1 | /* Random.java -- a pseudo-random number generator
|
---|
2 | Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of GNU Classpath.
|
---|
5 |
|
---|
6 | GNU Classpath is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2, or (at your option)
|
---|
9 | any later version.
|
---|
10 |
|
---|
11 | GNU Classpath is distributed in the hope that it will be useful, but
|
---|
12 | WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with GNU Classpath; see the file COPYING. If not, write to the
|
---|
18 | Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
19 | 02111-1307 USA.
|
---|
20 |
|
---|
21 | Linking this library statically or dynamically with other modules is
|
---|
22 | making a combined work based on this library. Thus, the terms and
|
---|
23 | conditions of the GNU General Public License cover the whole
|
---|
24 | combination.
|
---|
25 |
|
---|
26 | As a special exception, the copyright holders of this library give you
|
---|
27 | permission to link this library with independent modules to produce an
|
---|
28 | executable, regardless of the license terms of these independent
|
---|
29 | modules, and to copy and distribute the resulting executable under
|
---|
30 | terms of your choice, provided that you also meet, for each linked
|
---|
31 | independent module, the terms and conditions of the license of that
|
---|
32 | module. An independent module is a module which is not derived from
|
---|
33 | or based on this library. If you modify this library, you may extend
|
---|
34 | this exception to your version of the library, but you are not
|
---|
35 | obligated to do so. If you do not wish to do so, delete this
|
---|
36 | exception statement from your version. */
|
---|
37 |
|
---|
38 |
|
---|
39 | package java.util;
|
---|
40 |
|
---|
41 | import java.io.Serializable;
|
---|
42 |
|
---|
43 | /**
|
---|
44 | * This class generates pseudorandom numbers. It uses the same
|
---|
45 | * algorithm as the original JDK-class, so that your programs behave
|
---|
46 | * exactly the same way, if started with the same seed.
|
---|
47 | *
|
---|
48 | * The algorithm is described in <em>The Art of Computer Programming,
|
---|
49 | * Volume 2</em> by Donald Knuth in Section 3.2.1. It is a 48-bit seed,
|
---|
50 | * linear congruential formula.
|
---|
51 | *
|
---|
52 | * If two instances of this class are created with the same seed and
|
---|
53 | * the same calls to these classes are made, they behave exactly the
|
---|
54 | * same way. This should be even true for foreign implementations
|
---|
55 | * (like this), so every port must use the same algorithm as described
|
---|
56 | * here.
|
---|
57 | *
|
---|
58 | * If you want to implement your own pseudorandom algorithm, you
|
---|
59 | * should extend this class and overload the <code>next()</code> and
|
---|
60 | * <code>setSeed(long)</code> method. In that case the above
|
---|
61 | * paragraph doesn't apply to you.
|
---|
62 | *
|
---|
63 | * This class shouldn't be used for security sensitive purposes (like
|
---|
64 | * generating passwords or encryption keys. See <code>SecureRandom</code>
|
---|
65 | * in package <code>java.security</code> for this purpose.
|
---|
66 | *
|
---|
67 | * For simple random doubles between 0.0 and 1.0, you may consider using
|
---|
68 | * Math.random instead.
|
---|
69 | *
|
---|
70 | * @see java.security.SecureRandom
|
---|
71 | * @see Math#random()
|
---|
72 | * @author Jochen Hoenicke
|
---|
73 | * @author Eric Blake (ebb9@email.byu.edu)
|
---|
74 | * @status updated to 1.4
|
---|
75 | */
|
---|
76 | public class Random implements Serializable
|
---|
77 | {
|
---|
78 | /**
|
---|
79 | * True if the next nextGaussian is available. This is used by
|
---|
80 | * nextGaussian, which generates two gaussian numbers by one call,
|
---|
81 | * and returns the second on the second call.
|
---|
82 | *
|
---|
83 | * @serial whether nextNextGaussian is available
|
---|
84 | * @see #nextGaussian()
|
---|
85 | * @see #nextNextGaussian
|
---|
86 | */
|
---|
87 | private boolean haveNextNextGaussian;
|
---|
88 |
|
---|
89 | /**
|
---|
90 | * The next nextGaussian, when available. This is used by nextGaussian,
|
---|
91 | * which generates two gaussian numbers by one call, and returns the
|
---|
92 | * second on the second call.
|
---|
93 | *
|
---|
94 | * @serial the second gaussian of a pair
|
---|
95 | * @see #nextGaussian()
|
---|
96 | * @see #haveNextNextGaussian
|
---|
97 | */
|
---|
98 | private double nextNextGaussian;
|
---|
99 |
|
---|
100 | /**
|
---|
101 | * The seed. This is the number set by setSeed and which is used
|
---|
102 | * in next.
