd_openw ("foo","a.out-sunos-big");
117| bfd_set_format (abfd, bfd_object);
118| new = bfd_make_empty_symbol (abfd);
119| new->name = "dummy_symbol";
120| new->section = bfd_make_section_old_way (abfd, ".text");
121| new->flags = BSF_GLOBAL;
122| new->value = 0x12345;
123|
124| ptrs[0] = new;
125| ptrs[1] = (asymbol *)0;
126|
127| bfd_set_symtab (abfd, ptrs, 1);
128| bfd_close (abfd);
129| return 0;
130| }
131|
132| ./makesym
133| nm foo
134| 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166/*
167DOCDD
168INODE
169typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171*/
172/*
173SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178*/
179
180/*
181CODE_FRAGMENT
182
183.
184.typedef struct symbol_cache_entry
185.{
186. {* A pointer to the BFD which owns the symbol. This information
187. is necessary so that a back end can work out what additional
188. information (invisible to the application writer) is carried
189. with the symbol.
190.
191. This field is *almost* redundant, since you can use section->owner
192. instead, except that some symbols point to the global sections
193. bfd_{abs,com,und}_section. This could be fixed by making
194. these globals be per-bfd (or per-target-flavor). FIXME. *}
195. struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196.
197. {* The text of the symbol. The name is left alone, and not copied; the
198. application may not alter it. *}
199. const char *name;
200.
201. {* The value of the symbol. This really should be a union of a
202. numeric value with a pointer, since some flags indicate that
203. a pointer to another symbol is stored here. *}
204. symvalue value;
205.
206. {* Attributes of a symbol. *}
207.#define BSF_NO_FLAGS 0x00
208.
209. {* The symbol has local scope; <<static>> in <<C>>. The value
210. is the offset into the section of the data. *}
211.#define BSF_LOCAL 0x01
212.
213. {* The symbol has global scope; initialized data in <<C>>. The
214. value is the offset into the section of the data. *}
215.#define BSF_GLOBAL 0x02
216.
217. {* The symbol has global scope and is exported. The value is
218. the offset into the section of the data. *}
219.#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220.
221. {* A normal C symbol would be one of:
222. <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223. <<BSF_GLOBAL>>. *}
224.
225. {* The symbol is a debugging record. The value has an arbitary
226. meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227.#define BSF_DEBUGGING 0x08
228.
229. {* The symbol denotes a function entry point. Used in ELF,
230. perhaps others someday. *}
231.#define BSF_FUNCTION 0x10
232.
233. {* Used by the linker. *}
234.#define BSF_KEEP 0x20
235.#define BSF_KEEP_G 0x40
236.
237. {* A weak global symbol, overridable without warnings by
238. a regular global symbol of the same name. *}
239.#define BSF_WEAK 0x80
240.
241. {* This symbol was created to point to a section, e.g. ELF's
242. STT_SECTION symbols. *}
243.#define BSF_SECTION_SYM 0x100
244.
245. {* The symbol used to be a common symbol, but now it is
246. allocated. *}
247.#define BSF_OLD_COMMON 0x200
248.
249. {* The default value for common data. *}
250.#define BFD_FORT_COMM_DEFAULT_VALUE 0
251.
252. {* In some files the type of a symbol sometimes alters its
253. location in an output file - ie in coff a <<ISFCN>> symbol
254. which is also <<C_EXT>> symbol appears where it was
255. declared and not at the end of a section. This bit is set
256. by the target BFD part to convey this information. *}
257.#define BSF_NOT_AT_END 0x400
258.
259. {* Signal that the symbol is the label of constructor section. *}
260.#define BSF_CONSTRUCTOR 0x800
261.
262. {* Signal that the symbol is a warning symbol. The name is a
263. warning. The name of the next symbol is the one to warn about;
264. if a reference is made to a symbol with the same name as the next
265. symbol, a warning is issued by the linker. *}
266.#define BSF_WARNING 0x1000
267.
268. {* Signal that the symbol is indirect. This symbol is an indirect
269. pointer to the symbol with the same name as the next symbol. *}
270.#define BSF_INDIRECT 0x2000
271.
272. {* BSF_FILE marks symbols that contain a file name. This is used
273. for ELF STT_FILE symbols. *}
274.#define BSF_FILE 0x4000
275.
276. {* Symbol is from dynamic linking information. *}
277.#define BSF_DYNAMIC 0x8000
278.
279. {* The symbol denotes a data object. Used in ELF, and perhaps
280. others someday. *}
281.#define BSF_OBJECT 0x10000
282.
