source: trunk/gcc/libjava/java/util/BitSet.java

Last change on this file was 1392, checked in by bird, 21 years ago

This commit was generated by cvs2svn to compensate for changes in r1391,
which included commits to RCS files with non-trunk default branches.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 20.3 KB
Line 
1/* BitSet.java -- A vector of bits.
2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4This file is part of GNU Classpath.
5
6GNU Classpath is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU Classpath is distributed in the hope that it will be useful, but
12WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Classpath; see the file COPYING. If not, write to the
18Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
1902111-1307 USA.
20
21Linking this library statically or dynamically with other modules is
22making a combined work based on this library. Thus, the terms and
23conditions of the GNU General Public License cover the whole
24combination.
25
26As a special exception, the copyright holders of this library give you
27permission to link this library with independent modules to produce an
28executable, regardless of the license terms of these independent
29modules, and to copy and distribute the resulting executable under
30terms of your choice, provided that you also meet, for each linked
31independent module, the terms and conditions of the license of that
32module. An independent module is a module which is not derived from
33or based on this library. If you modify this library, you may extend
34this exception to your version of the library, but you are not
35obligated to do so. If you do not wish to do so, delete this
36exception statement from your version. */
37
38package java.util;
39import java.io.Serializable;
40
41/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
42 * hashCode algorithm taken from JDK 1.2 docs.
43 */
44
45/**
46 * This class can be thought of in two ways. You can see it as a
47 * vector of bits or as a set of non-negative integers. The name
48 * <code>BitSet</code> is a bit misleading.
49 *
50 * It is implemented by a bit vector, but its equally possible to see
51 * it as set of non-negative integer; each integer in the set is
52 * represented by a set bit at the corresponding index. The size of
53 * this structure is determined by the highest integer in the set.
54 *
55 * You can union, intersect and build (symmetric) remainders, by
56 * invoking the logical operations and, or, andNot, resp. xor.
57 *
58 * This implementation is NOT synchronized against concurrent access from
59 * multiple threads. Specifically, if one thread is reading from a bitset
60 * while another thread is simultaneously modifying it, the results are
61 * undefined.
62 *
63 * @author Jochen Hoenicke
64 * @author Tom Tromey <tromey@cygnus.com>
65 * @author Eric Blake <ebb9@email.byu.edu>
66 * @status updated to 1.4
67 */
68public class BitSet implements Cloneable, Serializable
69{
70 /**
71 * Compatible with JDK 1.0.
72 */
73 private static final long serialVersionUID = 7997698588986878753L;
74
75 /**
76 * A common mask.
77 */
78 private static final int LONG_MASK = 0x3f;
79
80 /**
81 * The actual bits.
82 * @serial the i'th bit is in bits[i/64] at position i%64 (where position
83 * 0 is the least significant).
84 */
85 private long[] bits;
86
87 /**
88 * Create a new empty bit set. All bits are initially false.
89 */
90 public BitSet()
91 {
92 this(64);
93 }
94
95 /**
96 * Create a new empty bit set, with a given size. This
97 * constructor reserves enough space to represent the integers
98 * from <code>0</code> to <code>nbits-1</code>.
99 *
100 * @param nbits the initial size of the bit set
101 * @throws NegativeArraySizeException if nbits &lt; 0
102 */
103 public BitSet(int nbits)
104 {
105 if (nbits < 0)
106 throw new NegativeArraySizeException();
107
108 int length = nbits >>> 6;
109 if ((nbits & LONG_MASK) != 0)
110 ++length;
111 bits = new long[length];
112 }
113
114 /**
115 * Performs the logical AND operation on this bit set and the
116 * given <code>set</code>. This means it builds the intersection
117 * of the two sets. The result is stored into this bit set.
118 *
119 * @param set the second bit set
120 * @throws NullPointerException if set is null
121 */
122 public void and(BitSet bs)
123 {
124 int max = Math.min(bits.length, bs.bits.length);
125 int i;
126 for (i = 0; i < max; ++i)
127 bits[i] &= bs.bits[i];
128 while (i < bits.length)
129 bits[i++] = 0;
130 }
131
132 /**
133 * Performs the logical AND operation on this bit set and the
134 * complement of the given <code>set</code>. This means it
135 * selects every element in the first set, that isn't in the
136 * second set. The result is stored into this bit set.
