1 |
|
---|
2 | /* @(#)s_tan.c 5.1 93/09/24 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 |
|
---|
15 | /*
|
---|
16 |
|
---|
17 | FUNCTION
|
---|
18 | <<tan>>, <<tanf>>---tangent
|
---|
19 |
|
---|
20 | INDEX
|
---|
21 | tan
|
---|
22 | INDEX
|
---|
23 | tanf
|
---|
24 |
|
---|
25 | ANSI_SYNOPSIS
|
---|
26 | #include <math.h>
|
---|
27 | double tan(double <[x]>);
|
---|
28 | float tanf(float <[x]>);
|
---|
29 |
|
---|
30 | TRAD_SYNOPSIS
|
---|
31 | #include <math.h>
|
---|
32 | double tan(<[x]>)
|
---|
33 | double <[x]>;
|
---|
34 |
|
---|
35 | float tanf(<[x]>)
|
---|
36 | float <[x]>;
|
---|
37 |
|
---|
38 |
|
---|
39 | DESCRIPTION
|
---|
40 | <<tan>> computes the tangent of the argument <[x]>.
|
---|
41 | Angles are specified in radians.
|
---|
42 |
|
---|
43 | <<tanf>> is identical, save that it takes and returns <<float>> values.
|
---|
44 |
|
---|
45 | RETURNS
|
---|
46 | The tangent of <[x]> is returned.
|
---|
47 |
|
---|
48 | PORTABILITY
|
---|
49 | <<tan>> is ANSI. <<tanf>> is an extension.
|
---|
50 | */
|
---|
51 |
|
---|
52 | /* tan(x)
|
---|
53 | * Return tangent function of x.
|
---|
54 | *
|
---|
55 | * kernel function:
|
---|
56 | * __kernel_tan ... tangent function on [-pi/4,pi/4]
|
---|
57 | * __ieee754_rem_pio2 ... argument reduction routine
|
---|
58 | *
|
---|
59 | * Method.
|
---|
60 | * Let S,C and T denote the sin, cos and tan respectively on
|
---|
61 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
---|
62 | * in [-pi/4 , +pi/4], and let n = k mod 4.
|
---|
63 | * We have
|
---|
64 | *
|
---|
65 | * n sin(x) cos(x) tan(x)
|
---|
66 | * ----------------------------------------------------------
|
---|
67 | * 0 S C T
|
---|
68 | * 1 C -S -1/T
|
---|
69 | * 2 -S -C T
|
---|
70 | * 3 -C S -1/T
|
---|
71 | * ----------------------------------------------------------
|
---|
72 | *
|
---|
73 | * Special cases:
|
---|
74 | * Let trig be any of sin, cos, or tan.
|
---|
75 | * trig(+-INF) is NaN, with signals;
|
---|
76 | * trig(NaN) is that NaN;
|
---|
77 | *
|
---|
78 | * Accuracy:
|
---|
79 | * TRIG(x) returns trig(x) nearly rounded
|
---|
80 | */
|
---|
81 |
|
---|
82 | #include "fdlibm.h"
|
---|
83 |
|
---|
84 | #ifndef _DOUBLE_IS_32BITS
|
---|
85 |
|
---|
86 | #ifdef __STDC__
|
---|
87 | double tan(double x)
|
---|
88 | #else
|
---|
89 | double tan(x)
|
---|
90 | double x;
|
---|
91 | #endif
|
---|
92 | {
|
---|
93 | double y[2],z=0.0;
|
---|
94 | int32_t n,ix;
|
---|
95 |
|
---|
96 | /* High word of x. */
|
---|
97 | GET_HIGH_WORD(ix,x);
|
---|
98 |
|
---|
99 | /* |x| ~< pi/4 */
|
---|
100 | ix &= 0x7fffffff;
|
---|
101 | if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
---|
102 |
|
---|
103 | /* tan(Inf or NaN) is NaN */
|
---|
104 | else if (ix>=0x7ff00000) return x-x; /* NaN */
|
---|
105 |
|
---|
106 | /* argument reduction needed */
|
---|
107 | else {
|
---|
108 | n = __ieee754_rem_pio2(x,y);
|
---|
109 | return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
---|
110 | -1 -- n odd */
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | #endif /* _DOUBLE_IS_32BITS */
|
---|