283. {* This symbol is a debugging symbol. The value is the offset
284. into the section of the data. BSF_DEBUGGING should be set
285. as well. *}
286.#define BSF_DEBUGGING_RELOC 0x20000
287.
288. {* This symbol is thread local. Used in ELF. *}
289.#define BSF_THREAD_LOCAL 0x40000
290.
291. {* Symbol is an emx import reference. *}
292.#define BSF_EMX_IMPORT1 0x20000000
293.
294. {* Symbol is an emx import definition. *}
295.#define BSF_EMX_IMPORT2 0x40000000
296.
297. flagword flags;
298.
299. {* A pointer to the section to which this symbol is
300. relative. This will always be non NULL, there are special
301. sections for undefined and absolute symbols. *}
302. struct sec *section;
303.
304. {* Back end special data. *}
305. union
306. {
307. PTR p;
308. bfd_vma i;
309. }
310. udata;
311.}
312.asymbol;
313.
314*/
315
316#include "bfd.h"
317#include "sysdep.h"
318#include "libbfd.h"
319#include "safe-ctype.h"
320#include "bfdlink.h"
321#include "aout/stab_gnu.h"
322
323static char coff_section_type PARAMS ((const char *));
324static char decode_section_type PARAMS ((const struct sec *));
325static int cmpindexentry PARAMS ((const PTR, const PTR));
326
327/*
328DOCDD
329INODE
330symbol handling functions, , typedef asymbol, Symbols
331SUBSECTION
332 Symbol handling functions
333*/
334
335/*
336FUNCTION
337 bfd_get_symtab_upper_bound
338
339DESCRIPTION
340 Return the number of bytes required to store a vector of pointers
341 to <<asymbols>> for all the symbols in the BFD @var{abfd},
342 including a terminal NULL pointer. If there are no symbols in
343 the BFD, then return 0. If an error occurs, return -1.
344
345.#define bfd_get_symtab_upper_bound(abfd) \
346. BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
347.
348*/
349
350/*
351FUNCTION
352 bfd_is_local_label
353
354SYNOPSIS
355 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
356
357DESCRIPTION
358 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
359 a compiler generated local label, else return FALSE.
360*/
361
362bfd_boolean
363bfd_is_local_label (abfd, sym)
364 bfd *abfd;
365 asymbol *sym;
366{
367 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
368 starts with '.' is local. This would accidentally catch section names
369 if we didn't reject them here. */
370 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
371 return FALSE;
372 if (sym->name == NULL)
373 return FALSE;
374 return bfd_is_local_label_name (abfd, sym->name);
375}
376
377/*
378FUNCTION
379 bfd_is_local_label_name
380
381SYNOPSIS
382 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
383
384DESCRIPTION
385 Return TRUE if a symbol with the name @var{name} in the BFD
386 @var{abfd} is a compiler generated local label, else return
387 FALSE. This just checks whether the name has the form of a
388 local label.
389
390.#define bfd_is_local_label_name(abfd, name) \
391. BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
392.
393*/
394
395/*
396FUNCTION
397 bfd_canonicalize_symtab
398
399DESCRIPTION
400 Read the symbols from the BFD @var{abfd}, and fills in
401 the vector @var{location} with pointers to the symbols and
402 a trailing NULL.
403 Return the actual number of symbol pointers, not
404 including the NULL.
405
406.#define bfd_canonicalize_symtab(abfd, location) \
407. BFD_SEND (abfd, _bfd_canonicalize_symtab,\
408. (abfd, location))
409.
410*/
411
412/*
413FUNCTION
414 bfd_set_symtab
415
416SYNOPSIS
417 bfd_boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
418
419DESCRIPTION
420 Arrange that when the output BFD @var{abfd} is closed,
421 the table @var{location} of @var{count} pointers to symbols
422 will be written.
423*/
424
425bfd_boolean
426bfd_set_symtab (abfd, location, symcount)
427 bfd *abfd;
428 asymbol **location;
429 unsigned int symcount;
430{
431 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
432 {
433 bfd_set_error (bfd_error_invalid_operation);
434 return FALSE;
435 }
436
437 bfd_get_outsymbols (abfd) = location;
438 bfd_get_symcount (abfd) = symcount;
439 return TRUE;
440}
441
442/*
443FUNCTION
444 bfd_print_symbol_vandf
445
446SYNOPSIS
447 void bfd_print_symbol_vandf (bfd *abfd, PTR file, asymbol *symbol);
448
449DESCRIPTION
450 Print the value and flags of the @var{symbol} supplied to the
451 stream @var{file}.