137 *
138 * @param set the second bit set
139 * @throws NullPointerException if set is null
140 * @since 1.2
141 */
142 public void andNot(BitSet bs)
143 {
144 int i = Math.min(bits.length, bs.bits.length);
145 while (--i >= 0)
146 bits[i] &= ~bs.bits[i];
147 }
148
149 /**
150 * Returns the number of bits set to true.
151 *
152 * @return the number of true bits
153 * @since 1.4
154 */
155 public int cardinality()
156 {
157 int card = 0;
158 for (int i = bits.length - 1; i >= 0; i--)
159 {
160 long a = bits[i];
161 // Take care of common cases.
162 if (a == 0)
163 continue;
164 if (a == -1)
165 {
166 card += 64;
167 continue;
168 }
169
170 // Successively collapse alternating bit groups into a sum.
171 a = ((a >> 1) & 0x5555555555555555L) + (a & 0x5555555555555555L);
172 a = ((a >> 2) & 0x3333333333333333L) + (a & 0x3333333333333333L);
173 int b = (int) ((a >>> 32) + a);
174 b = ((b >> 4) & 0x0f0f0f0f) + (b & 0x0f0f0f0f);
175 b = ((b >> 8) & 0x00ff00ff) + (b & 0x00ff00ff);
176 card += ((b >> 16) & 0x0000ffff) + (b & 0x0000ffff);
177 }
178 return card;
179 }
180
181 /**
182 * Sets all bits in the set to false.
183 *
184 * @since 1.4
185 */
186 public void clear()
187 {
188 Arrays.fill(bits, 0);
189 }
190
191 /**
192 * Removes the integer <code>bitIndex</code> from this set. That is
193 * the corresponding bit is cleared. If the index is not in the set,
194 * this method does nothing.
195 *
196 * @param bitIndex a non-negative integer
197 * @throws IndexOutOfBoundsException if bitIndex &lt; 0
198 */
199 public void clear(int pos)
200 {
201 int offset = pos >> 6;
202 ensure(offset);
203 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
204 // so we'll just let that be our exception.
205 bits[offset] &= ~(1L << pos);
206 }
207
208 /**
209 * Sets the bits between from (inclusive) and to (exclusive) to false.
210 *
211 * @param from the start range (inclusive)
212 * @param to the end range (exclusive)
213 * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to
214 * @since 1.4
215 */
216 public void clear(int from, int to)
217 {
218 if (from < 0 || from > to)
219 throw new IndexOutOfBoundsException();
220 if (from == to)
221 return;
222 int lo_offset = from >>> 6;
223 int hi_offset = to >>> 6;
224 ensure(hi_offset);
225 if (lo_offset == hi_offset)
226 {
227 bits[hi_offset] &= ((1L << from) - 1) | (-1L << to);
228 return;
229 }
230
231 bits[lo_offset] &= (1L << from) - 1;
232 bits[hi_offset] &= -1L << to;
233 for (int i = lo_offset + 1; i < hi_offset; i++)
234 bits[i] = 0;
235 }
236
237 /**
238 * Create a clone of this bit set, that is an instance of the same
239 * class and contains the same elements. But it doesn't change when
240 * this bit set changes.
241 *
242 * @return the clone of this object.
243 */
244 public Object clone()
245 {
246 try
247 {
248 BitSet bs = (BitSet) super.clone();
249 bs.bits = (long[]) bits.clone();
250 return bs;
251 }
252 catch (CloneNotSupportedException e)
253 {
254 // Impossible to get here.
255 return null;
256 }
257 }
258
259 /**
260 * Returns true if the <code>obj</code> is a bit set that contains
261 * exactly the same elements as this bit set, otherwise false.
262 *
263 * @param obj the object to compare to
264 * @return true if obj equals this bit set
265 */
266 public boolean equals(Object obj)
267 {
268 if (!(obj instanceof BitSet))
269 return false;
270 BitSet bs = (BitSet) obj;
271 int max = Math.min(bits.length, bs.bits.length);
272 int i;
273 for (i = 0; i < max; ++i)
274 if (bits[i] != bs.bits[i])
275 return false;
276 // If one is larger, check to make sure all extra bits are 0.
277 for (int j = i; j < bits.length; ++j)
278 if (bits[j] != 0)
279 return false;
280 for (int j = i; j < bs.bits.length; ++j)
281 if (bs.bits[j] != 0)
282 return false;
283 return true;
284 }
285
286 /**
287 * Sets the bit at the index to the opposite value.
