source: trunk/src/binutils/bfd/elf32-arm.h@ 10

Last change on this file since 10 was 10, checked in by bird, 22 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 101.7 KB
Line 
1/* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20typedef unsigned long int insn32;
21typedef unsigned short int insn16;
22
23static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, unsigned char, struct elf_link_hash_entry *));
39static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
43static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
45static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57
58#define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_INTERWORK)
59
60/* The linker script knows the section names for placement.
61 The entry_names are used to do simple name mangling on the stubs.
62 Given a function name, and its type, the stub can be found. The
63 name can be changed. The only requirement is the %s be present. */
64#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
65#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
66
67#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
68#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
69
70/* The name of the dynamic interpreter. This is put in the .interp
71 section. */
72#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
73
74/* The size in bytes of an entry in the procedure linkage table. */
75#define PLT_ENTRY_SIZE 16
76
77/* The first entry in a procedure linkage table looks like
78 this. It is set up so that any shared library function that is
79 called before the relocation has been set up calls the dynamic
80 linker first. */
81static const unsigned long elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
82{
83 0xe52de004, /* str lr, [sp, #-4]! */
84 0xe59fe010, /* ldr lr, [pc, #16] */
85 0xe08fe00e, /* add lr, pc, lr */
86 0xe5bef008 /* ldr pc, [lr, #8]! */
87};
88
89/* Subsequent entries in a procedure linkage table look like
90 this. */
91static const unsigned long elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
92{
93 0xe59fc004, /* ldr ip, [pc, #4] */
94 0xe08fc00c, /* add ip, pc, ip */
95 0xe59cf000, /* ldr pc, [ip] */
96 0x00000000 /* offset to symbol in got */
97};
98
99/* The ARM linker needs to keep track of the number of relocs that it
100 decides to copy in check_relocs for each symbol. This is so that
101 it can discard PC relative relocs if it doesn't need them when
102 linking with -Bsymbolic. We store the information in a field
103 extending the regular ELF linker hash table. */
104
105/* This structure keeps track of the number of PC relative relocs we
106 have copied for a given symbol. */
107struct elf32_arm_pcrel_relocs_copied
108{
109 /* Next section. */
110 struct elf32_arm_pcrel_relocs_copied * next;
111 /* A section in dynobj. */
112 asection * section;
113 /* Number of relocs copied in this section. */
114 bfd_size_type count;
115};
116
117/* Arm ELF linker hash entry. */
118struct elf32_arm_link_hash_entry
119{
120 struct elf_link_hash_entry root;
121
122 /* Number of PC relative relocs copied for this symbol. */
123 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
124};
125
126/* Declare this now that the above structures are defined. */
127static boolean elf32_arm_discard_copies
128 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
129
130/* Traverse an arm ELF linker hash table. */
131#define elf32_arm_link_hash_traverse(table, func, info) \
132 (elf_link_hash_traverse \
133 (&(table)->root, \
134 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
135 (info)))
136
137/* Get the ARM elf linker hash table from a link_info structure. */
138#define elf32_arm_hash_table(info) \
139 ((struct elf32_arm_link_hash_table *) ((info)->hash))
140
141/* ARM ELF linker hash table. */
142struct elf32_arm_link_hash_table
143{
144 /* The main hash table. */
145 struct elf_link_hash_table root;
146
147 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
148 long int thumb_glue_size;
149
150 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
151 long int arm_glue_size;
152
153 /* An arbitary input BFD chosen to hold the glue sections. */
154 bfd * bfd_of_glue_owner;
155
156 /* A boolean indicating whether knowledge of the ARM's pipeline
157 length should be applied by the linker. */
158 int no_pipeline_knowledge;
159};
160
161/* Create an entry in an ARM ELF linker hash table. */
162
163static struct bfd_hash_entry *
164elf32_arm_link_hash_newfunc (entry, table, string)
165 struct bfd_hash_entry * entry;
166 struct bfd_hash_table * table;
167 const char * string;
168{
169 struct elf32_arm_link_hash_entry * ret =
170 (struct elf32_arm_link_hash_entry *) entry;
171
172 /* Allocate the structure if it has not already been allocated by a
173 subclass. */
174 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
175 ret = ((struct elf32_arm_link_hash_entry *)
176 bfd_hash_allocate (table,
177 sizeof (struct elf32_arm_link_hash_entry)));
178 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
179 return (struct bfd_hash_entry *) ret;
180
181 /* Call the allocation method of the superclass. */
182 ret = ((struct elf32_arm_link_hash_entry *)
183 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
184 table, string));
185 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
186 ret->pcrel_relocs_copied = NULL;
187
188 return (struct bfd_hash_entry *) ret;
189}
190
191/* Create an ARM elf linker hash table. */
192
193static struct bfd_link_hash_table *
194elf32_arm_link_hash_table_create (abfd)
195 bfd *abfd;
196{
197 struct elf32_arm_link_hash_table *ret;
198
199 ret = ((struct elf32_arm_link_hash_table *)
200 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
201 if (ret == (struct elf32_arm_link_hash_table *) NULL)
202 return NULL;
203
204 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
205 elf32_arm_link_hash_newfunc))
206 {
207 bfd_release (abfd, ret);
208 return NULL;
209 }
210
211 ret->thumb_glue_size = 0;
212 ret->arm_glue_size = 0;
213 ret->bfd_of_glue_owner = NULL;
214 ret->no_pipeline_knowledge = 0;
215
216 return &ret->root.root;
217}
218
219/* Locate the Thumb encoded calling stub for NAME. */
220
221static struct elf_link_hash_entry *
222find_thumb_glue (link_info, name, input_bfd)
223 struct bfd_link_info *link_info;
224 CONST char *name;
225 bfd *input_bfd;
226{
227 char *tmp_name;
228 struct elf_link_hash_entry *hash;
229 struct elf32_arm_link_hash_table *hash_table;
230
231 /* We need a pointer to the armelf specific hash table. */
232 hash_table = elf32_arm_hash_table (link_info);
233
234 tmp_name = ((char *)
235 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
236
237 BFD_ASSERT (tmp_name);
238
239 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
240
241 hash = elf_link_hash_lookup
242 (&(hash_table)->root, tmp_name, false, false, true);
243
244 if (hash == NULL)
245 /* xgettext:c-format */
246 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
247 bfd_get_filename (input_bfd), tmp_name, name);
248
249 free (tmp_name);
250
251 return hash;
252}
253
254/* Locate the ARM encoded calling stub for NAME. */
255
256static struct elf_link_hash_entry *
257find_arm_glue (link_info, name, input_bfd)
258 struct bfd_link_info *link_info;
259 CONST char *name;
260 bfd *input_bfd;
261{
262 char *tmp_name;
263 struct elf_link_hash_entry *myh;
264 struct elf32_arm_link_hash_table *hash_table;
265
266 /* We need a pointer to the elfarm specific hash table. */
267 hash_table = elf32_arm_hash_table (link_info);
268
269 tmp_name = ((char *)
270 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
271
272 BFD_ASSERT (tmp_name);
273
274 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
275
276 myh = elf_link_hash_lookup
277 (&(hash_table)->root, tmp_name, false, false, true);
278
279 if (myh == NULL)
280 /* xgettext:c-format */
281 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
282 bfd_get_filename (input_bfd), tmp_name, name);
283
284 free (tmp_name);
285
286 return myh;
287}
288
289/* ARM->Thumb glue:
290
291 .arm
292 __func_from_arm:
293 ldr r12, __func_addr
294 bx r12
295 __func_addr:
296 .word func @ behave as if you saw a ARM_32 reloc. */
297
298#define ARM2THUMB_GLUE_SIZE 12
299static const insn32 a2t1_ldr_insn = 0xe59fc000;
300static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
301static const insn32 a2t3_func_addr_insn = 0x00000001;
302
303/* Thumb->ARM: Thumb->(non-interworking aware) ARM
304
305 .thumb .thumb
306 .align 2 .align 2
307 __func_from_thumb: __func_from_thumb:
308 bx pc push {r6, lr}
309 nop ldr r6, __func_addr
310 .arm mov lr, pc
311 __func_change_to_arm: bx r6
312 b func .arm
313 __func_back_to_thumb:
314 ldmia r13! {r6, lr}
315 bx lr
316 __func_addr:
317 .word func */
318
319#define THUMB2ARM_GLUE_SIZE 8
320static const insn16 t2a1_bx_pc_insn = 0x4778;
321static const insn16 t2a2_noop_insn = 0x46c0;
322static const insn32 t2a3_b_insn = 0xea000000;
323
324static const insn16 t2a1_push_insn = 0xb540;
325static const insn16 t2a2_ldr_insn = 0x4e03;
326static const insn16 t2a3_mov_insn = 0x46fe;
327static const insn16 t2a4_bx_insn = 0x4730;
328static const insn32 t2a5_pop_insn = 0xe8bd4040;
329static const insn32 t2a6_bx_insn = 0xe12fff1e;
330
331boolean
332bfd_elf32_arm_allocate_interworking_sections (info)
333 struct bfd_link_info * info;
334{
335 asection * s;
336 bfd_byte * foo;
337 struct elf32_arm_link_hash_table * globals;
338
339 globals = elf32_arm_hash_table (info);
340
341 BFD_ASSERT (globals != NULL);
342
343 if (globals->arm_glue_size != 0)
344 {
345 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
346
347 s = bfd_get_section_by_name
348 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
349
350 BFD_ASSERT (s != NULL);
351
352 foo = (bfd_byte *) bfd_alloc
353 (globals->bfd_of_glue_owner, globals->arm_glue_size);
354
355 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
356 s->contents = foo;
357 }
358
359 if (globals->thumb_glue_size != 0)
360 {
361 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
362
363 s = bfd_get_section_by_name
364 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
365
366 BFD_ASSERT (s != NULL);
367
368 foo = (bfd_byte *) bfd_alloc
369 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
370
371 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
372 s->contents = foo;
373 }
374
375 return true;
376}
377
378static void
379record_arm_to_thumb_glue (link_info, h)
380 struct bfd_link_info * link_info;
381 struct elf_link_hash_entry * h;
382{
383 const char * name = h->root.root.string;
384 register asection * s;
385 char * tmp_name;
386 struct elf_link_hash_entry * myh;
387 struct elf32_arm_link_hash_table * globals;
388
389 globals = elf32_arm_hash_table (link_info);
390
391 BFD_ASSERT (globals != NULL);
392 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
393
394 s = bfd_get_section_by_name
395 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
396
397 BFD_ASSERT (s != NULL);
398
399 tmp_name = ((char *)
400 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
401
402 BFD_ASSERT (tmp_name);
403
404 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
405
406 myh = elf_link_hash_lookup
407 (&(globals)->root, tmp_name, false, false, true);
408
409 if (myh != NULL)
410 {
411 /* We've already seen this guy. */
412 free (tmp_name);
413 return;
414 }
415
416 /* The only trick here is using hash_table->arm_glue_size as the value. Even
417 though the section isn't allocated yet, this is where we will be putting
418 it. */
419 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
420 BSF_GLOBAL,
421 s, globals->arm_glue_size + 1,
422 NULL, true, false,
423 (struct bfd_link_hash_entry **) &myh);
424
425 free (tmp_name);
426
427 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
428
429 return;
430}
431
432static void
433record_thumb_to_arm_glue (link_info, h)
434 struct bfd_link_info *link_info;
435 struct elf_link_hash_entry *h;
436{
437 const char *name = h->root.root.string;
438 register asection *s;
439 char *tmp_name;
440 struct elf_link_hash_entry *myh;
441 struct elf32_arm_link_hash_table *hash_table;
442 char bind;
443
444 hash_table = elf32_arm_hash_table (link_info);
445
446 BFD_ASSERT (hash_table != NULL);
447 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
448
449 s = bfd_get_section_by_name
450 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
451
452 BFD_ASSERT (s != NULL);
453
454 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
455
456 BFD_ASSERT (tmp_name);
457
458 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
459
460 myh = elf_link_hash_lookup
461 (&(hash_table)->root, tmp_name, false, false, true);
462
463 if (myh != NULL)
464 {
465 /* We've already seen this guy. */
466 free (tmp_name);
467 return;
468 }
469
470 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
471 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
472 NULL, true, false,
473 (struct bfd_link_hash_entry **) &myh);
474
475 /* If we mark it 'Thumb', the disassembler will do a better job. */
476 bind = ELF_ST_BIND (myh->type);
477 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
478
479 free (tmp_name);
480
481#define CHANGE_TO_ARM "__%s_change_to_arm"
482#define BACK_FROM_ARM "__%s_back_from_arm"
483
484 /* Allocate another symbol to mark where we switch to Arm mode. */
485 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
486
487 BFD_ASSERT (tmp_name);
488
489 sprintf (tmp_name, CHANGE_TO_ARM, name);
490
491 myh = NULL;
492
493 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
494 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
495 NULL, true, false,
496 (struct bfd_link_hash_entry **) &myh);
497
498 free (tmp_name);
499
500 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
501
502 return;
503}
504
505/* Select a BFD to be used to hold the sections used by the glue code.