452*/
453void
454bfd_print_symbol_vandf (abfd, arg, symbol)
455 bfd *abfd;
456 PTR arg;
457 asymbol *symbol;
458{
459 FILE *file = (FILE *) arg;
460
461 flagword type = symbol->flags;
462
463 if (symbol->section != (asection *) NULL)
464 bfd_fprintf_vma (abfd, file,
465 symbol->value + symbol->section->vma);
466 else
467 bfd_fprintf_vma (abfd, file, symbol->value);
468
469 /* This presumes that a symbol can not be both BSF_DEBUGGING and
470 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
471 BSF_OBJECT. */
472 fprintf (file, " %c%c%c%c%c%c%c",
473 ((type & BSF_LOCAL)
474 ? (type & BSF_GLOBAL) ? '!' : 'l'
475 : (type & BSF_GLOBAL) ? 'g' : ' '),
476#ifdef EMX
477 (type & BSF_EMX_IMPORT1) ? 'e' :
478 (type & BSF_EMX_IMPORT2) ? 'E' :
479#endif /* EMX */
480 (type & BSF_WEAK) ? 'w' : ' ',
481 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
482 (type & BSF_WARNING) ? 'W' : ' ',
483 (type & BSF_INDIRECT) ? 'I' : ' ',
484 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
485 ((type & BSF_FUNCTION)
486 ? 'F'
487 : ((type & BSF_FILE)
488 ? 'f'
489 : ((type & BSF_OBJECT) ? 'O' : ' '))));
490}
491
492/*
493FUNCTION
494 bfd_make_empty_symbol
495
496DESCRIPTION
497 Create a new <<asymbol>> structure for the BFD @var{abfd}
498 and return a pointer to it.
499
500 This routine is necessary because each back end has private
501 information surrounding the <<asymbol>>. Building your own
502 <<asymbol>> and pointing to it will not create the private
503 information, and will cause problems later on.
504
505.#define bfd_make_empty_symbol(abfd) \
506. BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
507.
508*/
509
510/*
511FUNCTION
512 _bfd_generic_make_empty_symbol
513
514SYNOPSIS
515 asymbol * _bfd_generic_make_empty_symbol (bfd *);
516
517DESCRIPTION
518 Create a new <<asymbol>> structure for the BFD @var{abfd}
519 and return a pointer to it. Used by core file routines,
520 binary back-end and anywhere else where no private info
521 is needed.
522*/
523
524asymbol *
525_bfd_generic_make_empty_symbol (abfd)
526 bfd *abfd;
527{
528 bfd_size_type amt = sizeof (asymbol);
529 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
530 if (new)
531 new->the_bfd = abfd;
532 return new;
533}
534
535/*
536FUNCTION
537 bfd_make_debug_symbol
538
539DESCRIPTION
540 Create a new <<asymbol>> structure for the BFD @var{abfd},
541 to be used as a debugging symbol. Further details of its use have
542 yet to be worked out.
543
544.#define bfd_make_debug_symbol(abfd,ptr,size) \
545. BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
546.
547*/
548
549struct section_to_type
550{
551 const char *section;
552 char type;
553};
554
555/* Map section names to POSIX/BSD single-character symbol types.
556 This table is probably incomplete. It is sorted for convenience of
557 adding entries. Since it is so short, a linear search is used. */
558static const struct section_to_type stt[] =
559{
560 {".bss", 'b'},
561 {"code", 't'}, /* MRI .text */
562 {".data", 'd'},
563 {"*DEBUG*", 'N'},
564 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
565 {".drectve", 'i'}, /* MSVC's .drective section */
566 {".edata", 'e'}, /* MSVC's .edata (export) section */
567 {".fini", 't'}, /* ELF fini section */
568 {".idata", 'i'}, /* MSVC's .idata (import) section */
569 {".init", 't'}, /* ELF init section */
570 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
571 {".rdata", 'r'}, /* Read only data. */
572 {".rodata", 'r'}, /* Read only data. */
573 {".sbss", 's'}, /* Small BSS (uninitialized data). */
574 {".scommon", 'c'}, /* Small common. */
575 {".sdata", 'g'}, /* Small initialized data. */
576 {".text", 't'},
577 {"vars", 'd'}, /* MRI .data */
578 {"zerovars", 'b'}, /* MRI .bss */
579 {0, 0}
580};
581
582/* Return the single-character symbol type corresponding to
583 section S, or '?' for an unknown COFF section.