|
---|
103 | *
|
---|
104 | * @serial the internal state of this generator
|
---|
105 | * @see #next()
|
---|
106 | */
|
---|
107 | private long seed;
|
---|
108 |
|
---|
109 | /**
|
---|
110 | * Compatible with JDK 1.0+.
|
---|
111 | */
|
---|
112 | private static final long serialVersionUID = 3905348978240129619L;
|
---|
113 |
|
---|
114 | /**
|
---|
115 | * Creates a new pseudorandom number generator. The seed is initialized
|
---|
116 | * to the current time, as if by
|
---|
117 | * <code>setSeed(System.currentTimeMillis());</code>.
|
---|
118 | *
|
---|
119 | * @see System#currentTimeMillis()
|
---|
120 | */
|
---|
121 | public Random()
|
---|
122 | {
|
---|
123 | this(System.currentTimeMillis());
|
---|
124 | }
|
---|
125 |
|
---|
126 | /**
|
---|
127 | * Creates a new pseudorandom number generator, starting with the
|
---|
128 | * specified seed, using <code>setSeed(seed);</code>.
|
---|
129 | *
|
---|
130 | * @param seed the initial seed
|
---|
131 | */
|
---|
132 | public Random(long seed)
|
---|
133 | {
|
---|
134 | setSeed(seed);
|
---|
135 | }
|
---|
136 |
|
---|
137 | /**
|
---|
138 | * Sets the seed for this pseudorandom number generator. As described
|
---|
139 | * above, two instances of the same random class, starting with the
|
---|
140 | * same seed, should produce the same results, if the same methods
|
---|
141 | * are called. The implementation for java.util.Random is:
|
---|
142 | *
|
---|
143 | <pre>public synchronized void setSeed(long seed)
|
---|
144 | {
|
---|
145 | this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
|
---|
146 | haveNextNextGaussian = false;
|
---|
147 | }</pre>
|
---|
148 | *
|
---|
149 | * @param seed the new seed
|
---|
150 | */
|
---|
151 | public synchronized void setSeed(long seed)
|
---|
152 | {
|
---|
153 | this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
|
---|
154 | haveNextNextGaussian = false;
|
---|
155 | }
|
---|
156 |
|
---|
157 | /**
|
---|
158 | * Generates the next pseudorandom number. This returns
|
---|
159 | * an int value whose <code>bits</code> low order bits are
|
---|
160 | * independent chosen random bits (0 and 1 are equally likely).
|
---|
161 | * The implementation for java.util.Random is:
|
---|
162 | *
|
---|
163 | <pre>protected synchronized int next(int bits)
|
---|
164 | {
|
---|
165 | seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
|
---|
166 | return (int) (seed >>> (48 - bits));
|
---|
167 | }</pre>
|
---|
168 | *
|
---|
169 | * @param bits the number of random bits to generate, in the range 1..32
|
---|
170 | * @return the next pseudorandom value
|
---|
171 | * @since 1.1
|
---|
172 | */
|
---|
173 | protected synchronized int next(int bits)
|
---|
174 | {
|
---|
175 | seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
|
---|
176 | return (int) (seed >>> (48 - bits));
|
---|
177 | }
|
---|
178 |
|
---|
179 | /**
|
---|
180 | * Fills an array of bytes with random numbers. All possible values
|
---|
181 | * are (approximately) equally likely.
|
---|
182 | * The JDK documentation gives no implementation, but it seems to be:
|
---|
183 | *
|
---|
184 | <pre>public void nextBytes(byte[] bytes)
|
---|
185 | {
|
---|
186 | for (int i = 0; i < bytes.length; i += 4)
|
---|
187 | {
|
---|
188 | int random = next(32);
|
---|
189 | for (int j = 0; i + j < bytes.length && j < 4; j++)
|
---|
190 | {
|
---|
191 | bytes[i+j] = (byte) (random & 0xff)
|
---|
192 | random >>= 8;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | }</pre>
|
---|
196 | *
|
---|
197 | * @param bytes the byte array that should be filled
|
---|
198 | * @throws NullPointerException if bytes is null
|
---|
199 | * @since 1.1
|
---|
200 | */
|
---|
201 | public void nextBytes(byte[] bytes)
|
---|
202 | {
|
---|
203 | int random;
|
---|
204 | // Do a little bit unrolling of the above algorithm.