288 *
289 * @param index the index of the bit
290 * @throws IndexOutOfBoundsException if index is negative
291 * @since 1.4
292 */
293 public void flip(int index)
294 {
295 int offset = index >> 6;
296 ensure(offset);
297 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
298 // so we'll just let that be our exception.
299 bits[offset] ^= 1L << index;
300 }
301
302 /**
303 * Sets a range of bits to the opposite value.
304 *
305 * @param from the low index (inclusive)
306 * @param to the high index (exclusive)
307 * @throws IndexOutOfBoundsException if from &gt; to || from &lt; 0
308 * @since 1.4
309 */
310 public void flip(int from, int to)
311 {
312 if (from < 0 || from > to)
313 throw new IndexOutOfBoundsException();
314 if (from == to)
315 return;
316 int lo_offset = from >>> 6;
317 int hi_offset = to >>> 6;
318 ensure(hi_offset);
319 if (lo_offset == hi_offset)
320 {
321 bits[hi_offset] ^= (-1L << from) & ((1L << to) - 1);
322 return;
323 }
324
325 bits[lo_offset] ^= -1L << from;
326 bits[hi_offset] ^= (1L << to) - 1;
327 for (int i = lo_offset + 1; i < hi_offset; i++)
328 bits[i] ^= -1;
329 }
330
331 /**
332 * Returns true if the integer <code>bitIndex</code> is in this bit
333 * set, otherwise false.
334 *
335 * @param pos a non-negative integer
336 * @return the value of the bit at the specified index
337 * @throws IndexOutOfBoundsException if the index is negative
338 */
339 public boolean get(int pos)
340 {
341 int offset = pos >> 6;
342 if (offset >= bits.length)
343 return false;
344 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
345 // so we'll just let that be our exception.
346 return (bits[offset] & (1L << pos)) != 0;
347 }
348
349 /**
350 * Returns a new <code>BitSet</code> composed of a range of bits from
351 * this one.
352 *
353 * @param from the low index (inclusive)
354 * @param to the high index (exclusive)
355 * @throws IndexOutOfBoundsException if from &gt; to || from &lt; 0
356 * @since 1.4
357 */
358 public BitSet get(int from, int to)
359 {
360 if (from < 0 || from > to)
361 throw new IndexOutOfBoundsException();
362 BitSet bs = new BitSet(to - from);
363 int lo_offset = from >>> 6;
364 if (lo_offset >= bits.length)
365 return bs;
366
367 int lo_bit = from & LONG_MASK;
368 int hi_offset = to >>> 6;
369 if (lo_bit == 0)
370 {
371 int len = Math.min(hi_offset - lo_offset + 1, bits.length - lo_offset);
372 System.arraycopy(bits, lo_offset, bs.bits, 0, len);
373 if (hi_offset < bits.length)
374 bs.bits[hi_offset - lo_offset] &= (1L << to) - 1;
375 return bs;
376 }
377
378 int len = Math.min(hi_offset, bits.length - 1);
379 int reverse = ~lo_bit;
380 int i;
381 for (i = 0; lo_offset < len; lo_offset++, i++)
382 bs.bits[i] = ((bits[lo_offset] >>> lo_bit)
383 | (bits[lo_offset + 1] << reverse));
384 if ((to & LONG_MASK) > lo_bit)
385 bs.bits[i++] = bits[lo_offset] >>> lo_bit;
386 if (hi_offset < bits.length)
387 bs.bits[i - 1] &= (1L << (to - from)) - 1;
388 return bs;
389 }
390
391 /**
392 * Returns a hash code value for this bit set. The hash code of
393 * two bit sets containing the same integers is identical. The algorithm
394 * used to compute it is as follows:
395 *
396 * Suppose the bits in the BitSet were to be stored in an array of
397 * long integers called <code>bits</code>, in such a manner that
398 * bit <code>k</code> is set in the BitSet (for non-negative values
399 * of <code>k</code>) if and only if
400 *
401 * <code>((k/64) &lt; bits.length)
402 * && ((bits[k/64] & (1L &lt;&lt; (bit % 64))) != 0)
403 * </code>
404 *
405 * Then the following definition of the hashCode method
406 * would be a correct implementation of the actual algorithm:
407 *
408 *
409<pre>public int hashCode()
410{
411 long h = 1234;
412 for (int i = bits.length-1; i &gt;= 0; i--)
413 {
414 h ^= bits[i] * (i + 1);
415 }
416
417 return (int)((h >> 32) ^ h);
418}</pre>
419 *
420 * Note that the hash code values changes, if the set is changed.