584
585 Check for any leading string which matches, so .text5 returns
586 't' as well as .text */
587
588static char
589coff_section_type (s)
590 const char *s;
591{
592 const struct section_to_type *t;
593
594 for (t = &stt[0]; t->section; t++)
595 if (!strncmp (s, t->section, strlen (t->section)))
596 return t->type;
597
598 return '?';
599}
600
601/* Return the single-character symbol type corresponding to section
602 SECTION, or '?' for an unknown section. This uses section flags to
603 identify sections.
604
605 FIXME These types are unhandled: c, i, e, p. If we handled these also,
606 we could perhaps obsolete coff_section_type. */
607
608static char
609decode_section_type (section)
610 const struct sec *section;
611{
612 if (section->flags & SEC_CODE)
613 return 't';
614 if (section->flags & SEC_DATA)
615 {
616 if (section->flags & SEC_READONLY)
617 return 'r';
618 else if (section->flags & SEC_SMALL_DATA)
619 return 'g';
620 else
621 return 'd';
622 }
623 if ((section->flags & SEC_HAS_CONTENTS) == 0)
624 {
625 if (section->flags & SEC_SMALL_DATA)
626 return 's';
627 else
628 return 'b';
629 }
630 if (section->flags & SEC_DEBUGGING)
631 return 'N';
632
633 return '?';
634}
635
636/*
637FUNCTION
638 bfd_decode_symclass
639
640DESCRIPTION
641 Return a character corresponding to the symbol
642 class of @var{symbol}, or '?' for an unknown class.
643
644SYNOPSIS
645 int bfd_decode_symclass (asymbol *symbol);
646*/
647int
648bfd_decode_symclass (symbol)
649 asymbol *symbol;
650{
651 char c;
652
653 if (bfd_is_com_section (symbol->section))
654 return 'C';
655 if (bfd_is_und_section (symbol->section))
656 {
657 if (symbol->flags & BSF_WEAK)
658 {
659 /* If weak, determine if it's specifically an object
660 or non-object weak. */
661 if (symbol->flags & BSF_OBJECT)
662 return 'v';
663 else
664 return 'w';
665 }
666 else
667 return 'U';
668 }
669 if (bfd_is_ind_section (symbol->section))
670 return 'I';
671 if (symbol->flags & BSF_WEAK)
672 {
673 /* If weak, determine if it's specifically an object
674 or non-object weak. */
675 if (symbol->flags & BSF_OBJECT)
676 return 'V';
677 else
678 return 'W';
679 }
680#ifdef EMX
681 if (symbol->flags & BSF_EMX_IMPORT1)
682 return 'e';
683 if (symbol->flags & BSF_EMX_IMPORT2)
684 return 'E';
685#endif /* EMX */
686 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
687 return '?';
688
689 if (bfd_is_abs_section (symbol->section))
690 c = 'a';
691 else if (symbol->section)
692 {
693 c = coff_section_type (symbol->section->name);
694 if (c == '?')
695 c = decode_section_type (symbol->section);
696 }
697 else
698 return '?';
699 if (symbol->flags & BSF_GLOBAL)
700 c = TOUPPER (c);
701 return c;
702
703 /* We don't have to handle these cases just yet, but we will soon:
704 N_SETV: 'v';
705 N_SETA: 'l';
706 N_SETT: 'x';
707 N_SETD: 'z';
708 N_SETB: 's';
709 N_INDR: 'i';
710 */
711}
712
713/*
714FUNCTION
715 bfd_is_undefined_symclass
716
717DESCRIPTION
718 Returns non-zero if the class symbol returned by
719 bfd_decode_symclass represents an undefined symbol.
720 Returns zero otherwise.
721
722SYNOPSIS
723 bfd_boolean bfd_is_undefined_symclass (int symclass);
724*/
725
726bfd_boolean
727bfd_is_undefined_symclass (symclass)
728 int symclass;
729{
730 return symclass == 'U' || symclass == 'w' || symclass == 'v';
731}
732
733/*
734FUNCTION
735 bfd_symbol_info
736
737DESCRIPTION
738 Fill in the basic info about symbol that nm needs.
739 Additional info may be added by the back-ends after
740 calling this function.
741
742SYNOPSIS
743 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
744*/
745
746void
747bfd_symbol_info (symbol, ret)
748 asymbol *symbol;
749 symbol_info *ret;
750{
751 ret->type = bfd_decode_symclass (symbol);
752
753 if (bfd_is_undefined_symclass (ret->type))
754 ret->value = 0;
755 else
756 ret->value = symbol->value + symbol->section->vma;
757
758 ret->name = symbol->name;
759}
760
761/*
762FUNCTION
763 bfd_copy_private_symbol_data
764
765SYNOPSIS
766 bfd_boolean bfd_copy_private_symbol_data (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
767
768DESCRIPTION
769 Copy private symbol information from @var{isym} in the BFD
770 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
771 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
772 returns are:
773
774 o <<bfd_error_no_memory>> -
775 Not enough memory exists to create private data for @var{osec}.
776
777.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
778. BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
779. (ibfd, isymbol, obfd, osymbol))
780.