506 This function is called from the linker scripts in ld/emultempl/
507 {armelf/pe}.em */
508
509boolean
510bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
511 bfd *abfd;
512 struct bfd_link_info *info;
513{
514 struct elf32_arm_link_hash_table *globals;
515 flagword flags;
516 asection *sec;
517
518 /* If we are only performing a partial link do not bother
519 getting a bfd to hold the glue. */
520 if (info->relocateable)
521 return true;
522
523 globals = elf32_arm_hash_table (info);
524
525 BFD_ASSERT (globals != NULL);
526
527 if (globals->bfd_of_glue_owner != NULL)
528 return true;
529
530 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
531
532 if (sec == NULL)
533 {
534 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
535 will prevent elf_link_input_bfd() from processing the contents
536 of this section. */
537 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
538
539 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
540
541 if (sec == NULL
542 || !bfd_set_section_flags (abfd, sec, flags)
543 || !bfd_set_section_alignment (abfd, sec, 2))
544 return false;
545
546 /* Set the gc mark to prevent the section from being removed by garbage
547 collection, despite the fact that no relocs refer to this section. */
548 sec->gc_mark = 1;
549 }
550
551 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
552
553 if (sec == NULL)
554 {
555 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
556
557 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
558
559 if (sec == NULL
560 || !bfd_set_section_flags (abfd, sec, flags)
561 || !bfd_set_section_alignment (abfd, sec, 2))
562 return false;
563
564 sec->gc_mark = 1;
565 }
566
567 /* Save the bfd for later use. */
568 globals->bfd_of_glue_owner = abfd;
569
570 return true;
571}
572
573boolean
574bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
575 bfd *abfd;
576 struct bfd_link_info *link_info;
577 int no_pipeline_knowledge;
578{
579 Elf_Internal_Shdr *symtab_hdr;
580 Elf_Internal_Rela *free_relocs = NULL;
581 Elf_Internal_Rela *irel, *irelend;
582 bfd_byte *contents = NULL;
583 bfd_byte *free_contents = NULL;
584 Elf32_External_Sym *extsyms = NULL;
585 Elf32_External_Sym *free_extsyms = NULL;
586
587 asection *sec;
588 struct elf32_arm_link_hash_table *globals;
589
590 /* If we are only performing a partial link do not bother
591 to construct any glue. */
592 if (link_info->relocateable)
593 return true;
594
595 /* Here we have a bfd that is to be included on the link. We have a hook
596 to do reloc rummaging, before section sizes are nailed down. */
597 globals = elf32_arm_hash_table (link_info);
598
599 BFD_ASSERT (globals != NULL);
600 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
601
602 globals->no_pipeline_knowledge = no_pipeline_knowledge;
603
604 /* Rummage around all the relocs and map the glue vectors. */
605 sec = abfd->sections;
606
607 if (sec == NULL)
608 return true;
609
610 for (; sec != NULL; sec = sec->next)
611 {
612 if (sec->reloc_count == 0)
613 continue;
614
615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
616
617 /* Load the relocs. */
618 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
619 (Elf_Internal_Rela *) NULL, false));
620
621 BFD_ASSERT (irel != 0);
622
623 irelend = irel + sec->reloc_count;
624 for (; irel < irelend; irel++)
625 {
626 long r_type;
627 unsigned long r_index;
628
629 struct elf_link_hash_entry *h;
630
631 r_type = ELF32_R_TYPE (irel->r_info);
632 r_index = ELF32_R_SYM (irel->r_info);
633
634 /* These are the only relocation types we care about. */
635 if ( r_type != R_ARM_PC24
636 && r_type != R_ARM_THM_PC22)
637 continue;
638
639 /* Get the section contents if we haven't done so already. */
640 if (contents == NULL)
641 {
642 /* Get cached copy if it exists. */
643 if (elf_section_data (sec)->this_hdr.contents != NULL)
644 contents = elf_section_data (sec)->this_hdr.contents;
645 else
646 {
647 /* Go get them off disk. */
648 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
649 if (contents == NULL)
650 goto error_return;
651
652 free_contents = contents;
653
654 if (!bfd_get_section_contents (abfd, sec, contents,
655 (file_ptr) 0, sec->_raw_size))
656 goto error_return;
657 }
658 }
659
660 /* Read this BFD's symbols if we haven't done so already. */
661 if (extsyms == NULL)
662 {
663 /* Get cached copy if it exists. */
664 if (symtab_hdr->contents != NULL)
665 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
666 else
667 {
668 /* Go get them off disk. */
669 extsyms = ((Elf32_External_Sym *)
670 bfd_malloc (symtab_hdr->sh_size));
671 if (extsyms == NULL)
672 goto error_return;
673
674 free_extsyms = extsyms;
675
676 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
677 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
678 != symtab_hdr->sh_size))
679 goto error_return;
680 }
681 }
682
683 /* If the relocation is not against a symbol it cannot concern us. */
684 h = NULL;
685
686 /* We don't care about local symbols. */
687 if (r_index < symtab_hdr->sh_info)
688 continue;
689
690 /* This is an external symbol. */
691 r_index -= symtab_hdr->sh_info;
692 h = (struct elf_link_hash_entry *)
693 elf_sym_hashes (abfd)[r_index];
694
695 /* If the relocation is against a static symbol it must be within
696 the current section and so cannot be a cross ARM/Thumb relocation. */
697 if (h == NULL)
698 continue;
699
700 switch (r_type)
701 {
702 case R_ARM_PC24:
703 /* This one is a call from arm code. We need to look up
704 the target of the call. If it is a thumb target, we
705 insert glue. */
706 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
707 record_arm_to_thumb_glue (link_info, h);
708 break;
709
710 case R_ARM_THM_PC22:
711 /* This one is a call from thumb code. We look
712 up the target of the call. If it is not a thumb
713 target, we insert glue. */
714 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
715 record_thumb_to_arm_glue (link_info, h);
716 break;
717
718 default:
719 break;
720 }
721 }
722 }
723
724 return true;
725
726error_return:
727 if (free_relocs != NULL)
728 free (free_relocs);
729 if (free_contents != NULL)
730 free (free_contents);
731 if (free_extsyms != NULL)
732 free (free_extsyms);
733
734 return false;
735}
736
737/* The thumb form of a long branch is a bit finicky, because the offset
738 encoding is split over two fields, each in it's own instruction. They
739 can occur in any order. So given a thumb form of long branch, and an
740 offset, insert the offset into the thumb branch and return finished
741 instruction.
742
743 It takes two thumb instructions to encode the target address. Each has
744 11 bits to invest. The upper 11 bits are stored in one (identifed by
745 H-0.. see below), the lower 11 bits are stored in the other (identified
746 by H-1).
747
748 Combine together and shifted left by 1 (it's a half word address) and
749 there you have it.
750
751 Op: 1111 = F,
752 H-0, upper address-0 = 000
753 Op: 1111 = F,
754 H-1, lower address-0 = 800
755
756 They can be ordered either way, but the arm tools I've seen always put
757 the lower one first. It probably doesn't matter. krk@cygnus.com
758
759 XXX: Actually the order does matter. The second instruction (H-1)
760 moves the computed address into the PC, so it must be the second one
761 in the sequence. The problem, however is that whilst little endian code
762 stores the instructions in HI then LOW order, big endian code does the
763 reverse. nickc@cygnus.com. */
764
765#define LOW_HI_ORDER 0xF800F000
766#define HI_LOW_ORDER 0xF000F800
767
768static insn32
769insert_thumb_branch (br_insn, rel_off)
770 insn32 br_insn;
771 int rel_off;
772{
773 unsigned int low_bits;
774 unsigned int high_bits;
775
776 BFD_ASSERT ((rel_off & 1) != 1);
777
778 rel_off >>= 1; /* Half word aligned address. */
779 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
780 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
781
782 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
783 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
784 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
785 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
786 else
787 /* FIXME: abort is probably not the right call. krk@cygnus.com */
788 abort (); /* error - not a valid branch instruction form. */
789
790 return br_insn;
791}
792
793/* Thumb code calling an ARM function. */
794
795static int
796elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
797 hit_data, sym_sec, offset, addend, val)
798 struct bfd_link_info * info;
799 const char * name;
800 bfd * input_bfd;
801 bfd * output_bfd;
802 asection * input_section;
803 bfd_byte * hit_data;
804 asection * sym_sec;
805 bfd_vma offset;
806 bfd_signed_vma addend;
807 bfd_vma val;
808{
809 asection * s = 0;
810 long int my_offset;
811 unsigned long int tmp;
812 long int ret_offset;
813 struct elf_link_hash_entry * myh;
814 struct elf32_arm_link_hash_table * globals;
815
816 myh = find_thumb_glue (info, name, input_bfd);
817 if (myh == NULL)
818 return false;
819
820 globals = elf32_arm_hash_table (info);
821
822 BFD_ASSERT (globals != NULL);
823 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
824
825 my_offset = myh->root.u.def.value;
826
827 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
828 THUMB2ARM_GLUE_SECTION_NAME);
829
830 BFD_ASSERT (s != NULL);
831 BFD_ASSERT (s->contents != NULL);
832 BFD_ASSERT (s->output_section != NULL);
833
834 if ((my_offset & 0x01) == 0x01)
835 {
836 if (sym_sec != NULL
837 && sym_sec->owner != NULL
838 && !INTERWORK_FLAG (sym_sec->owner))
839 {
840 _bfd_error_handler
841 (_("%s(%s): warning: interworking not enabled."),
842 bfd_get_filename (sym_sec->owner), name);
843 _bfd_error_handler
844 (_(" first occurrence: %s: thumb call to arm"),
845 bfd_get_filename (input_bfd));
846
847 return false;
848 }
849
850 --my_offset;
851 myh->root.u.def.value = my_offset;
852
853 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
854 s->contents + my_offset);
855
856 bfd_put_16 (output_bfd, t2a2_noop_insn,
857 s->contents + my_offset + 2);
858
859 ret_offset =
860 /* Address of destination of the stub. */
861 ((bfd_signed_vma) val)
862 - ((bfd_signed_vma)
863 /* Offset from the start of the current section to the start of the stubs. */
864 (s->output_offset
865 /* Offset of the start of this stub from the start of the stubs. */
866 + my_offset
867 /* Address of the start of the current section. */
868 + s->output_section->vma)
869 /* The branch instruction is 4 bytes into the stub. */
870 + 4
871 /* ARM branches work from the pc of the instruction + 8. */
872 + 8);
873
874 bfd_put_32 (output_bfd,
875 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
876 s->contents + my_offset + 4);
877 }
878
879 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
880
881 /* Now go back and fix up the original BL insn to point
882 to here. */
883 ret_offset =
884 s->output_offset
885 + my_offset
886 - (input_section->output_offset
887 + offset + addend)
888 - 8;
889
890 tmp = bfd_get_32 (input_bfd, hit_data
891 - input_section->vma);
892
893 bfd_put_32 (output_bfd,
894 insert_thumb_branch (tmp, ret_offset),
895 hit_data - input_section->vma);
896
897 return true;
898}
899
900/* Arm code calling a Thumb function. */
901
902static int
903elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
904 hit_data, sym_sec, offset, addend, val)
905 struct bfd_link_info * info;
906 const char * name;
907 bfd * input_bfd;
908 bfd * output_bfd;
909 asection * input_section;
910 bfd_byte * hit_data;
911 asection * sym_sec;
912 bfd_vma offset;
913 bfd_signed_vma addend;
914 bfd_vma val;
915{
916 unsigned long int tmp;
917 long int my_offset;
918 asection * s;
919 long int ret_offset;
920 struct elf_link_hash_entry * myh;
921 struct elf32_arm_link_hash_table * globals;
922
923 myh = find_arm_glue (info, name, input_bfd);
924 if (myh == NULL)
925 return false;
926
927 globals = elf32_arm_hash_table (info);
928
929 BFD_ASSERT (globals != NULL);
930 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
931
932 my_offset = myh->root.u.def.value;
933 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
934 ARM2THUMB_GLUE_SECTION_NAME);
935 BFD_ASSERT (s != NULL);
936 BFD_ASSERT (s->contents != NULL);
937 BFD_ASSERT (s->output_section != NULL);
938
939 if ((my_offset & 0x01) == 0x01)
940 {
941 if (sym_sec != NULL
942 && sym_sec->owner != NULL
943 && !INTERWORK_FLAG (sym_sec->owner))
944 {
945 _bfd_error_handler
946 (_("%s(%s): warning: interworking not enabled."),
947 bfd_get_filename (sym_sec->owner), name);
948 _bfd_error_handler
949 (_(" first occurrence: %s: arm call to thumb"),
950 bfd_get_filename (input_bfd));
951 }
952
953 --my_offset;
954 myh->root.u.def.value = my_offset;
955
956 bfd_put_32 (output_bfd, a2t1_ldr_insn,
957 s->contents + my_offset);
958
959 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
960 s->contents + my_offset + 4);
961
962 /* It's a thumb address. Add the low order bit. */
963 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
964 s->contents + my_offset + 8);
965 }
966
967 BFD_ASSERT (my_offset <= globals->arm_glue_size);
968
969 tmp = bfd_get_32 (input_bfd, hit_data);
970 tmp = tmp & 0xFF000000;
971
972 /* Somehow these are both 4 too far, so subtract 8. */
973 ret_offset = s->output_offset
974 + my_offset
975 + s->output_section->vma
976 - (input_section->output_offset
977 + input_section->output_section->vma
978 + offset + addend)
979 - 8;
980
981 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
982
983 bfd_put_32 (output_bfd, tmp, hit_data
984 - input_section->vma);
985
986 return true;
987}
988
989/* Perform a relocation as part of a final link. */
990
991static bfd_reloc_status_type
992elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
993 input_section, contents, rel, value,
994 info, sym_sec, sym_name, sym_flags, h)
995 reloc_howto_type * howto;
996 bfd * input_bfd;
997 bfd * output_bfd;
998 asection * input_section;
999 bfd_byte * contents;
1000 Elf_Internal_Rela * rel;
1001 bfd_vma value;
1002 struct bfd_link_info * info;
1003 asection * sym_sec;
1004 const char * sym_name;
1005 unsigned char sym_flags;
1006 struct elf_link_hash_entry * h;
1007{
1008 unsigned long r_type = howto->type;
1009 unsigned long r_symndx;
1010 bfd_byte * hit_data = contents + rel->r_offset;
1011 bfd * dynobj = NULL;
1012 Elf_Internal_Shdr * symtab_hdr;
1013 struct elf_link_hash_entry ** sym_hashes;
1014 bfd_vma * local_got_offsets;
1015 asection * sgot = NULL;
1016 asection * splt = NULL;
1017 asection * sreloc = NULL;
1018 bfd_vma addend;
1019 bfd_signed_vma signed_addend;
1020 struct elf32_arm_link_hash_table * globals;
1021
1022 /* If the start address has been set, then set the EF_ARM_HASENTRY
1023 flag. Setting this more than once is redundant, but the cost is
1024 not too high, and it keeps the code simple.