421 *
422 * @return the hash code value for this bit set.
423 */
424 public int hashCode()
425 {
426 long h = 1234;
427 for (int i = bits.length; i > 0; )
428 h ^= i * bits[--i];
429 return (int) ((h >> 32) ^ h);
430 }
431
432 /**
433 * Returns true if the specified BitSet and this one share at least one
434 * common true bit.
435 *
436 * @param set the set to check for intersection
437 * @return true if the sets intersect
438 * @throws NullPointerException if set is null
439 * @since 1.4
440 */
441 public boolean intersects(BitSet set)
442 {
443 int i = Math.min(bits.length, set.bits.length);
444 while (--i >= 0)
445 if ((bits[i] & set.bits[i]) != 0)
446 return true;
447 return false;
448 }
449
450 /**
451 * Returns true if this set contains no true bits.
452 *
453 * @return true if all bits are false
454 * @since 1.4
455 */
456 public boolean isEmpty()
457 {
458 for (int i = bits.length - 1; i >= 0; i--)
459 if (bits[i] != 0)
460 return false;
461 return true;
462 }
463
464 /**
465 * Returns the logical number of bits actually used by this bit
466 * set. It returns the index of the highest set bit plus one.
467 * Note that this method doesn't return the number of set bits.
468 *
469 * @return the index of the highest set bit plus one.
470 */
471 public int length()
472 {
473 // Set i to highest index that contains a non-zero value.
474 int i;
475 for (i = bits.length - 1; i >= 0 && bits[i] == 0; --i)
476 ;
477
478 // if i < 0 all bits are cleared.
479 if (i < 0)
480 return 0;
481
482 // Now determine the exact length.
483 long b = bits[i];
484 int len = (i + 1) * 64;
485 // b >= 0 checks if the highest bit is zero.
486 while (b >= 0)
487 {
488 --len;
489 b <<= 1;
490 }
491
492 return len;
493 }
494
495 /**
496 * Returns the index of the next false bit, from the specified bit
497 * (inclusive).
498 *
499 * @param from the start location
500 * @return the first false bit
501 * @throws IndexOutOfBoundsException if from is negative
502 * @since 1.4
503 */
504 public int nextClearBit(int from)
505 {
506 int offset = from >> 6;
507 long mask = 1L << from;
508 while (offset < bits.length)
509 {
510 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
511 // so we'll just let that be our exception.
512 long h = bits[offset];
513 do
514 {
515 if ((h & mask) == 0)
516 return from;
517 mask <<= 1;
518 from++;
519 }
520 while (mask != 0);
521 mask = 1;
522 offset++;
523 }
524 return from;
525 }
526
527 /**
528 * Returns the index of the next true bit, from the specified bit
529 * (inclusive). If there is none, -1 is returned. You can iterate over
530 * all true bits with this loop:<br>
531 *
532<pre>for (int i = bs.nextSetBit(0); i &gt;= 0; i = bs.nextSetBit(i + 1))
533{
534 // operate on i here
535}</pre>
536 *
537 * @param from the start location
538 * @return the first true bit, or -1
539 * @throws IndexOutOfBoundsException if from is negative
540 * @since 1.4
541 */
542 public int nextSetBit(int from)
543 {
544 int offset = from >> 6;
545 long mask = 1L << from;
546 while (offset < bits.length)
547 {
548 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
549 // so we'll just let that be our exception.
550 long h = bits[offset];
551 do
552 {
553 if ((h & mask) != 0)
554 return from;
555 mask <<= 1;
556 from++;
557 }
558 while (mask != 0);
559 mask = 1;
560 offset++;
561 }
562 return -1;
563 }
564
565 /**
566 * Performs the logical OR operation on this bit set and the
567 * given <code>set</code>. This means it builds the union
568 * of the two sets. The result is stored into this bit set, which
569 * grows as necessary.
570 *
571 * @param bs the second bit set
572 * @throws NullPointerException if bs is null
573 */
574 public void or(BitSet bs)
575 {
576 ensure(bs.bits.length - 1);
577 for (int i = bs.bits.length - 1; i >= 0; i--)
578 bits[i] |= bs.bits[i];
579 }
580
581 /**
582 * Add the integer <code>bitIndex</code> to this set. That is
583 * the corresponding bit is set to true. If the index was already in
584 * the set, this method does nothing. The size of this structure
585 * is automatically increased as necessary.