781*/
782
783/* The generic version of the function which returns mini symbols.
784 This is used when the backend does not provide a more efficient
785 version. It just uses BFD asymbol structures as mini symbols. */
786
787long
788_bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
789 bfd *abfd;
790 bfd_boolean dynamic;
791 PTR *minisymsp;
792 unsigned int *sizep;
793{
794 long storage;
795 asymbol **syms = NULL;
796 long symcount;
797
798 if (dynamic)
799 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
800 else
801 storage = bfd_get_symtab_upper_bound (abfd);
802 if (storage < 0)
803 goto error_return;
804 if (storage == 0)
805 return 0;
806
807 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
808 if (syms == NULL)
809 goto error_return;
810
811 if (dynamic)
812 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
813 else
814 symcount = bfd_canonicalize_symtab (abfd, syms);
815 if (symcount < 0)
816 goto error_return;
817
818 *minisymsp = (PTR) syms;
819 *sizep = sizeof (asymbol *);
820 return symcount;
821
822 error_return:
823 bfd_set_error (bfd_error_no_symbols);
824 if (syms != NULL)
825 free (syms);
826 return -1;
827}
828
829/* The generic version of the function which converts a minisymbol to
830 an asymbol. We don't worry about the sym argument we are passed;
831 we just return the asymbol the minisymbol points to. */
832
833asymbol *
834_bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
835 bfd *abfd ATTRIBUTE_UNUSED;
836 bfd_boolean dynamic ATTRIBUTE_UNUSED;
837 const PTR minisym;
838 asymbol *sym ATTRIBUTE_UNUSED;
839{
840 return *(asymbol **) minisym;
841}
842
843/* Look through stabs debugging information in .stab and .stabstr
844 sections to find the source file and line closest to a desired
845 location. This is used by COFF and ELF targets. It sets *pfound
846 to TRUE if it finds some information. The *pinfo field is used to
847 pass cached information in and out of this routine; this first time
848 the routine is called for a BFD, *pinfo should be NULL. The value
849 placed in *pinfo should be saved with the BFD, and passed back each
850 time this function is called. */
851
852/* We use a cache by default. */
853
854#define ENABLE_CACHING
855
856/* We keep an array of indexentry structures to record where in the
857 stabs section we should look to find line number information for a
858 particular address. */
859
860struct indexentry
861{
862 bfd_vma val;
863 bfd_byte *stab;
864 bfd_byte *str;
865 char *directory_name;
866 char *file_name;
867 char *function_name;
868};
869
870/* Compare two indexentry structures. This is called via qsort. */
871
872static int
873cmpindexentry (a, b)
874 const PTR a;
875 const PTR b;
876{
877 const struct indexentry *contestantA = (const struct indexentry *) a;
878 const struct indexentry *contestantB = (const struct indexentry *) b;
879
880 if (contestantA->val < contestantB->val)
881 return -1;
882 else if (contestantA->val > contestantB->val)
883 return 1;
884 else
885 return 0;
886}
887
888/* A pointer to this structure is stored in *pinfo. */
889
890struct stab_find_info
891{
892 /* The .stab section. */
893 asection *stabsec;
894 /* The .stabstr section. */
895 asection *strsec;
896 /* The contents of the .stab section. */
897 bfd_byte *stabs;
898 /* The contents of the .stabstr section. */
899 bfd_byte *strs;
900
901 /* A table that indexes stabs by memory address. */
902 struct indexentry *indextable;
903 /* The number of entries in indextable. */
904 int indextablesize;
905
906#ifdef ENABLE_CACHING
907 /* Cached values to restart quickly. */
908 struct indexentry *cached_indexentry;
909 bfd_vma cached_offset;
910 bfd_byte *cached_stab;
911 char *cached_file_name;
912#endif
913
914 /* Saved ptr to malloc'ed filename. */
915 char *filename;
916};
917
918bfd_boolean
919_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
920 pfilename, pfnname, pline, pinfo)
921 bfd *abfd;
922 asymbol **symbols;
923 asection *section;
924 bfd_vma offset;
925 bfd_boolean *pfound;
926 const char **pfilename;
927 const char **pfnname;
928 unsigned int *pline;
929 PTR *pinfo;
930{
931 struct stab_find_info *info;
932 bfd_size_type stabsize, strsize;
933 bfd_byte *stab, *str;
934 bfd_byte *last_stab = NULL;
935 bfd_size_type stroff;
936 struct indexentry *indexentry;
937 char *file_name;
938 char *directory_name;
939 int saw_fun;
940 bfd_boolean saw_line, saw_func;
941
942 *pfound = FALSE;
943 *pfilename = bfd_get_filename (abfd);
944 *pfnname = NULL;
945 *pline = 0;
946
947 /* Stabs entries use a 12 byte format:
948 4 byte string table index
949 1 byte stab type
950 1 byte stab other field
951 2 byte stab desc field
952 4 byte stab value
953 FIXME: This will have to change for a 64 bit object format.
954
955 The stabs symbols are divided into compilation units. For the
956 first entry in each unit, the type of 0, the value is the length
957 of the string table for this unit, and the desc field is the
958 number of stabs symbols for this unit. */
959
960#define STRDXOFF (0)
961#define TYPEOFF (4)
962#define OTHEROFF (5)
963#define DESCOFF (6)
964#define VALOFF (8)
965#define STABSIZE (12)
966
967 info = (struct stab_find_info *) *pinfo;
968 if (info != NULL)
969 {
970 if (info->stabsec == NULL || info->strsec == NULL)
971 {
972 /* No stabs debugging information. */
973 return TRUE;
974 }
975
976 stabsize = info->stabsec->_raw_size;
977 strsize = info->strsec->_raw_size;
978 }
979 else
980 {
981 long reloc_size, reloc_count;
982 arelent **reloc_vector;
983 int i;
984 char *name;
985 char *function_name;
986 bfd_size_type amt = sizeof *info;
987
988 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
989 if (info == NULL)
990 return FALSE;
991
992 /* FIXME: When using the linker --split-by-file or
993 --split-by-reloc options, it is possible for the .stab and
994 .stabstr sections to be split. We should handle that. */
995
996 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
997 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
998
999 if (info->stabsec == NULL || info->strsec == NULL)
1000 {
1001 /* No stabs debugging information. Set *pinfo so that we
1002 can return quickly in the info != NULL case above. */
1003 *pinfo = (PTR) info;
1004 return TRUE;
1005 }
1006
1007 stabsize = info->stabsec->_raw_size;
1008 strsize = info->strsec->_raw_size;
1009
1010 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1011 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1012 if (info->stabs == NULL || info->strs == NULL)
1013 return FALSE;
1014
1015 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1016 (bfd_vma) 0, stabsize)
1017 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1018 (bfd_vma) 0, strsize))
1019 return FALSE;
1020
1021 /* If this is a relocateable object file, we have to relocate
1022 the entries in .stab. This should always be simple 32 bit
1023 relocations against symbols defined in this object file, so
1024 this should be no big deal. */
1025 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1026 if (reloc_size < 0)
1027 return FALSE;
1028 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1029 if (reloc_vector == NULL && reloc_size != 0)
1030 return FALSE;
1031 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1032 symbols);
1033 if (reloc_count < 0)
1034 {
1035 if (reloc_vector != NULL)
1036 free (reloc_vector);
1037 return FALSE;
1038 }
1039 if (reloc_count > 0)
1040 {
1041 arelent **pr;
1042
1043 for (pr = reloc_vector; *pr != NULL; pr++)
1044 {
1045 arelent *r;
1046 unsigned long val;
1047 asymbol *sym;
1048
1049 r = *pr;
1050 if (r->howto->rightshift != 0
1051 || r->howto->size != 2
1052 || r->howto->bitsize != 32
1053 || r->howto->pc_relative
1054 || r->howto->bitpos != 0
1055 || r->howto->dst_mask != 0xffffffff)
1056 {
1057 (*_bfd_error_handler)
1058 (_("Unsupported .stab relocation"));
1059 bfd_set_error (bfd_error_invalid_operation);
1060 if (reloc_vector != NULL)
1061 free (reloc_vector);
1062 return FALSE;
1063 }
1064
1065 val = bfd_get_32 (abfd, info->stabs + r->address);
1066 val &= r->howto->src_mask;
1067 sym = *r->sym_ptr_ptr;
1068 val += sym->value + sym->section->vma + r->addend;
1069 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1070 }
1071 }
1072
1073 if (reloc_vector != NULL)
1074 free (reloc_vector);
1075
1076 /* First time through this function, build a table matching
1077 function VM addresses to stabs, then sort based on starting
1078 VM address. Do this in two passes: once to count how many
1079 table entries we'll need, and a second to actually build the
1080 table. */
1081
1082 info->indextablesize = 0;
1083 saw_fun = 1;
1084 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1085 {
1086 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1087 {