1025
1026 The test is done here, rather than somewhere else, because the
1027 start address is only set just before the final link commences.
1028
1029 Note - if the user deliberately sets a start address of 0, the
1030 flag will not be set. */
1031 if (bfd_get_start_address (output_bfd) != 0)
1032 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1033
1034 globals = elf32_arm_hash_table (info);
1035
1036 dynobj = elf_hash_table (info)->dynobj;
1037 if (dynobj)
1038 {
1039 sgot = bfd_get_section_by_name (dynobj, ".got");
1040 splt = bfd_get_section_by_name (dynobj, ".plt");
1041 }
1042 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1043 sym_hashes = elf_sym_hashes (input_bfd);
1044 local_got_offsets = elf_local_got_offsets (input_bfd);
1045 r_symndx = ELF32_R_SYM (rel->r_info);
1046
1047#ifdef USE_REL
1048 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1049
1050 if (addend & ((howto->src_mask + 1) >> 1))
1051 {
1052 signed_addend = -1;
1053 signed_addend &= ~ howto->src_mask;
1054 signed_addend |= addend;
1055 }
1056 else
1057 signed_addend = addend;
1058#else
1059 addend = signed_addend = rel->r_addend;
1060#endif
1061
1062 switch (r_type)
1063 {
1064 case R_ARM_NONE:
1065 return bfd_reloc_ok;
1066
1067 case R_ARM_PC24:
1068 case R_ARM_ABS32:
1069 case R_ARM_REL32:
1070#ifndef OLD_ARM_ABI
1071 case R_ARM_XPC25:
1072#endif
1073 /* When generating a shared object, these relocations are copied
1074 into the output file to be resolved at run time. */
1075 if (info->shared
1076 && (r_type != R_ARM_PC24
1077 || (h != NULL
1078 && h->dynindx != -1
1079 && (! info->symbolic
1080 || (h->elf_link_hash_flags
1081 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1082 {
1083 Elf_Internal_Rel outrel;
1084 boolean skip, relocate;
1085
1086 if (sreloc == NULL)
1087 {
1088 const char * name;
1089
1090 name = (bfd_elf_string_from_elf_section
1091 (input_bfd,
1092 elf_elfheader (input_bfd)->e_shstrndx,
1093 elf_section_data (input_section)->rel_hdr.sh_name));
1094 if (name == NULL)
1095 return bfd_reloc_notsupported;
1096
1097 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1098 && strcmp (bfd_get_section_name (input_bfd,
1099 input_section),
1100 name + 4) == 0);
1101
1102 sreloc = bfd_get_section_by_name (dynobj, name);
1103 BFD_ASSERT (sreloc != NULL);
1104 }
1105
1106 skip = false;
1107
1108 if (elf_section_data (input_section)->stab_info == NULL)
1109 outrel.r_offset = rel->r_offset;
1110 else
1111 {
1112 bfd_vma off;
1113
1114 off = (_bfd_stab_section_offset
1115 (output_bfd, &elf_hash_table (info)->stab_info,
1116 input_section,
1117 & elf_section_data (input_section)->stab_info,
1118 rel->r_offset));
1119 if (off == (bfd_vma) -1)
1120 skip = true;
1121 outrel.r_offset = off;
1122 }
1123
1124 outrel.r_offset += (input_section->output_section->vma
1125 + input_section->output_offset);
1126
1127 if (skip)
1128 {
1129 memset (&outrel, 0, sizeof outrel);
1130 relocate = false;
1131 }
1132 else if (r_type == R_ARM_PC24)
1133 {
1134 BFD_ASSERT (h != NULL && h->dynindx != -1);
1135 if ((input_section->flags & SEC_ALLOC) != 0)
1136 relocate = false;
1137 else
1138 relocate = true;
1139 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1140 }
1141 else
1142 {
1143 if (h == NULL
1144 || ((info->symbolic || h->dynindx == -1)
1145 && (h->elf_link_hash_flags
1146 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1147 {
1148 relocate = true;
1149 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1150 }
1151 else
1152 {
1153 BFD_ASSERT (h->dynindx != -1);
1154 if ((input_section->flags & SEC_ALLOC) != 0)
1155 relocate = false;
1156 else
1157 relocate = true;
1158 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1159 }
1160 }
1161
1162 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1163 (((Elf32_External_Rel *)
1164 sreloc->contents)
1165 + sreloc->reloc_count));
1166 ++sreloc->reloc_count;
1167
1168 /* If this reloc is against an external symbol, we do not want to
1169 fiddle with the addend. Otherwise, we need to include the symbol
1170 value so that it becomes an addend for the dynamic reloc. */
1171 if (! relocate)
1172 return bfd_reloc_ok;
1173
1174 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1175 contents, rel->r_offset, value,
1176 (bfd_vma) 0);
1177 }
1178 else switch (r_type)
1179 {
1180#ifndef OLD_ARM_ABI
1181 case R_ARM_XPC25: /* Arm BLX instruction. */
1182#endif
1183 case R_ARM_PC24: /* Arm B/BL instruction */
1184#ifndef OLD_ARM_ABI
1185 if (r_type == R_ARM_XPC25)
1186 {
1187 /* Check for Arm calling Arm function. */
1188 /* FIXME: Should we translate the instruction into a BL
1189 instruction instead ? */
1190 if (sym_flags != STT_ARM_TFUNC)
1191 _bfd_error_handler (_("\
1192%s: Warning: Arm BLX instruction targets Arm function '%s'."),
1193 bfd_get_filename (input_bfd),
1194 h ? h->root.root.string : "(local)");
1195 }
1196 else
1197#endif
1198 {
1199 /* Check for Arm calling Thumb function. */
1200 if (sym_flags == STT_ARM_TFUNC)
1201 {
1202 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1203 input_section, hit_data, sym_sec, rel->r_offset,
1204 signed_addend, value);
1205 return bfd_reloc_ok;
1206 }
1207 }
1208
1209 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1210 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1211 {
1212 /* The old way of doing things. Trearing the addend as a
1213 byte sized field and adding in the pipeline offset. */
1214 value -= (input_section->output_section->vma
1215 + input_section->output_offset);
1216 value -= rel->r_offset;
1217 value += addend;
1218
1219 if (! globals->no_pipeline_knowledge)
1220 value -= 8;
1221 }
1222 else
1223 {
1224 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1225 where:
1226 S is the address of the symbol in the relocation.
1227 P is address of the instruction being relocated.
1228 A is the addend (extracted from the instruction) in bytes.
1229
1230 S is held in 'value'.
1231 P is the base address of the section containing the instruction
1232 plus the offset of the reloc into that section, ie:
1233 (input_section->output_section->vma +
1234 input_section->output_offset +
1235 rel->r_offset).
1236 A is the addend, converted into bytes, ie:
1237 (signed_addend * 4)
1238
1239 Note: None of these operations have knowledge of the pipeline
1240 size of the processor, thus it is up to the assembler to encode
1241 this information into the addend. */
1242 value -= (input_section->output_section->vma
1243 + input_section->output_offset);
1244 value -= rel->r_offset;
1245 value += (signed_addend << howto->size);
1246
1247 /* Previous versions of this code also used to add in the pipeline
1248 offset here. This is wrong because the linker is not supposed
1249 to know about such things, and one day it might change. In order
1250 to support old binaries that need the old behaviour however, so
1251 we attempt to detect which ABI was used to create the reloc. */
1252 if (! globals->no_pipeline_knowledge)
1253 {
1254 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1255
1256 i_ehdrp = elf_elfheader (input_bfd);
1257
1258 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1259 value -= 8;
1260 }
1261 }
1262
1263 signed_addend = value;
1264 signed_addend >>= howto->rightshift;
1265
1266 /* It is not an error for an undefined weak reference to be
1267 out of range. Any program that branches to such a symbol
1268 is going to crash anyway, so there is no point worrying
1269 about getting the destination exactly right. */
1270 if (! h || h->root.type != bfd_link_hash_undefweak)
1271 {
1272 /* Perform a signed range check. */
1273 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1274 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1275 return bfd_reloc_overflow;
1276 }
1277
1278#ifndef OLD_ARM_ABI
1279 /* If necessary set the H bit in the BLX instruction. */
1280 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1281 value = (signed_addend & howto->dst_mask)
1282 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1283 | (1 << 24);
1284 else
1285#endif
1286 value = (signed_addend & howto->dst_mask)
1287 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1288 break;
1289
1290 case R_ARM_ABS32:
1291 value += addend;
1292 if (sym_flags == STT_ARM_TFUNC)
1293 value |= 1;
1294 break;
1295
1296 case R_ARM_REL32:
1297 value -= (input_section->output_section->vma
1298 + input_section->output_offset);
1299 value += addend;
1300 break;
1301 }
1302
1303 bfd_put_32 (input_bfd, value, hit_data);
1304 return bfd_reloc_ok;
1305
1306 case R_ARM_ABS8:
1307 value += addend;
1308 if ((long) value > 0x7f || (long) value < -0x80)
1309 return bfd_reloc_overflow;
1310
1311 bfd_put_8 (input_bfd, value, hit_data);
1312 return bfd_reloc_ok;
1313
1314 case R_ARM_ABS16:
1315 value += addend;
1316
1317 if ((long) value > 0x7fff || (long) value < -0x8000)
1318 return bfd_reloc_overflow;
1319
1320 bfd_put_16 (input_bfd, value, hit_data);
1321 return bfd_reloc_ok;
1322
1323 case R_ARM_ABS12:
1324 /* Support ldr and str instruction for the arm */
1325 /* Also thumb b (unconditional branch). ??? Really? */
1326 value += addend;
1327
1328 if ((long) value > 0x7ff || (long) value < -0x800)
1329 return bfd_reloc_overflow;
1330
1331 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1332 bfd_put_32 (input_bfd, value, hit_data);
1333 return bfd_reloc_ok;
1334
1335 case R_ARM_THM_ABS5:
1336 /* Support ldr and str instructions for the thumb. */
1337#ifdef USE_REL
1338 /* Need to refetch addend. */
1339 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1340 /* ??? Need to determine shift amount from operand size. */
1341 addend >>= howto->rightshift;
1342#endif
1343 value += addend;
1344
1345 /* ??? Isn't value unsigned? */
1346 if ((long) value > 0x1f || (long) value < -0x10)
1347 return bfd_reloc_overflow;
1348
1349 /* ??? Value needs to be properly shifted into place first. */
1350 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1351 bfd_put_16 (input_bfd, value, hit_data);
1352 return bfd_reloc_ok;
1353
1354#ifndef OLD_ARM_ABI
1355 case R_ARM_THM_XPC22:
1356#endif
1357 case R_ARM_THM_PC22:
1358 /* Thumb BL (branch long instruction). */
1359 {
1360 bfd_vma relocation;
1361 boolean overflow = false;
1362 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1363 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1364 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1365 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1366 bfd_vma check;
1367 bfd_signed_vma signed_check;
1368
1369#ifdef USE_REL
1370 /* Need to refetch the addend and squish the two 11 bit pieces
1371 together. */
1372 {
1373 bfd_vma upper = upper_insn & 0x7ff;
1374 bfd_vma lower = lower_insn & 0x7ff;
1375 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1376 addend = (upper << 12) | (lower << 1);
1377 signed_addend = addend;
1378 }
1379#endif
1380#ifndef OLD_ARM_ABI
1381 if (r_type == R_ARM_THM_XPC22)
1382 {
1383 /* Check for Thumb to Thumb call. */
1384 /* FIXME: Should we translate the instruction into a BL
1385 instruction instead ? */
1386 if (sym_flags == STT_ARM_TFUNC)
1387 _bfd_error_handler (_("\
1388%s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1389 bfd_get_filename (input_bfd),
1390 h ? h->root.root.string : "(local)");
1391 }
1392 else
1393#endif
1394 {
1395 /* If it is not a call to Thumb, assume call to Arm.