586 *
587 * @param pos a non-negative integer.
588 * @throws IndexOutOfBoundsException if pos is negative
589 */
590 public void set(int pos)
591 {
592 int offset = pos >> 6;
593 ensure(offset);
594 // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
595 // so we'll just let that be our exception.
596 bits[offset] |= 1L << pos;
597 }
598
599 /**
600 * Sets the bit at the given index to the specified value. The size of
601 * this structure is automatically increased as necessary.
602 *
603 * @param index the position to set
604 * @param value the value to set it to
605 * @throws IndexOutOfBoundsException if index is negative
606 * @since 1.4
607 */
608 public void set(int index, boolean value)
609 {
610 if (value)
611 set(index);
612 else
613 clear(index);
614 }
615
616 /**
617 * Sets the bits between from (inclusive) and to (exclusive) to true.
618 *
619 * @param from the start range (inclusive)
620 * @param to the end range (exclusive)
621 * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to
622 * @since 1.4
623 */
624 public void set(int from, int to)
625 {
626 if (from < 0 || from > to)
627 throw new IndexOutOfBoundsException();
628 if (from == to)
629 return;
630 int lo_offset = from >>> 6;
631 int hi_offset = to >>> 6;
632 ensure(hi_offset);
633 if (lo_offset == hi_offset)
634 {
635 bits[hi_offset] |= (-1L << from) & ((1L << to) - 1);
636 return;
637 }
638
639 bits[lo_offset] |= -1L << from;
640 bits[hi_offset] |= (1L << to) - 1;
641 for (int i = lo_offset + 1; i < hi_offset; i++)
642 bits[i] = -1;
643 }
644
645 /**
646 * Sets the bits between from (inclusive) and to (exclusive) to the
647 * specified value.
648 *
649 * @param from the start range (inclusive)
650 * @param to the end range (exclusive)
651 * @param value the value to set it to
652 * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to
653 * @since 1.4
654 */
655 public void set(int from, int to, boolean value)
656 {
657 if (value)
658 set(from, to);
659 else
660 clear(from, to);
661 }
662
663 /**
664 * Returns the number of bits actually used by this bit set. Note
665 * that this method doesn't return the number of set bits, and that
666 * future requests for larger bits will make this automatically grow.
667 *
668 * @return the number of bits currently used.
669 */
670 public int size()
671 {
672 return bits.length * 64;
673 }
674
675 /**
676 * Returns the string representation of this bit set. This
677 * consists of a comma separated list of the integers in this set
678 * surrounded by curly braces. There is a space after each comma.
679 * A sample string is thus "{1, 3, 53}".
680 * @return the string representation.
681 */
682 public String toString()
683 {
684 StringBuffer r = new StringBuffer("{");
685 boolean first = true;
686 for (int i = 0; i < bits.length; ++i)
687 {
688 long bit = 1;
689 long word = bits[i];
690 if (word == 0)
691 continue;
692 for (int j = 0; j < 64; ++j)
693 {
694 if ((word & bit) != 0)
695 {
696 if (! first)
697 r.append(", ");
698 r.append(64 * i + j);
699 first = false;
700 }
701 bit <<= 1;
702 }
703 }
704 return r.append("}").toString();
705 }
706
707 /**
708 * Performs the logical XOR operation on this bit set and the
709 * given <code>set</code>. This means it builds the symmetric
710 * remainder of the two sets (the elements that are in one set,
711 * but not in the other). The result is stored into this bit set,
712 * which grows as necessary.
713 *
714 * @param bs the second bit set
715 * @throws NullPointerException if bs is null
716 */
717 public void xor(BitSet bs)
718 {
719 ensure(bs.bits.length - 1);
720 for (int i = bs.bits.length - 1; i >= 0; i--)
721 bits[i] ^= bs.bits[i];
722 }
723
724 /**
725 * Make sure the vector is big enough.
726 *
727 * @param lastElt the size needed for the bits array
728 */
729 private final void ensure(int lastElt)
730 {
731 if (lastElt >= bits.length)
732 {
733 long[] nd = new long[lastElt + 1];
734 System.arraycopy(bits, 0, nd, 0, bits.length);
735 bits = nd;
736 }
737 }
738}
Note: See TracBrowser for help on using the repository browser.