|
---|
205 | int max = bytes.length & ~0x3;
|
---|
206 | for (int i = 0; i < max; i += 4)
|
---|
207 | {
|
---|
208 | random = next(32);
|
---|
209 | bytes[i] = (byte) random;
|
---|
210 | bytes[i + 1] = (byte) (random >> 8);
|
---|
211 | bytes[i + 2] = (byte) (random >> 16);
|
---|
212 | bytes[i + 3] = (byte) (random >> 24);
|
---|
213 | }
|
---|
214 | if (max < bytes.length)
|
---|
215 | {
|
---|
216 | random = next(32);
|
---|
217 | for (int j = max; j < bytes.length; j++)
|
---|
218 | {
|
---|
219 | bytes[j] = (byte) random;
|
---|
220 | random >>= 8;
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|
224 |
|
---|
225 | /**
|
---|
226 | * Generates the next pseudorandom number. This returns
|
---|
227 | * an int value whose 32 bits are independent chosen random bits
|
---|
228 | * (0 and 1 are equally likely). The implementation for
|
---|
229 | * java.util.Random is:
|
---|
230 | *
|
---|
231 | <pre>public int nextInt()
|
---|
232 | {
|
---|
233 | return next(32);
|
---|
234 | }</pre>
|
---|
235 | *
|
---|
236 | * @return the next pseudorandom value
|
---|
237 | */
|
---|
238 | public int nextInt()
|
---|
239 | {
|
---|
240 | return next(32);
|
---|
241 | }
|
---|
242 |
|
---|
243 | /**
|
---|
244 | * Generates the next pseudorandom number. This returns
|
---|
245 | * a value between 0(inclusive) and <code>n</code>(exclusive), and
|
---|
246 | * each value has the same likelihodd (1/<code>n</code>).
|
---|
247 | * (0 and 1 are equally likely). The implementation for
|
---|
248 | * java.util.Random is:
|
---|
249 | *
|
---|
250 | <pre>
|
---|
251 | public int nextInt(int n)
|
---|
252 | {
|
---|
253 | if (n <= 0)
|
---|
254 | throw new IllegalArgumentException("n must be positive");
|
---|
255 |
|
---|
256 | if ((n & -n) == n) // i.e., n is a power of 2
|
---|
257 | return (int)((n * (long) next(31)) >> 31);
|
---|
258 |
|
---|
259 | int bits, val;
|
---|
260 | do
|
---|
261 | {
|
---|
262 | bits = next(31);
|
---|
263 | val = bits % n;
|
---|
264 | }
|
---|
265 | while(bits - val + (n-1) < 0);
|
---|
266 |
|
---|
267 | return val;
|
---|
268 | }</pre>
|
---|
269 | *
|
---|
270 | * <p>This algorithm would return every value with exactly the same
|
---|
271 | * probability, if the next()-method would be a perfect random number
|
---|
272 | * generator.
|
---|
273 | *
|
---|
274 | * The loop at the bottom only accepts a value, if the random
|
---|
275 | * number was between 0 and the highest number less then 1<<31,
|
---|
276 | * which is divisible by n. The probability for this is high for small
|
---|
277 | * n, and the worst case is 1/2 (for n=(1<<30)+1).
|
---|
278 | *
|
---|
279 | * The special treatment for n = power of 2, selects the high bits of
|
---|
280 | * the random number (the loop at the bottom would select the low order
|
---|
281 | * bits). This is done, because the low order bits of linear congruential
|
---|
282 | * number generators (like the one used in this class) are known to be
|
---|
283 | * ``less random'' than the high order bits.
|
---|
284 | *
|
---|
285 | * @param n the upper bound
|
---|
286 | * @throws IllegalArgumentException if the given upper bound is negative
|
---|
287 | * @return the next pseudorandom value
|
---|
288 | * @since 1.2
|
---|
289 | */
|
---|
290 | public int nextInt(int n)
|
---|
291 | {
|
---|
292 | if (n <= 0)
|
---|
293 | throw new IllegalArgumentException("n must be positive");
|
---|
294 | if ((n & -n) == n) // i.e., n is a power of 2
|
---|
295 | return (int) ((n * (long) next(31)) >> 31);
|
---|
296 | int bits, val;
|
---|
297 | do
|
---|
298 | {
|
---|
299 | bits = next(31);
|
---|
300 | val = bits % n;
|
---|
301 | }
|
---|
302 | while (bits - val + (n - 1) < 0);
|
---|
303 | return val;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /**
|
---|
307 | * Generates the next pseudorandom long number. All bits of this
|
---|
308 | * long are independently chosen and 0 and 1 have equal likelihood.