1396 If it is a call relative to a section name, then it is not a
1397 function call at all, but rather a long jump. */
1398 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1399 {
1400 if (elf32_thumb_to_arm_stub
1401 (info, sym_name, input_bfd, output_bfd, input_section,
1402 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1403 return bfd_reloc_ok;
1404 else
1405 return bfd_reloc_dangerous;
1406 }
1407 }
1408
1409 relocation = value + signed_addend;
1410
1411 relocation -= (input_section->output_section->vma
1412 + input_section->output_offset
1413 + rel->r_offset);
1414
1415 if (! globals->no_pipeline_knowledge)
1416 {
1417 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1418
1419 i_ehdrp = elf_elfheader (input_bfd);
1420
1421 /* Previous versions of this code also used to add in the pipline
1422 offset here. This is wrong because the linker is not supposed
1423 to know about such things, and one day it might change. In order
1424 to support old binaries that need the old behaviour however, so
1425 we attempt to detect which ABI was used to create the reloc. */
1426 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1427 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1428 || i_ehdrp->e_ident[EI_OSABI] == 0)
1429 relocation += 4;
1430 }
1431
1432 check = relocation >> howto->rightshift;
1433
1434 /* If this is a signed value, the rightshift just dropped
1435 leading 1 bits (assuming twos complement). */
1436 if ((bfd_signed_vma) relocation >= 0)
1437 signed_check = check;
1438 else
1439 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1440
1441 /* Assumes two's complement. */
1442 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1443 overflow = true;
1444
1445 /* Put RELOCATION back into the insn. */
1446 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1447 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1448
1449#ifndef OLD_ARM_ABI
1450 if (r_type == R_ARM_THM_XPC22
1451 && ((lower_insn & 0x1800) == 0x0800))
1452 /* Remove bit zero of the adjusted offset. Bit zero can only be
1453 set if the upper insn is at a half-word boundary, since the
1454 destination address, an ARM instruction, must always be on a
1455 word boundary. The semantics of the BLX (1) instruction, however,
1456 are that bit zero in the offset must always be zero, and the
1457 corresponding bit one in the target address will be set from bit
1458 one of the source address. */
1459 lower_insn &= ~1;
1460#endif
1461 /* Put the relocated value back in the object file: */
1462 bfd_put_16 (input_bfd, upper_insn, hit_data);
1463 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1464
1465 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1466 }
1467 break;
1468
1469 case R_ARM_GNU_VTINHERIT:
1470 case R_ARM_GNU_VTENTRY:
1471 return bfd_reloc_ok;
1472
1473 case R_ARM_COPY:
1474 return bfd_reloc_notsupported;
1475
1476 case R_ARM_GLOB_DAT:
1477 return bfd_reloc_notsupported;
1478
1479 case R_ARM_JUMP_SLOT:
1480 return bfd_reloc_notsupported;
1481
1482 case R_ARM_RELATIVE:
1483 return bfd_reloc_notsupported;
1484
1485 case R_ARM_GOTOFF:
1486 /* Relocation is relative to the start of the
1487 global offset table. */
1488
1489 BFD_ASSERT (sgot != NULL);
1490 if (sgot == NULL)
1491 return bfd_reloc_notsupported;
1492
1493 /* Note that sgot->output_offset is not involved in this
1494 calculation. We always want the start of .got. If we
1495 define _GLOBAL_OFFSET_TABLE in a different way, as is
1496 permitted by the ABI, we might have to change this
1497 calculation. */
1498 value -= sgot->output_section->vma;
1499 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1500 contents, rel->r_offset, value,
1501 (bfd_vma) 0);
1502
1503 case R_ARM_GOTPC:
1504 /* Use global offset table as symbol value. */
1505 BFD_ASSERT (sgot != NULL);
1506
1507 if (sgot == NULL)
1508 return bfd_reloc_notsupported;
1509
1510 value = sgot->output_section->vma;
1511 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1512 contents, rel->r_offset, value,
1513 (bfd_vma) 0);
1514
1515 case R_ARM_GOT32:
1516 /* Relocation is to the entry for this symbol in the
1517 global offset table. */
1518 if (sgot == NULL)
1519 return bfd_reloc_notsupported;
1520
1521 if (h != NULL)
1522 {
1523 bfd_vma off;
1524
1525 off = h->got.offset;
1526 BFD_ASSERT (off != (bfd_vma) -1);
1527
1528 if (!elf_hash_table (info)->dynamic_sections_created ||
1529 (info->shared && (info->symbolic || h->dynindx == -1)
1530 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1531 {
1532 /* This is actually a static link, or it is a -Bsymbolic link
1533 and the symbol is defined locally. We must initialize this
1534 entry in the global offset table. Since the offset must
1535 always be a multiple of 4, we use the least significant bit
1536 to record whether we have initialized it already.
1537
1538 When doing a dynamic link, we create a .rel.got relocation
1539 entry to initialize the value. This is done in the
1540 finish_dynamic_symbol routine. */
1541 if ((off & 1) != 0)
1542 off &= ~1;
1543 else
1544 {
1545 bfd_put_32 (output_bfd, value, sgot->contents + off);
1546 h->got.offset |= 1;
1547 }
1548 }
1549
1550 value = sgot->output_offset + off;
1551 }
1552 else
1553 {
1554 bfd_vma off;
1555
1556 BFD_ASSERT (local_got_offsets != NULL &&
1557 local_got_offsets[r_symndx] != (bfd_vma) -1);
1558
1559 off = local_got_offsets[r_symndx];
1560
1561 /* The offset must always be a multiple of 4. We use the
1562 least significant bit to record whether we have already
1563 generated the necessary reloc. */
1564 if ((off & 1) != 0)
1565 off &= ~1;
1566 else
1567 {
1568 bfd_put_32 (output_bfd, value, sgot->contents + off);
1569
1570 if (info->shared)
1571 {
1572 asection * srelgot;
1573 Elf_Internal_Rel outrel;
1574
1575 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1576 BFD_ASSERT (srelgot != NULL);
1577
1578 outrel.r_offset = (sgot->output_section->vma
1579 + sgot->output_offset
1580 + off);
1581 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1582 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1583 (((Elf32_External_Rel *)
1584 srelgot->contents)
1585 + srelgot->reloc_count));
1586 ++srelgot->reloc_count;
1587 }
1588
1589 local_got_offsets[r_symndx] |= 1;
1590 }
1591
1592 value = sgot->output_offset + off;
1593 }
1594
1595 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1596 contents, rel->r_offset, value,
1597 (bfd_vma) 0);
1598
1599 case R_ARM_PLT32:
1600 /* Relocation is to the entry for this symbol in the
1601 procedure linkage table. */
1602
1603 /* Resolve a PLT32 reloc against a local symbol directly,
1604 without using the procedure linkage table. */
1605 if (h == NULL)
1606 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1607 contents, rel->r_offset, value,
1608 (bfd_vma) 0);
1609
1610 if (h->plt.offset == (bfd_vma) -1)
1611 /* We didn't make a PLT entry for this symbol. This
1612 happens when statically linking PIC code, or when
1613 using -Bsymbolic. */
1614 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1615 contents, rel->r_offset, value,
1616 (bfd_vma) 0);
1617
1618 BFD_ASSERT(splt != NULL);
1619 if (splt == NULL)
1620 return bfd_reloc_notsupported;
1621
1622 value = (splt->output_section->vma
1623 + splt->output_offset
1624 + h->plt.offset);
1625 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1626 contents, rel->r_offset, value,
1627 (bfd_vma) 0);
1628
1629 case R_ARM_SBREL32:
1630 return bfd_reloc_notsupported;
1631
1632 case R_ARM_AMP_VCALL9:
1633 return bfd_reloc_notsupported;
1634
1635 case R_ARM_RSBREL32:
1636 return bfd_reloc_notsupported;
1637
1638 case R_ARM_THM_RPC22:
1639 return bfd_reloc_notsupported;
1640
1641 case R_ARM_RREL32:
1642 return bfd_reloc_notsupported;
1643
1644 case R_ARM_RABS32:
1645 return bfd_reloc_notsupported;
1646
1647 case R_ARM_RPC24:
1648 return bfd_reloc_notsupported;
1649
1650 case R_ARM_RBASE:
1651 return bfd_reloc_notsupported;
1652
1653 default:
1654 return bfd_reloc_notsupported;
1655 }
1656}
1657
1658#ifdef USE_REL
1659/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1660static void
1661arm_add_to_rel (abfd, address, howto, increment)
1662 bfd * abfd;
1663 bfd_byte * address;
1664 reloc_howto_type * howto;
1665 bfd_signed_vma increment;
1666{
1667 bfd_signed_vma addend;
1668
1669 if (howto->type == R_ARM_THM_PC22)
1670 {
1671 int upper_insn, lower_insn;
1672 int upper, lower;
1673
1674 upper_insn = bfd_get_16 (abfd, address);
1675 lower_insn = bfd_get_16 (abfd, address + 2);
1676 upper = upper_insn & 0x7ff;
1677 lower = lower_insn & 0x7ff;
1678
1679 addend = (upper << 12) | (lower << 1);
1680 addend += increment;
1681 addend >>= 1;
1682
1683 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1684 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1685
1686 bfd_put_16 (abfd, upper_insn, address);
1687 bfd_put_16 (abfd, lower_insn, address + 2);
1688 }
1689 else
1690 {
1691 bfd_vma contents;
1692
1693 contents = bfd_get_32 (abfd, address);
1694
1695 /* Get the (signed) value from the instruction. */
1696 addend = contents & howto->src_mask;
1697 if (addend & ((howto->src_mask + 1) >> 1))
1698 {
1699 bfd_signed_vma mask;
1700
1701 mask = -1;
1702 mask &= ~ howto->src_mask;
1703 addend |= mask;
1704 }
1705
1706 /* Add in the increment, (which is a byte value). */
1707 switch (howto->type)
1708 {
1709 default:
1710 addend += increment;
1711 break;
1712
1713 case R_ARM_PC24:
1714 addend <<= howto->size;
1715 addend += increment;
1716
1717 /* Should we check for overflow here ? */
1718
1719 /* Drop any undesired bits. */
1720 addend >>= howto->rightshift;
1721 break;
1722 }
1723
1724 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1725
1726 bfd_put_32 (abfd, contents, address);
1727 }
1728}
1729#endif /* USE_REL */
1730
1731/* Relocate an ARM ELF section. */
1732static boolean
1733elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1734 contents, relocs, local_syms, local_sections)
1735 bfd * output_bfd;
1736 struct bfd_link_info * info;
1737 bfd * input_bfd;
1738 asection * input_section;
1739 bfd_byte * contents;
1740 Elf_Internal_Rela * relocs;
1741 Elf_Internal_Sym * local_syms;
1742 asection ** local_sections;
1743{
1744 Elf_Internal_Shdr * symtab_hdr;
1745 struct elf_link_hash_entry ** sym_hashes;
1746 Elf_Internal_Rela * rel;
1747 Elf_Internal_Rela * relend;
1748 const char * name;
1749
1750 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1751 sym_hashes = elf_sym_hashes (input_bfd);
1752
1753 rel = relocs;
1754 relend = relocs + input_section->reloc_count;
1755 for (; rel < relend; rel++)
1756 {
1757 int r_type;
1758 reloc_howto_type * howto;
1759 unsigned long r_symndx;
1760 Elf_Internal_Sym * sym;
1761 asection * sec;
1762 struct elf_link_hash_entry * h;
1763 bfd_vma relocation;
1764 bfd_reloc_status_type r;
1765 arelent bfd_reloc;
1766
1767 r_symndx = ELF32_R_SYM (rel->r_info);
1768 r_type = ELF32_R_TYPE (rel->r_info);
1769
1770 if ( r_type == R_ARM_GNU_VTENTRY
1771 || r_type == R_ARM_GNU_VTINHERIT)
1772 continue;
1773
1774 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1775 howto = bfd_reloc.howto;
1776
1777 if (info->relocateable)
1778 {
1779 /* This is a relocateable link. We don't have to change
1780 anything, unless the reloc is against a section symbol,
1781 in which case we have to adjust according to where the
1782 section symbol winds up in the output section. */
1783 if (r_symndx < symtab_hdr->sh_info)
1784 {
1785 sym = local_syms + r_symndx;
1786 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1787 {
1788 sec = local_sections[r_symndx];
1789#ifdef USE_REL
1790 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1791 howto, sec->output_offset + sym->st_value);
1792#else
1793 rel->r_addend += (sec->output_offset + sym->st_value)
1794 >> howto->rightshift;
1795#endif
1796 }
1797 }
1798
1799 continue;
1800 }
1801
1802 /* This is a final link. */
1803 h = NULL;
1804 sym = NULL;
1805 sec = NULL;
1806
1807 if (r_symndx < symtab_hdr->sh_info)
1808 {
1809 sym = local_syms + r_symndx;
1810 sec = local_sections[r_symndx];
1811 relocation = (sec->output_section->vma
1812 + sec->output_offset
1813 + sym->st_value);
1814 }
1815 else
1816 {
1817 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1818
1819 while ( h->root.type == bfd_link_hash_indirect
1820 || h->root.type == bfd_link_hash_warning)
1821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1822
1823 if ( h->root.type == bfd_link_hash_defined
1824 || h->root.type == bfd_link_hash_defweak)
1825 {
1826 int relocation_needed = 1;
1827
1828 sec = h->root.u.def.section;
1829
1830 /* In these cases, we don't need the relocation value.