1088 /* N_SO with null name indicates EOF */
1089 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1090 continue;
1091
1092 /* if we did not see a function def, leave space for one. */
1093 if (saw_fun == 0)
1094 ++info->indextablesize;
1095
1096 saw_fun = 0;
1097
1098 /* two N_SO's in a row is a filename and directory. Skip */
1099 if (stab + STABSIZE < info->stabs + stabsize
1100 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1101 {
1102 stab += STABSIZE;
1103 }
1104 }
1105 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1106 {
1107 saw_fun = 1;
1108 ++info->indextablesize;
1109 }
1110 }
1111
1112 if (saw_fun == 0)
1113 ++info->indextablesize;
1114
1115 if (info->indextablesize == 0)
1116 return TRUE;
1117 ++info->indextablesize;
1118
1119 amt = info->indextablesize;
1120 amt *= sizeof (struct indexentry);
1121 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1122 if (info->indextable == NULL)
1123 return FALSE;
1124
1125 file_name = NULL;
1126 directory_name = NULL;
1127 saw_fun = 1;
1128
1129 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1130 i < info->indextablesize && stab < info->stabs + stabsize;
1131 stab += STABSIZE)
1132 {
1133 switch (stab[TYPEOFF])
1134 {
1135 case 0:
1136 /* This is the first entry in a compilation unit. */
1137 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1138 break;
1139 str += stroff;
1140 stroff = bfd_get_32 (abfd, stab + VALOFF);
1141 break;
1142
1143 case N_SO:
1144 /* The main file name. */
1145
1146 /* The following code creates a new indextable entry with
1147 a NULL function name if there were no N_FUNs in a file.
1148 Note that a N_SO without a file name is an EOF and
1149 there could be 2 N_SO following it with the new filename
1150 and directory. */
1151 if (saw_fun == 0)
1152 {
1153 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1154 info->indextable[i].stab = last_stab;
1155 info->indextable[i].str = str;
1156 info->indextable[i].directory_name = directory_name;
1157 info->indextable[i].file_name = file_name;
1158 info->indextable[i].function_name = NULL;
1159 ++i;
1160 }
1161 saw_fun = 0;
1162
1163 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1164 if (*file_name == '\0')
1165 {
1166 directory_name = NULL;
1167 file_name = NULL;
1168 saw_fun = 1;
1169 }
1170 else
1171 {
1172 last_stab = stab;
1173 if (stab + STABSIZE >= info->stabs + stabsize
1174 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1175 {
1176 directory_name = NULL;
1177 }
1178 else
1179 {
1180 /* Two consecutive N_SOs are a directory and a
1181 file name. */
1182 stab += STABSIZE;
1183 directory_name = file_name;
1184 file_name = ((char *) str
1185 + bfd_get_32 (abfd, stab + STRDXOFF));
1186 }
1187 }
1188 break;
1189
1190 case N_SOL:
1191 /* The name of an include file. */
1192 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1193 break;
1194
1195 case N_FUN:
1196 /* A function name. */
1197 saw_fun = 1;
1198 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1199
1200 if (*name == '\0')
1201 name = NULL;
1202
1203 function_name = name;
1204
1205 if (name == NULL)
1206 continue;
1207
1208 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1209 info->indextable[i].stab = stab;
1210 info->indextable[i].str = str;
1211 info->indextable[i].directory_name = directory_name;
1212 info->indextable[i].file_name = file_name;
1213 info->indextable[i].function_name = function_name;
1214 ++i;
1215 break;
1216 }
1217 }
1218
1219 if (saw_fun == 0)
1220 {
1221 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1222 info->indextable[i].stab = last_stab;
1223 info->indextable[i].str = str;
1224 info->indextable[i].directory_name = directory_name;
1225 info->indextable[i].file_name = file_name;
1226 info->indextable[i].function_name = NULL;
1227 ++i;
1228 }
1229
1230 info->indextable[i].val = (bfd_vma) -1;
1231 info->indextable[i].stab = info->stabs + stabsize;
1232 info->indextable[i].str = str;
1233 info->indextable[i].directory_name = NULL;
1234 info->indextable[i].file_name = NULL;
1235 info->indextable[i].function_name = NULL;
1236 ++i;
1237
1238 info->indextablesize = i;