|
---|
309 | * The implementation for java.util.Random is:
|
---|
310 | *
|
---|
311 | <pre>public long nextLong()
|
---|
312 | {
|
---|
313 | return ((long) next(32) << 32) + next(32);
|
---|
314 | }</pre>
|
---|
315 | *
|
---|
316 | * @return the next pseudorandom value
|
---|
317 | */
|
---|
318 | public long nextLong()
|
---|
319 | {
|
---|
320 | return ((long) next(32) << 32) + next(32);
|
---|
321 | }
|
---|
322 |
|
---|
323 | /**
|
---|
324 | * Generates the next pseudorandom boolean. True and false have
|
---|
325 | * the same probability. The implementation is:
|
---|
326 | *
|
---|
327 | <pre>public boolean nextBoolean()
|
---|
328 | {
|
---|
329 | return next(1) != 0;
|
---|
330 | }</pre>
|
---|
331 | *
|
---|
332 | * @return the next pseudorandom boolean
|
---|
333 | * @since 1.2
|
---|
334 | */
|
---|
335 | public boolean nextBoolean()
|
---|
336 | {
|
---|
337 | return next(1) != 0;
|
---|
338 | }
|
---|
339 |
|
---|
340 | /**
|
---|
341 | * Generates the next pseudorandom float uniformly distributed
|
---|
342 | * between 0.0f (inclusive) and 1.0f (exclusive). The
|
---|
343 | * implementation is as follows.
|
---|
344 | *
|
---|
345 | <pre>public float nextFloat()
|
---|
346 | {
|
---|
347 | return next(24) / ((float)(1 << 24));
|
---|
348 | }</pre>
|
---|
349 | *
|
---|
350 | * @return the next pseudorandom float
|
---|
351 | */
|
---|
352 | public float nextFloat()
|
---|
353 | {
|
---|
354 | return next(24) / (float) (1 << 24);
|
---|
355 | }
|
---|
356 |
|
---|
357 | /**
|
---|
358 | * Generates the next pseudorandom double uniformly distributed
|
---|
359 | * between 0.0 (inclusive) and 1.0 (exclusive). The
|
---|
360 | * implementation is as follows.
|
---|
361 | *
|
---|
362 | <pre>public double nextDouble()
|
---|
363 | {
|
---|
364 | return (((long) next(26) << 27) + next(27)) / (double)(1L << 53);
|
---|
365 | }</pre>
|
---|
366 | *
|
---|
367 | * @return the next pseudorandom double
|
---|
368 | */
|
---|
369 | public double nextDouble()
|
---|
370 | {
|
---|
371 | return (((long) next(26) << 27) + next(27)) / (double) (1L << 53);
|
---|
372 | }
|
---|
373 |
|
---|
374 | /**
|
---|
375 | * Generates the next pseudorandom, Gaussian (normally) distributed
|
---|
376 | * double value, with mean 0.0 and standard deviation 1.0.
|
---|
377 | * The algorithm is as follows.
|
---|
378 | *
|
---|
379 | <pre>public synchronized double nextGaussian()
|
---|
380 | {
|
---|
381 | if (haveNextNextGaussian)
|
---|
382 | {
|
---|
383 | haveNextNextGaussian = false;
|
---|
384 | return nextNextGaussian;
|
---|
385 | }
|
---|
386 | else
|
---|
387 | {
|
---|
388 | double v1, v2, s;
|
---|
389 | do
|
---|
390 | {
|
---|
391 | v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
|
---|
392 | v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
|
---|
393 | s = v1 * v1 + v2 * v2;
|
---|
394 | }
|
---|
395 | while (s >= 1);
|
---|
396 |
|
---|
397 | double norm = Math.sqrt(-2 * Math.log(s) / s);
|
---|
398 | nextNextGaussian = v2 * norm;
|
---|
399 | haveNextNextGaussian = true;
|
---|
400 | return v1 * norm;
|
---|
401 | }
|
---|
402 | }</pre>
|
---|
403 | *
|
---|
404 | * <p>This is described in section 3.4.1 of <em>The Art of Computer
|
---|
405 | * Programming, Volume 2</em> by Donald Knuth.
|
---|
406 | *
|
---|
407 | * @return the next pseudorandom Gaussian distributed double
|
---|
408 | */
|
---|
409 | public synchronized double nextGaussian()
|
---|
410 | {
|
---|
411 | if (haveNextNextGaussian)
|
---|
412 | {
|
---|
413 | haveNextNextGaussian = false;
|
---|
414 | return nextNextGaussian;
|
---|
415 | }
|
---|
416 | double v1, v2, s;
|
---|
417 | do
|
---|
418 | {
|
---|
419 | v1 = 2 * nextDouble() - 1; // Between -1.0 and 1.0.
|
---|
420 | v2 = 2 * nextDouble() - 1; // Between -1.0 and 1.0.
|
---|
421 | s = v1 * v1 + v2 * v2;
|
---|
422 | }
|
---|
423 | while (s >= 1);
|
---|
424 | double norm = Math.sqrt(-2 * Math.log(s) / s);
|
---|
425 | nextNextGaussian = v2 * norm;
|
---|
426 | haveNextNextGaussian = true;
|
---|
427 | return v1 * norm;
|
---|
428 | }
|
---|
429 | }
|
---|