1831 We check specially because in some obscure cases
1832 sec->output_section will be NULL. */
1833 switch (r_type)
1834 {
1835 case R_ARM_PC24:
1836 case R_ARM_ABS32:
1837 if (info->shared
1838 && (
1839 (!info->symbolic && h->dynindx != -1)
1840 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1841 )
1842 && ((input_section->flags & SEC_ALLOC) != 0
1843 /* DWARF will emit R_ARM_ABS32 relocations in its
1844 sections against symbols defined externally
1845 in shared libraries. We can't do anything
1846 with them here. */
1847 || ((input_section->flags & SEC_DEBUGGING) != 0
1848 && (h->elf_link_hash_flags
1849 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1850 )
1851 relocation_needed = 0;
1852 break;
1853
1854 case R_ARM_GOTPC:
1855 relocation_needed = 0;
1856 break;
1857
1858 case R_ARM_GOT32:
1859 if (elf_hash_table(info)->dynamic_sections_created
1860 && (!info->shared
1861 || (!info->symbolic && h->dynindx != -1)
1862 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1863 )
1864 )
1865 relocation_needed = 0;
1866 break;
1867
1868 case R_ARM_PLT32:
1869 if (h->plt.offset != (bfd_vma)-1)
1870 relocation_needed = 0;
1871 break;
1872
1873 default:
1874 if (sec->output_section == NULL)
1875 {
1876 (*_bfd_error_handler)
1877 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1878 bfd_get_filename (input_bfd), h->root.root.string,
1879 bfd_get_section_name (input_bfd, input_section));
1880 relocation_needed = 0;
1881 }
1882 }
1883
1884 if (relocation_needed)
1885 relocation = h->root.u.def.value
1886 + sec->output_section->vma
1887 + sec->output_offset;
1888 else
1889 relocation = 0;
1890 }
1891 else if (h->root.type == bfd_link_hash_undefweak)
1892 relocation = 0;
1893 else if (info->shared && !info->symbolic
1894 && !info->no_undefined
1895 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1896 relocation = 0;
1897 else
1898 {
1899 if (!((*info->callbacks->undefined_symbol)
1900 (info, h->root.root.string, input_bfd,
1901 input_section, rel->r_offset,
1902 (!info->shared || info->no_undefined
1903 || ELF_ST_VISIBILITY (h->other)))))
1904 return false;
1905 relocation = 0;
1906 }
1907 }
1908
1909 if (h != NULL)
1910 name = h->root.root.string;
1911 else
1912 {
1913 name = (bfd_elf_string_from_elf_section
1914 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1915 if (name == NULL || *name == '\0')
1916 name = bfd_section_name (input_bfd, sec);
1917 }
1918
1919 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1920 input_section, contents, rel,
1921 relocation, info, sec, name,
1922 (h ? ELF_ST_TYPE (h->type) :
1923 ELF_ST_TYPE (sym->st_info)), h);
1924
1925 if (r != bfd_reloc_ok)
1926 {
1927 const char * msg = (const char *) 0;
1928
1929 switch (r)
1930 {
1931 case bfd_reloc_overflow:
1932 /* If the overflowing reloc was to an undefined symbol,
1933 we have already printed one error message and there
1934 is no point complaining again. */
1935 if ((! h ||
1936 h->root.type != bfd_link_hash_undefined)
1937 && (!((*info->callbacks->reloc_overflow)
1938 (info, name, howto->name, (bfd_vma) 0,
1939 input_bfd, input_section, rel->r_offset))))
1940 return false;
1941 break;
1942
1943 case bfd_reloc_undefined:
1944 if (!((*info->callbacks->undefined_symbol)
1945 (info, name, input_bfd, input_section,
1946 rel->r_offset, true)))
1947 return false;
1948 break;
1949
1950 case bfd_reloc_outofrange:
1951 msg = _("internal error: out of range error");
1952 goto common_error;
1953
1954 case bfd_reloc_notsupported:
1955 msg = _("internal error: unsupported relocation error");
1956 goto common_error;
1957
1958 case bfd_reloc_dangerous:
1959 msg = _("internal error: dangerous error");
1960 goto common_error;
1961
1962 default:
1963 msg = _("internal error: unknown error");
1964 /* fall through */
1965
1966 common_error:
1967 if (!((*info->callbacks->warning)
1968 (info, msg, name, input_bfd, input_section,
1969 rel->r_offset)))
1970 return false;
1971 break;
1972 }
1973 }
1974 }
1975
1976 return true;
1977}
1978
1979/* Function to keep ARM specific flags in the ELF header. */
1980static boolean
1981elf32_arm_set_private_flags (abfd, flags)
1982 bfd *abfd;
1983 flagword flags;
1984{
1985 if (elf_flags_init (abfd)
1986 && elf_elfheader (abfd)->e_flags != flags)
1987 {
1988 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
1989 {
1990 if (flags & EF_INTERWORK)
1991 _bfd_error_handler (_("\
1992Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1993 bfd_get_filename (abfd));
1994 else
1995 _bfd_error_handler (_("\
1996Warning: Clearing the interwork flag of %s due to outside request"),
1997 bfd_get_filename (abfd));
1998 }
1999 }
2000 else
2001 {
2002 elf_elfheader (abfd)->e_flags = flags;
2003 elf_flags_init (abfd) = true;
2004 }
2005
2006 return true;
2007}
2008
2009/* Copy backend specific data from one object module to another. */
2010
2011static boolean
2012elf32_arm_copy_private_bfd_data (ibfd, obfd)
2013 bfd *ibfd;
2014 bfd *obfd;
2015{
2016 flagword in_flags;
2017 flagword out_flags;
2018
2019 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2020 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2021 return true;
2022
2023 in_flags = elf_elfheader (ibfd)->e_flags;
2024 out_flags = elf_elfheader (obfd)->e_flags;
2025
2026 if (elf_flags_init (obfd)
2027 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2028 && in_flags != out_flags)
2029 {
2030 /* Cannot mix APCS26 and APCS32 code. */
2031 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
2032 return false;
2033
2034 /* Cannot mix float APCS and non-float APCS code. */
2035 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
2036 return false;
2037
2038 /* If the src and dest have different interworking flags
2039 then turn off the interworking bit. */
2040 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
2041 {
2042 if (out_flags & EF_INTERWORK)
2043 _bfd_error_handler (_("\
2044Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2045 bfd_get_filename (obfd), bfd_get_filename (ibfd));
2046
2047 in_flags &= ~EF_INTERWORK;
2048 }
2049
2050 /* Likewise for PIC, though don't warn for this case. */
2051 if ((in_flags & EF_PIC) != (out_flags & EF_PIC))
2052 in_flags &= ~EF_PIC;
2053 }
2054
2055 elf_elfheader (obfd)->e_flags = in_flags;
2056 elf_flags_init (obfd) = true;
2057
2058 return true;
2059}
2060
2061/* Merge backend specific data from an object file to the output
2062 object file when linking. */
2063
2064static boolean
2065elf32_arm_merge_private_bfd_data (ibfd, obfd)
2066 bfd * ibfd;
2067 bfd * obfd;
2068{
2069 flagword out_flags;
2070 flagword in_flags;
2071 boolean flags_compatible = true;
2072 boolean null_input_bfd = true;
2073 asection *sec;
2074
2075 /* Check if we have the same endianess. */
2076 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2077 return false;
2078
2079 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2080 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2081 return true;
2082
2083 /* The input BFD must have had its flags initialised. */
2084 /* The following seems bogus to me -- The flags are initialized in
2085 the assembler but I don't think an elf_flags_init field is
2086 written into the object. */
2087 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2088
2089 in_flags = elf_elfheader (ibfd)->e_flags;
2090 out_flags = elf_elfheader (obfd)->e_flags;
2091
2092 if (!elf_flags_init (obfd))
2093 {
2094 /* If the input is the default architecture and had the default
2095 flags then do not bother setting the flags for the output
2096 architecture, instead allow future merges to do this. If no
2097 future merges ever set these flags then they will retain their
2098 uninitialised values, which surprise surprise, correspond
2099 to the default values. */
2100 if (bfd_get_arch_info (ibfd)->the_default
2101 && elf_elfheader (ibfd)->e_flags == 0)
2102 return true;
2103
2104 elf_flags_init (obfd) = true;
2105 elf_elfheader (obfd)->e_flags = in_flags;
2106
2107 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2108 && bfd_get_arch_info (obfd)->the_default)
2109 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2110
2111 return true;
2112 }
2113
2114 /* Identical flags must be compatible. */
2115 if (in_flags == out_flags)
2116 return true;
2117
2118 /* Check to see if the input BFD actually contains any sections.