1239 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1240 cmpindexentry);
1241
1242 *pinfo = (PTR) info;
1243 }
1244
1245 /* We are passed a section relative offset. The offsets in the
1246 stabs information are absolute. */
1247 offset += bfd_get_section_vma (abfd, section);
1248
1249#ifdef ENABLE_CACHING
1250 if (info->cached_indexentry != NULL
1251 && offset >= info->cached_offset
1252 && offset < (info->cached_indexentry + 1)->val)
1253 {
1254 stab = info->cached_stab;
1255 indexentry = info->cached_indexentry;
1256 file_name = info->cached_file_name;
1257 }
1258 else
1259#endif
1260 {
1261 long low, high;
1262 long mid = -1;
1263
1264 /* Cache non-existant or invalid. Do binary search on
1265 indextable. */
1266 indexentry = NULL;
1267
1268 low = 0;
1269 high = info->indextablesize - 1;
1270 while (low != high)
1271 {
1272 mid = (high + low) / 2;
1273 if (offset >= info->indextable[mid].val
1274 && offset < info->indextable[mid + 1].val)
1275 {
1276 indexentry = &info->indextable[mid];
1277 break;
1278 }
1279
1280 if (info->indextable[mid].val > offset)
1281 high = mid;
1282 else
1283 low = mid + 1;
1284 }
1285
1286 if (indexentry == NULL)
1287 return TRUE;
1288
1289 stab = indexentry->stab + STABSIZE;
1290 file_name = indexentry->file_name;
1291 }
1292
1293 directory_name = indexentry->directory_name;
1294 str = indexentry->str;
1295
1296 saw_line = FALSE;
1297 saw_func = FALSE;
1298 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1299 {
1300 bfd_boolean done;
1301 bfd_vma val;
1302
1303 done = FALSE;
1304
1305 switch (stab[TYPEOFF])
1306 {
1307 case N_SOL:
1308 /* The name of an include file. */
1309 val = bfd_get_32 (abfd, stab + VALOFF);
1310 if (val <= offset)
1311 {
1312 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1313 *pline = 0;
1314 }
1315 break;
1316
1317 case N_SLINE:
1318 case N_DSLINE:
1319 case N_BSLINE:
1320 /* A line number. If the function was specified, then the value
1321 is relative to the start of the function. Otherwise, the
1322 value is an absolute address. */
1323 val = ((indexentry->function_name ? indexentry->val : 0)
1324 + bfd_get_32 (abfd, stab + VALOFF));
1325 /* If this line starts before our desired offset, or if it's
1326 the first line we've been able to find, use it. The
1327 !saw_line check works around a bug in GCC 2.95.3, which emits
1328 the first N_SLINE late. */
1329 if (!saw_line || val <= offset)
1330 {
1331 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1332
1333#ifdef ENABLE_CACHING
1334 info->cached_stab = stab;
1335 info->cached_offset = val;
1336 info->cached_file_name = file_name;
1337 info->cached_indexentry = indexentry;
1338#endif
1339 }
1340 if (val > offset)
1341 done = TRUE;
1342 saw_line = TRUE;
1343 break;
1344
1345 case N_FUN:
1346 case N_SO:
1347 if (saw_func || saw_line)
1348 done = TRUE;
1349 saw_func = TRUE;
1350 break;
1351 }
1352
1353 if (done)
1354 break;
1355 }
1356
1357 *pfound = TRUE;
1358
1359 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1360 || directory_name == NULL)
1361 *pfilename = file_name;
1362 else
1363 {
1364 size_t dirlen;
1365
1366 dirlen = strlen (directory_name);
1367 if (info->filename == NULL
1368 || strncmp (info->filename, directory_name, dirlen) != 0
1369 || strcmp (info->filename + dirlen, file_name) != 0)
1370 {
1371 size_t len;
1372
1373 if (info->filename != NULL)
1374 free (info->filename);
1375 len = strlen (file_name) + 1;
1376 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen + len);
1377 if (info->filename == NULL)
1378 return FALSE;
1379 memcpy (info->filename, directory_name, dirlen);
1380 memcpy (info->filename + dirlen, file_name, len);
1381 }
1382
1383 *pfilename = info->filename;
1384 }
1385
1386 if (indexentry->function_name != NULL)
1387 {
1388 char *s;
1389
1390 /* This will typically be something like main:F(0,1), so we want
1391 to clobber the colon. It's OK to change the name, since the
1392 string is in our own local storage anyhow. */
1393 s = strchr (indexentry->function_name, ':');
1394 if (s != NULL)
1395 *s = '\0';
1396
1397 *pfnname = indexentry->function_name;
1398 }
1399
1400 return TRUE;
1401}
Note: See TracBrowser for help on using the repository browser.