2119 If not, its flags may not have been initialised either, but it cannot
2120 actually cause any incompatibility. */
2121 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2122 {
2123 /* Ignore synthetic glue sections. */
2124 if (strcmp (sec->name, ".glue_7")
2125 && strcmp (sec->name, ".glue_7t"))
2126 {
2127 null_input_bfd = false;
2128 break;
2129 }
2130 }
2131 if (null_input_bfd)
2132 return true;
2133
2134 /* Complain about various flag mismatches. */
2135 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2136 {
2137 _bfd_error_handler (_("\
2138Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2139 bfd_get_filename (ibfd),
2140 (in_flags & EF_ARM_EABIMASK) >> 24,
2141 bfd_get_filename (obfd),
2142 (out_flags & EF_ARM_EABIMASK) >> 24);
2143 return false;
2144 }
2145
2146 /* Not sure what needs to be checked for EABI versions >= 1. */
2147 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2148 {
2149 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
2150 {
2151 _bfd_error_handler (_("\
2152Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2153 bfd_get_filename (ibfd),
2154 in_flags & EF_APCS_26 ? 26 : 32,
2155 bfd_get_filename (obfd),
2156 out_flags & EF_APCS_26 ? 26 : 32);
2157 flags_compatible = false;
2158 }
2159
2160 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
2161 {
2162 _bfd_error_handler (_("\
2163Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2164 bfd_get_filename (ibfd),
2165 in_flags & EF_APCS_FLOAT ? _("float") : _("integer"),
2166 bfd_get_filename (obfd),
2167 out_flags & EF_APCS_26 ? _("float") : _("integer"));
2168 flags_compatible = false;
2169 }
2170
2171#ifdef EF_SOFT_FLOAT
2172 if ((in_flags & EF_SOFT_FLOAT) != (out_flags & EF_SOFT_FLOAT))
2173 {
2174 _bfd_error_handler (_ ("\
2175Error: %s uses %s floating point, whereas %s uses %s floating point"),
2176 bfd_get_filename (ibfd),
2177 in_flags & EF_SOFT_FLOAT ? _("soft") : _("hard"),
2178 bfd_get_filename (obfd),
2179 out_flags & EF_SOFT_FLOAT ? _("soft") : _("hard"));
2180 flags_compatible = false;
2181 }
2182#endif
2183
2184 /* Interworking mismatch is only a warning. */
2185 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
2186 _bfd_error_handler (_("\
2187Warning: %s %s interworking, whereas %s %s"),
2188 bfd_get_filename (ibfd),
2189 in_flags & EF_INTERWORK ? _("supports") : _("does not support"),
2190 bfd_get_filename (obfd),
2191 out_flags & EF_INTERWORK ? _("does not") : _("does"));
2192 }
2193
2194 return flags_compatible;
2195}
2196
2197/* Display the flags field. */
2198
2199static boolean
2200elf32_arm_print_private_bfd_data (abfd, ptr)
2201 bfd *abfd;
2202 PTR ptr;
2203{
2204 FILE * file = (FILE *) ptr;
2205 unsigned long flags;
2206
2207 BFD_ASSERT (abfd != NULL && ptr != NULL);
2208
2209 /* Print normal ELF private data. */
2210 _bfd_elf_print_private_bfd_data (abfd, ptr);
2211
2212 flags = elf_elfheader (abfd)->e_flags;
2213 /* Ignore init flag - it may not be set, despite the flags field
2214 containing valid data. */
2215
2216 /* xgettext:c-format */
2217 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2218
2219 switch (EF_ARM_EABI_VERSION (flags))
2220 {
2221 case EF_ARM_EABI_UNKNOWN:
2222 /* The following flag bits are GNU extenstions and not part of the
2223 official ARM ELF extended ABI. Hence they are only decoded if
2224 the EABI version is not set. */
2225 if (flags & EF_INTERWORK)
2226 fprintf (file, _(" [interworking enabled]"));
2227
2228 if (flags & EF_APCS_26)
2229 fprintf (file, _(" [APCS-26]"));
2230 else
2231 fprintf (file, _(" [APCS-32]"));
2232
2233 if (flags & EF_APCS_FLOAT)
2234 fprintf (file, _(" [floats passed in float registers]"));
2235
2236 if (flags & EF_PIC)
2237 fprintf (file, _(" [position independent]"));
2238
2239 if (flags & EF_NEW_ABI)
2240 fprintf (file, _(" [new ABI]"));
2241
2242 if (flags & EF_OLD_ABI)
2243 fprintf (file, _(" [old ABI]"));
2244
2245 if (flags & EF_SOFT_FLOAT)
2246 fprintf (file, _(" [software FP]"));
2247
2248 flags &= ~(EF_INTERWORK | EF_APCS_26 | EF_APCS_FLOAT | EF_PIC
2249 | EF_NEW_ABI | EF_OLD_ABI | EF_SOFT_FLOAT);
2250 break;
2251
2252 case EF_ARM_EABI_VER1:
2253 fprintf (file, _(" [Version1 EABI]"));
2254
2255 if (flags & EF_ARM_SYMSARESORTED)
2256 fprintf (file, _(" [sorted symbol table]"));
2257 else
2258 fprintf (file, _(" [unsorted symbol table]"));
2259
2260 flags &= ~ EF_ARM_SYMSARESORTED;
2261 break;
2262
2263 default:
2264 fprintf (file, _(" <EABI version unrecognised>"));
2265 break;
2266 }
2267
2268 flags &= ~ EF_ARM_EABIMASK;
2269
2270 if (flags & EF_ARM_RELEXEC)
2271 fprintf (file, _(" [relocatable executable]"));
2272
2273 if (flags & EF_ARM_HASENTRY)
2274 fprintf (file, _(" [has entry point]"));
2275
2276 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2277
2278 if (flags)
2279 fprintf (file, _("<Unrecognised flag bits set>"));
2280
2281 fputc ('\n', file);
2282
2283 return true;
2284}
2285
2286static int
2287elf32_arm_get_symbol_type (elf_sym, type)
2288 Elf_Internal_Sym * elf_sym;
2289 int type;
2290{
2291 switch (ELF_ST_TYPE (elf_sym->st_info))
2292 {
2293 case STT_ARM_TFUNC:
2294 return ELF_ST_TYPE (elf_sym->st_info);
2295
2296 case STT_ARM_16BIT:
2297 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2298 This allows us to distinguish between data used by Thumb instructions
2299 and non-data (which is probably code) inside Thumb regions of an
2300 executable. */
2301 if (type != STT_OBJECT)
2302 return ELF_ST_TYPE (elf_sym->st_info);
2303 break;
2304
2305 default:
2306 break;
2307 }
2308
2309 return type;
2310}
2311
2312static asection *
2313elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2314 bfd *abfd;
2315 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2316 Elf_Internal_Rela *rel;
2317 struct elf_link_hash_entry *h;
2318 Elf_Internal_Sym *sym;
2319{
2320 if (h != NULL)
2321 {
2322 switch (ELF32_R_TYPE (rel->r_info))
2323 {
2324 case R_ARM_GNU_VTINHERIT:
2325 case R_ARM_GNU_VTENTRY:
2326 break;
2327
2328 default:
2329 switch (h->root.type)
2330 {
2331 case bfd_link_hash_defined:
2332 case bfd_link_hash_defweak:
2333 return h->root.u.def.section;
2334
2335 case bfd_link_hash_common:
2336 return h->root.u.c.p->section;
2337
2338 default:
2339 break;
2340 }
2341 }
2342 }
2343 else
2344 {
2345 if (!(elf_bad_symtab (abfd)
2346 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2347 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2348 && sym->st_shndx != SHN_COMMON))
2349 {
2350 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2351 }
2352 }
2353 return NULL;
2354}
2355
2356/* Update the got entry reference counts for the section being removed. */
2357
2358static boolean
2359elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2360 bfd *abfd ATTRIBUTE_UNUSED;
2361 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2362 asection *sec ATTRIBUTE_UNUSED;
2363 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2364{
2365 /* We don't support garbage collection of GOT and PLT relocs yet. */
2366 return true;
2367}
2368
2369/* Look through the relocs for a section during the first phase. */
2370
2371static boolean
2372elf32_arm_check_relocs (abfd, info, sec, relocs)
2373 bfd * abfd;
2374 struct bfd_link_info * info;
2375 asection * sec;
2376 const Elf_Internal_Rela * relocs;
2377{
2378 Elf_Internal_Shdr * symtab_hdr;
2379 struct elf_link_hash_entry ** sym_hashes;
2380 struct elf_link_hash_entry ** sym_hashes_end;
2381 const Elf_Internal_Rela * rel;
2382 const Elf_Internal_Rela * rel_end;
2383 bfd * dynobj;
2384 asection * sgot, *srelgot, *sreloc;
2385 bfd_vma * local_got_offsets;
2386
2387 if (info->relocateable)
2388 return true;
2389
2390 sgot = srelgot = sreloc = NULL;
2391
2392 dynobj = elf_hash_table (info)->dynobj;
2393 local_got_offsets = elf_local_got_offsets (abfd);
2394
2395 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2396 sym_hashes = elf_sym_hashes (abfd);
2397 sym_hashes_end = sym_hashes
2398 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2399
2400 if (!elf_bad_symtab (abfd))
2401 sym_hashes_end -= symtab_hdr->sh_info;
2402
2403 rel_end = relocs + sec->reloc_count;
2404 for (rel = relocs; rel < rel_end; rel++)
2405 {
2406 struct elf_link_hash_entry *h;
2407 unsigned long r_symndx;
2408
2409 r_symndx = ELF32_R_SYM (rel->r_info);
2410 if (r_symndx < symtab_hdr->sh_info)
2411 h = NULL;
2412 else
2413 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2414
2415 /* Some relocs require a global offset table. */
2416 if (dynobj == NULL)
2417 {
2418 switch (ELF32_R_TYPE (rel->r_info))
2419 {
2420 case R_ARM_GOT32:
2421 case R_ARM_GOTOFF:
2422 case R_ARM_GOTPC:
2423 elf_hash_table (info)->dynobj = dynobj = abfd;
2424 if (! _bfd_elf_create_got_section (dynobj, info))
2425 return false;
2426 break;
2427
2428 default:
2429 break;
2430 }
2431 }
2432
2433 switch (ELF32_R_TYPE (rel->r_info))
2434 {
2435 case R_ARM_GOT32:
2436 /* This symbol requires a global offset table entry. */
2437 if (sgot == NULL)
2438 {
2439 sgot = bfd_get_section_by_name (dynobj, ".got");
2440 BFD_ASSERT (sgot != NULL);
2441 }
2442
2443 /* Get the got relocation section if necessary. */
2444 if (srelgot == NULL
2445 && (h != NULL || info->shared))
2446 {
2447 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2448
2449 /* If no got relocation section, make one and initialize. */
2450 if (srelgot == NULL)
2451 {
2452 srelgot = bfd_make_section (dynobj, ".rel.got");
2453 if (srelgot == NULL
2454 || ! bfd_set_section_flags (dynobj, srelgot,
2455 (SEC_ALLOC
2456 | SEC_LOAD
2457 | SEC_HAS_CONTENTS
2458 | SEC_IN_MEMORY
2459 | SEC_LINKER_CREATED
2460 | SEC_READONLY))
2461 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2462 return false;
2463 }
2464 }
2465
2466 if (h != NULL)
2467 {
2468 if (h->got.offset != (bfd_vma) -1)
2469 /* We have already allocated space in the .got. */
2470 break;
2471
2472 h->got.offset = sgot->_raw_size;
2473
2474 /* Make sure this symbol is output as a dynamic symbol. */
2475 if (h->dynindx == -1)
2476 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2477 return false;
2478
2479 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2480 }
2481 else
2482 {
2483 /* This is a global offset table entry for a local
2484 symbol. */
2485 if (local_got_offsets == NULL)
2486 {
2487 size_t size;
2488 register unsigned int i;
2489
2490 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2491 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2492 if (local_got_offsets == NULL)
2493 return false;
2494 elf_local_got_offsets (abfd) = local_got_offsets;
2495 for (i = 0; i < symtab_hdr->sh_info; i++)
2496 local_got_offsets[i] = (bfd_vma) -1;
2497 }
2498
2499 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2500 /* We have already allocated space in the .got. */
2501 break;
2502
2503 local_got_offsets[r_symndx] = sgot->_raw_size;
2504
2505 if (info->shared)
2506 /* If we are generating a shared object, we need to
2507 output a R_ARM_RELATIVE reloc so that the dynamic
2508 linker can adjust this GOT entry. */
2509 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2510 }
2511
2512 sgot->_raw_size += 4;
2513 break;
2514
2515 case R_ARM_PLT32:
2516 /* This symbol requires a procedure linkage table entry. We
2517 actually build the entry in adjust_dynamic_symbol,
2518 because this might be a case of linking PIC code which is
2519 never referenced by a dynamic object, in which case we
2520 don't need to generate a procedure linkage table entry
2521 after all. */
2522
2523 /* If this is a local symbol, we resolve it directly without
2524 creating a procedure linkage table entry. */
2525 if (h == NULL)
2526 continue;
2527
2528 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2529 break;
2530
2531 case R_ARM_ABS32:
2532 case R_ARM_REL32:
2533 case R_ARM_PC24:
2534 /* If we are creating a shared library, and this is a reloc
2535 against a global symbol, or a non PC relative reloc
2536 against a local symbol, then we need to copy the reloc
2537 into the shared library. However, if we are linking with
2538 -Bsymbolic, we do not need to copy a reloc against a
2539 global symbol which is defined in an object we are
2540 including in the link (i.e., DEF_REGULAR is set). At
2541 this point we have not seen all the input files, so it is
2542 possible that DEF_REGULAR is not set now but will be set
2543 later (it is never cleared). We account for that
2544 possibility below by storing information in the
2545 pcrel_relocs_copied field of the hash table entry. */
2546 if (info->shared
2547 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2548 || (h != NULL
2549 && (! info->symbolic
2550 || (h->elf_link_hash_flags
2551 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2552 {
2553 /* When creating a shared object, we must copy these
2554 reloc types into the output file. We create a reloc
2555 section in dynobj and make room for this reloc. */
2556 if (sreloc == NULL)
2557 {
2558 const char * name;
2559
2560 name = (bfd_elf_string_from_elf_section
2561 (abfd,
2562 elf_elfheader (abfd)->e_shstrndx,
2563 elf_section_data (sec)->rel_hdr.sh_name));
2564 if (name == NULL)
2565 return false;
2566
2567 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2568 && strcmp (bfd_get_section_name (abfd, sec),
2569 name + 4) == 0);
2570
2571 sreloc = bfd_get_section_by_name (dynobj, name);
2572 if (sreloc == NULL)
2573 {
2574 flagword flags;
2575
2576 sreloc = bfd_make_section (dynobj, name);
2577 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2578 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2579 if ((sec->flags & SEC_ALLOC) != 0)
2580 flags |= SEC_ALLOC | SEC_LOAD;
2581 if (sreloc == NULL
2582 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2583 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2584 return false;
2585 }
2586 }
2587
2588 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2589 /* If we are linking with -Bsymbolic, and this is a
2590 global symbol, we count the number of PC relative
2591 relocations we have entered for this symbol, so that
2592 we can discard them again if the symbol is later
2593 defined by a regular object. Note that this function
2594 is only called if we are using an elf_i386 linker
2595 hash table, which means that h is really a pointer to
2596 an elf_i386_link_hash_entry. */
2597 if (h != NULL && info->symbolic
2598 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2599 {
2600 struct elf32_arm_link_hash_entry * eh;
2601 struct elf32_arm_pcrel_relocs_copied * p;
2602
2603 eh = (struct elf32_arm_link_hash_entry *) h;
2604
2605 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2606 if (p->section == sreloc)
2607 break;
2608
2609 if (p == NULL)
2610 {
2611 p = ((struct elf32_arm_pcrel_relocs_copied *)
2612 bfd_alloc (dynobj, sizeof * p));
2613
2614 if (p == NULL)
2615 return false;
2616 p->next = eh->pcrel_relocs_copied;
2617 eh->pcrel_relocs_copied = p;
2618 p->section = sreloc;
2619 p->count = 0;
2620 }
2621
2622 ++p->count;
2623 }
2624 }
2625 break;
2626
2627 /* This relocation describes the C++ object vtable hierarchy.
2628 Reconstruct it for later use during GC. */
2629 case R_ARM_GNU_VTINHERIT:
2630 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2631 return false;
2632 break;
2633
2634 /* This relocation describes which C++ vtable entries are actually
2635 used. Record for later use during GC. */
2636 case R_ARM_GNU_VTENTRY:
2637 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2638 return false;
2639 break;
2640 }
2641 }
2642
2643 return true;
2644}
2645
2646/* Find the nearest line to a particular section and offset, for error
2647 reporting. This code is a duplicate of the code in elf.c, except
2648 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2649
2650static boolean
2651elf32_arm_find_nearest_line
2652 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2653 bfd * abfd;
2654 asection * section;
2655 asymbol ** symbols;
2656 bfd_vma offset;
2657 CONST char ** filename_ptr;
2658 CONST char ** functionname_ptr;
2659 unsigned int * line_ptr;
2660{
2661 boolean found;
2662 const char * filename;
2663 asymbol * func;
2664 bfd_vma low_func;
2665 asymbol ** p;
2666
2667 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2668 filename_ptr, functionname_ptr,
2669 line_ptr, 0,
2670 &elf_tdata (abfd)->dwarf2_find_line_info))
2671 return true;
2672
2673 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2674 &found, filename_ptr,
2675 functionname_ptr, line_ptr,
2676 &elf_tdata (abfd)->line_info))
2677 return false;
2678
2679 if (found)
2680 return true;
2681
2682 if (symbols == NULL)
2683 return false;
2684
2685 filename = NULL;
2686 func = NULL;
2687 low_func = 0;
2688
2689 for (p = symbols; *p != NULL; p++)
2690 {
2691 elf_symbol_type *q;
2692
2693 q = (elf_symbol_type *) *p;
2694
2695 if (bfd_get_section (&q->symbol) != section)
2696 continue;
2697
2698 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2699 {
2700 default:
2701 break;
2702 case STT_FILE:
2703 filename = bfd_asymbol_name (&q->symbol);
2704 break;
2705 case STT_NOTYPE:
2706 case STT_FUNC:
2707 case STT_ARM_TFUNC:
2708 if (q->symbol.section == section
2709 && q->symbol.value >= low_func
2710 && q->symbol.value <= offset)
2711 {
2712 func = (asymbol *) q;
2713 low_func = q->symbol.value;
2714 }
2715 break;
2716 }
2717 }
2718
2719 if (func == NULL)
2720 return false;
2721
2722 *filename_ptr = filename;
2723 *functionname_ptr = bfd_asymbol_name (func);
2724 *line_ptr = 0;
2725
2726 return true;
2727}
2728
2729/* Adjust a symbol defined by a dynamic object and referenced by a
2730 regular object. The current definition is in some section of the
2731 dynamic object, but we're not including those sections. We have to
2732 change the definition to something the rest of the link can
2733 understand. */
2734
2735static boolean
2736elf32_arm_adjust_dynamic_symbol (info, h)
2737 struct bfd_link_info * info;
2738 struct elf_link_hash_entry * h;
2739{
2740 bfd * dynobj;
2741 asection * s;
2742 unsigned int power_of_two;
2743
2744 dynobj = elf_hash_table (info)->dynobj;
2745
2746 /* Make sure we know what is going on here. */
2747 BFD_ASSERT (dynobj != NULL
2748 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2749 || h->weakdef != NULL
2750 || ((h->elf_link_hash_flags
2751 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2752 && (h->elf_link_hash_flags
2753 & ELF_LINK_HASH_REF_REGULAR) != 0
2754 && (h->elf_link_hash_flags
2755 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2756
2757 /* If this is a function, put it in the procedure linkage table. We
2758 will fill in the contents of the procedure linkage table later,
2759 when we know the address of the .got section. */
2760 if (h->type == STT_FUNC
2761 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2762 {
2763 if (! info->shared
2764 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2765 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2766 {
2767 /* This case can occur if we saw a PLT32 reloc in an input
2768 file, but the symbol was never referred to by a dynamic
2769 object. In such a case, we don't actually need to build
2770 a procedure linkage table, and we can just do a PC32
2771 reloc instead. */
2772 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2773 return true;
2774 }
2775
2776 /* Make sure this symbol is output as a dynamic symbol. */
2777 if (h->dynindx == -1)
2778 {
2779 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2780 return false;
2781 }
2782
2783 s = bfd_get_section_by_name (dynobj, ".plt");
2784 BFD_ASSERT (s != NULL);
2785
2786 /* If this is the first .plt entry, make room for the special
2787 first entry. */
2788 if (s->_raw_size == 0)
2789 s->_raw_size += PLT_ENTRY_SIZE;
2790
2791 /* If this symbol is not defined in a regular file, and we are
2792 not generating a shared library, then set the symbol to this
2793 location in the .plt. This is required to make function
2794 pointers compare as equal between the normal executable and
2795 the shared library. */
2796 if (! info->shared
2797 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2798 {
2799 h->root.u.def.section = s;
2800 h->root.u.def.value = s->_raw_size;
2801 }
2802
2803 h->plt.offset = s->_raw_size;
2804
2805 /* Make room for this entry. */
2806 s->_raw_size += PLT_ENTRY_SIZE;
2807
2808 /* We also need to make an entry in the .got.plt section, which
2809 will be placed in the .got section by the linker script. */
2810 s = bfd_get_section_by_name (dynobj, ".got.plt");
2811 BFD_ASSERT (s != NULL);
2812 s->_raw_size += 4;
2813
2814 /* We also need to make an entry in the .rel.plt section. */
2815
2816 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2817 BFD_ASSERT (s != NULL);
2818 s->_raw_size += sizeof (Elf32_External_Rel);
2819
2820 return true;
2821 }
2822
2823 /* If this is a weak symbol, and there is a real definition, the
2824 processor independent code will have arranged for us to see the
2825 real definition first, and we can just use the same value. */
2826 if (h->weakdef != NULL)
2827 {
2828 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2829 || h->weakdef->root.type == bfd_link_hash_defweak);
2830 h->root.u.def.section = h->weakdef->root.u.def.section;
2831 h->root.u.def.value = h->weakdef->root.u.def.value;
2832 return true;
2833 }
2834
2835 /* This is a reference to a symbol defined by a dynamic object which
2836 is not a function. */
2837
2838 /* If we are creating a shared library, we must presume that the
2839 only references to the symbol are via the global offset table.
2840 For such cases we need not do anything here; the relocations will
2841 be handled correctly by relocate_section. */
2842 if (info->shared)
2843 return true;
2844
2845 /* We must allocate the symbol in our .dynbss section, which will
2846 become part of the .bss section of the executable. There will be
2847 an entry for this symbol in the .dynsym section. The dynamic
2848 object will contain position independent code, so all references
2849 from the dynamic object to this symbol will go through the global
2850 offset table. The dynamic linker will use the .dynsym entry to
2851 determine the address it must put in the global offset table, so
2852 both the dynamic object and the regular object will refer to the
2853 same memory location for the variable. */
2854 s = bfd_get_section_by_name (dynobj, ".dynbss");
2855 BFD_ASSERT (s != NULL);
2856
2857 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2858 copy the initial value out of the dynamic object and into the
2859 runtime process image. We need to remember the offset into the
2860 .rel.bss section we are going to use. */
2861 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2862 {
2863 asection *srel;
2864
2865 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2866 BFD_ASSERT (srel != NULL);
2867 srel->_raw_size += sizeof (Elf32_External_Rel);
2868 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2869 }
2870
2871 /* We need to figure out the alignment required for this symbol. I
2872 have no idea how ELF linkers handle this. */
2873 power_of_two = bfd_log2 (h->size);
2874 if (power_of_two > 3)
2875 power_of_two = 3;
2876
2877 /* Apply the required alignment. */
2878 s->_raw_size = BFD_ALIGN (s->_raw_size,
2879 (bfd_size_type) (1 << power_of_two));
2880 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2881 {
2882 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2883 return false;
2884 }
2885
2886 /* Define the symbol as being at this point in the section. */
2887 h->root.u.def.section = s;
2888 h->root.u.def.value = s->_raw_size;
2889
2890 /* Increment the section size to make room for the symbol. */
2891 s->_raw_size += h->size;
2892
2893 return true;
2894}
2895
2896/* Set the sizes of the dynamic sections. */
2897
2898static boolean
2899elf32_arm_size_dynamic_sections (output_bfd, info)
2900 bfd * output_bfd;
2901 struct bfd_link_info * info;
2902{
2903 bfd * dynobj;
2904 asection * s;
2905 boolean plt;
2906 boolean relocs;
2907 boolean reltext;
2908
2909 dynobj = elf_hash_table (info)->dynobj;
2910 BFD_ASSERT (dynobj != NULL);
2911
2912 if (elf_hash_table (info)->dynamic_sections_created)
2913 {
2914 /* Set the contents of the .interp section to the interpreter. */
2915 if (! info->shared)
2916 {
2917 s = bfd_get_section_by_name (dynobj, ".interp");
2918 BFD_ASSERT (s != NULL);
2919 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2920 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2921 }
2922 }
2923 else
2924 {
2925 /* We may have created entries in the .rel.got section.
2926 However, if we are not creating the dynamic sections, we will
2927 not actually use these entries. Reset the size of .rel.got,
2928 which will cause it to get stripped from the output file
2929 below. */
2930 s = bfd_get_section_by_name (dynobj, ".rel.got");
2931 if (s != NULL)
2932 s->_raw_size = 0;
2933 }
2934
2935 /* If this is a -Bsymbolic shared link, then we need to discard all
2936 PC relative relocs against symbols defined in a regular object.
2937 We allocated space for them in the check_relocs routine, but we
2938 will not fill them in in the relocate_section routine. */
2939 if (info->shared && info->symbolic)
2940 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2941 elf32_arm_discard_copies,
2942 (PTR) NULL);
2943
2944 /* The check_relocs and adjust_dynamic_symbol entry points have
2945 determined the sizes of the various dynamic sections. Allocate
2946 memory for them. */
2947 plt = false;
2948 relocs = false;
2949 reltext = false;
2950 for (s = dynobj->sections; s != NULL; s = s->next)
2951 {
2952 const char * name;
2953 boolean strip;
2954
2955 if ((s->flags & SEC_LINKER_CREATED) == 0)
2956 continue;
2957
2958 /* It's OK to base decisions on the section name, because none
2959 of the dynobj section names depend upon the input files. */
2960 name = bfd_get_section_name (dynobj, s);
2961
2962 strip = false;
2963
2964 if (strcmp (name, ".plt") == 0)
2965 {
2966 if (s->_raw_size == 0)
2967 {
2968 /* Strip this section if we don't need it; see the
2969 comment below. */
2970 strip = true;
2971 }
2972 else
2973 {
2974 /* Remember whether there is a PLT. */
2975 plt = true;
2976 }
2977 }
2978 else if (strncmp (name, ".rel", 4) == 0)
2979 {
2980 if (s->_raw_size == 0)
2981 {
2982 /* If we don't need this section, strip it from the
2983 output file. This is mostly to handle .rel.bss and
2984 .rel.plt. We must create both sections in
2985 create_dynamic_sections, because they must be created
2986 before the linker maps input sections to output
2987 sections. The linker does that before
2988 adjust_dynamic_symbol is called, and it is that
2989 function which decides whether anything needs to go
2990 into these sections. */
2991 strip = true;
2992 }
2993 else
2994 {
2995 asection * target;
2996
2997 /* Remember whether there are any reloc sections other
2998 than .rel.plt. */
2999 if (strcmp (name, ".rel.plt") != 0)
3000 {
3001 const char *outname;
3002
3003 relocs = true;
3004
3005 /* If this relocation section applies to a read only
3006 section, then we probably need a DT_TEXTREL
3007 entry. The entries in the .rel.plt section
3008 really apply to the .got section, which we
3009 created ourselves and so know is not readonly. */
3010 outname = bfd_get_section_name (output_bfd,
3011 s->output_section);
3012 target = bfd_get_section_by_name (output_bfd, outname + 4);
3013
3014 if (target != NULL
3015 && (target->flags & SEC_READONLY) != 0
3016 && (target->flags & SEC_ALLOC) != 0)
3017 reltext = true;
3018 }
3019
3020 /* We use the reloc_count field as a counter if we need
3021 to copy relocs into the output file. */
3022 s->reloc_count = 0;
3023 }
3024 }
3025 else if (strncmp (name, ".got", 4) != 0)
3026 {
3027 /* It's not one of our sections, so don't allocate space. */
3028 continue;
3029 }
3030
3031 if (strip)
3032 {
3033 asection ** spp;
3034
3035 for (spp = &s->output_section->owner->sections;
3036 *spp != s->output_section;
3037 spp = &(*spp)->next)
3038 ;
3039 *spp = s->output_section->next;
3040 --s->output_section->owner->section_count;
3041
3042 continue;
3043 }
3044
3045 /* Allocate memory for the section contents. */
3046 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3047 if (s->contents == NULL && s->_raw_size != 0)
3048 return false;
3049 }
3050
3051 if (elf_hash_table (info)->dynamic_sections_created)
3052 {
3053 /* Add some entries to the .dynamic section. We fill in the
3054 values later, in elf32_arm_finish_dynamic_sections, but we
3055 must add the entries now so that we get the correct size for
3056 the .dynamic section. The DT_DEBUG entry is filled in by the
3057 dynamic linker and used by the debugger. */
3058 if (! info->shared)
3059 {
3060 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
3061 return false;
3062 }
3063
3064 if (plt)
3065 {
3066 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
3067 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
3068 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
3069 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
3070 return false;
3071 }
3072
3073 if (relocs)
3074 {
3075 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
3076 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
3077 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
3078 sizeof (Elf32_External_Rel)))
3079 return false;
3080 }
3081
3082 if (reltext)
3083 {
3084 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
3085 return false;
3086 info->flags |= DF_TEXTREL;
3087 }
3088 }
3089
3090 return true;
3091}
3092
3093/* This function is called via elf32_arm_link_hash_traverse if we are
3094 creating a shared object with -Bsymbolic. It discards the space
3095 allocated to copy PC relative relocs against symbols which are
3096 defined in regular objects. We allocated space for them in the
3097 check_relocs routine, but we won't fill them in in the
3098 relocate_section routine. */
3099
3100static boolean
3101elf32_arm_discard_copies (h, ignore)
3102 struct elf32_arm_link_hash_entry * h;
3103 PTR ignore ATTRIBUTE_UNUSED;
3104{
3105 struct elf32_arm_pcrel_relocs_copied * s;
3106
3107 /* We only discard relocs for symbols defined in a regular object. */
3108 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3109 return true;
3110
3111 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3112 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3113
3114 return true;
3115}
3116
3117/* Finish up dynamic symbol handling. We set the contents of various
3118 dynamic sections here. */
3119
3120static boolean
3121elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3122 bfd * output_bfd;
3123 struct bfd_link_info * info;
3124 struct elf_link_hash_entry * h;
3125 Elf_Internal_Sym * sym;
3126{
3127 bfd * dynobj;
3128
3129 dynobj = elf_hash_table (info)->dynobj;
3130
3131 if (h->plt.offset != (bfd_vma) -1)
3132 {
3133 asection * splt;
3134 asection * sgot;
3135 asection * srel;
3136 bfd_vma plt_index;
3137 bfd_vma got_offset;
3138 Elf_Internal_Rel rel;
3139
3140 /* This symbol has an entry in the procedure linkage table. Set
3141 it up. */
3142
3143 BFD_ASSERT (h->dynindx != -1);
3144
3145 splt = bfd_get_section_by_name (dynobj, ".plt");
3146 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3147 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3148 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3149
3150 /* Get the index in the procedure linkage table which
3151 corresponds to this symbol. This is the index of this symbol
3152 in all the symbols for which we are making plt entries. The
3153 first entry in the procedure linkage table is reserved. */
3154 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3155
3156 /* Get the offset into the .got table of the entry that
3157 corresponds to this function. Each .got entry is 4 bytes.
3158 The first three are reserved. */
3159 got_offset = (plt_index + 3) * 4;
3160
3161 /* Fill in the entry in the procedure linkage table. */
3162 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3163 splt->contents + h->plt.offset + 0);
3164 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3165 splt->contents + h->plt.offset + 4);
3166 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3167 splt->contents + h->plt.offset + 8);
3168 bfd_put_32 (output_bfd,
3169 (sgot->output_section->vma
3170 + sgot->output_offset
3171 + got_offset
3172 - splt->output_section->vma
3173 - splt->output_offset
3174 - h->plt.offset - 12),
3175 splt->contents + h->plt.offset + 12);
3176
3177 /* Fill in the entry in the global offset table. */
3178 bfd_put_32 (output_bfd,
3179 (splt->output_section->vma
3180 + splt->output_offset),
3181 sgot->contents + got_offset);
3182
3183 /* Fill in the entry in the .rel.plt section. */
3184 rel.r_offset = (sgot->output_section->vma
3185 + sgot->output_offset
3186 + got_offset);
3187 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3188 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3189 ((Elf32_External_Rel *) srel->contents
3190 + plt_index));
3191
3192 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3193 {
3194 /* Mark the symbol as undefined, rather than as defined in
3195 the .plt section. Leave the value alone. */
3196 sym->st_shndx = SHN_UNDEF;
3197 /* If the symbol is weak, we do need to clear the value.
3198 Otherwise, the PLT entry would provide a definition for
3199 the symbol even if the symbol wasn't defined anywhere,
3200 and so the symbol would never be NULL. */
3201 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3202 == 0)
3203 sym->st_value = 0;
3204 }
3205 }
3206
3207 if (h->got.offset != (bfd_vma) -1)
3208 {
3209 asection * sgot;
3210 asection * srel;
3211 Elf_Internal_Rel rel;
3212
3213 /* This symbol has an entry in the global offset table. Set it
3214 up. */
3215 sgot = bfd_get_section_by_name (dynobj, ".got");
3216 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3217 BFD_ASSERT (sgot != NULL && srel != NULL);
3218
3219 rel.r_offset = (sgot->output_section->vma
3220 + sgot->output_offset
3221 + (h->got.offset &~ 1));
3222
3223 /* If this is a -Bsymbolic link, and the symbol is defined
3224 locally, we just want to emit a RELATIVE reloc. The entry in
3225 the global offset table will already have been initialized in
3226 the relocate_section function. */
3227 if (info->shared
3228 && (info->symbolic || h->dynindx == -1)
3229 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3230 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3231 else
3232 {
3233 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3234 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3235 }
3236
3237 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3238 ((Elf32_External_Rel *) srel->contents
3239 + srel->reloc_count));
3240 ++srel->reloc_count;
3241 }
3242
3243 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3244 {
3245 asection * s;
3246 Elf_Internal_Rel rel;
3247
3248 /* This symbol needs a copy reloc. Set it up. */
3249 BFD_ASSERT (h->dynindx != -1
3250 && (h->root.type == bfd_link_hash_defined
3251 || h->root.type == bfd_link_hash_defweak));
3252
3253 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3254 ".rel.bss");
3255 BFD_ASSERT (s != NULL);
3256
3257 rel.r_offset = (h->root.u.def.value
3258 + h->root.u.def.section->output_section->vma
3259 + h->root.u.def.section->output_offset);
3260 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3261 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3262 ((Elf32_External_Rel *) s->contents
3263 + s->reloc_count));
3264 ++s->reloc_count;
3265 }
3266
3267 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3268 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3269 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3270 sym->st_shndx = SHN_ABS;
3271
3272 return true;
3273}
3274
3275/* Finish up the dynamic sections. */
3276
3277static boolean
3278elf32_arm_finish_dynamic_sections (output_bfd, info)
3279 bfd * output_bfd;
3280 struct bfd_link_info * info;
3281{
3282 bfd * dynobj;
3283 asection * sgot;
3284 asection * sdyn;
3285
3286 dynobj = elf_hash_table (info)->dynobj;
3287
3288 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3289 BFD_ASSERT (sgot != NULL);
3290 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3291
3292 if (elf_hash_table (info)->dynamic_sections_created)
3293 {
3294 asection *splt;
3295 Elf32_External_Dyn *dyncon, *dynconend;
3296
3297 splt = bfd_get_section_by_name (dynobj, ".plt");
3298 BFD_ASSERT (splt != NULL && sdyn != NULL);
3299
3300 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3301 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3302
3303 for (; dyncon < dynconend; dyncon++)
3304 {
3305 Elf_Internal_Dyn dyn;
3306 const char * name;
3307 asection * s;
3308
3309 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3310
3311 switch (dyn.d_tag)
3312 {
3313 default:
3314 break;
3315
3316 case DT_PLTGOT:
3317 name = ".got";
3318 goto get_vma;
3319 case DT_JMPREL:
3320 name = ".rel.plt";
3321 get_vma:
3322 s = bfd_get_section_by_name (output_bfd, name);
3323 BFD_ASSERT (s != NULL);
3324 dyn.d_un.d_ptr = s->vma;
3325 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3326 break;
3327
3328 case DT_PLTRELSZ:
3329 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3330 BFD_ASSERT (s != NULL);
3331 if (s->_cooked_size != 0)
3332 dyn.d_un.d_val = s->_cooked_size;
3333 else
3334 dyn.d_un.d_val = s->_raw_size;
3335 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3336 break;
3337
3338 case DT_RELSZ:
3339 /* My reading of the SVR4 ABI indicates that the
3340 procedure linkage table relocs (DT_JMPREL) should be
3341 included in the overall relocs (DT_REL). This is
3342 what Solaris does. However, UnixWare can not handle
3343 that case. Therefore, we override the DT_RELSZ entry
3344 here to make it not include the JMPREL relocs. Since
3345 the linker script arranges for .rel.plt to follow all
3346 other relocation sections, we don't have to worry
3347 about changing the DT_REL entry. */
3348 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3349 if (s != NULL)
3350 {
3351 if (s->_cooked_size != 0)
3352 dyn.d_un.d_val -= s->_cooked_size;
3353 else
3354 dyn.d_un.d_val -= s->_raw_size;
3355 }
3356 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3357 break;
3358 }
3359 }
3360
3361 /* Fill in the first entry in the procedure linkage table. */
3362 if (splt->_raw_size > 0)
3363 {
3364 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3365 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3366 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3367 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3368 }
3369
3370 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3371 really seem like the right value. */
3372 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3373 }
3374
3375 /* Fill in the first three entries in the global offset table. */
3376 if (sgot->_raw_size > 0)
3377 {
3378 if (sdyn == NULL)
3379 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3380 else
3381 bfd_put_32 (output_bfd,
3382 sdyn->output_section->vma + sdyn->output_offset,
3383 sgot->contents);
3384 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3385 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3386 }
3387
3388 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3389
3390 return true;
3391}
3392
3393static void
3394elf32_arm_post_process_headers (abfd, link_info)
3395 bfd * abfd;
3396 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3397{
3398 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3399
3400 i_ehdrp = elf_elfheader (abfd);
3401
3402 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3403 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3404}
3405
3406#define ELF_ARCH bfd_arch_arm
3407#define ELF_MACHINE_CODE EM_ARM
3408#define ELF_MAXPAGESIZE 0x8000
3409
3410#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3411#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3412#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3413#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3414#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3415#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3416#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3417
3418#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3419#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3420#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3421#define elf_backend_check_relocs elf32_arm_check_relocs
3422#define elf_backend_relocate_section elf32_arm_relocate_section
3423#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3424#define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3425#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3426#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3427#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3428#define elf_backend_post_process_headers elf32_arm_post_process_headers
3429
3430#define elf_backend_can_gc_sections 1
3431#define elf_backend_plt_readonly 1
3432#define elf_backend_want_got_plt 1
3433#define elf_backend_want_plt_sym 0
3434
3435#define elf_backend_got_header_size 12
3436#define elf_backend_plt_header_size PLT_ENTRY_SIZE
3437
3438#include "elf32-target.h"
Note: See TracBrowser for help on using the repository browser.