1 |
|
---|
2 | /* @(#)e_exp.c 5.1 93/09/24 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 | /* __ieee754_exp(x)
|
---|
15 | * Returns the exponential of x.
|
---|
16 | *
|
---|
17 | * Method
|
---|
18 | * 1. Argument reduction:
|
---|
19 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
---|
20 | * Given x, find r and integer k such that
|
---|
21 | *
|
---|
22 | * x = k*ln2 + r, |r| <= 0.5*ln2.
|
---|
23 | *
|
---|
24 | * Here r will be represented as r = hi-lo for better
|
---|
25 | * accuracy.
|
---|
26 | *
|
---|
27 | * 2. Approximation of exp(r) by a special rational function on
|
---|
28 | * the interval [0,0.34658]:
|
---|
29 | * Write
|
---|
30 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
---|
31 | * We use a special Reme algorithm on [0,0.34658] to generate
|
---|
32 | * a polynomial of degree 5 to approximate R. The maximum error
|
---|
33 | * of this polynomial approximation is bounded by 2**-59. In
|
---|
34 | * other words,
|
---|
35 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
---|
36 | * (where z=r*r, and the values of P1 to P5 are listed below)
|
---|
37 | * and
|
---|
38 | * | 5 | -59
|
---|
39 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
---|
40 | * | |
|
---|
41 | * The computation of exp(r) thus becomes
|
---|
42 | * 2*r
|
---|
43 | * exp(r) = 1 + -------
|
---|
44 | * R - r
|
---|
45 | * r*R1(r)
|
---|
46 | * = 1 + r + ----------- (for better accuracy)
|
---|
47 | * 2 - R1(r)
|
---|
48 | * where
|
---|
49 | * 2 4 10
|
---|
50 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
---|
51 | *
|
---|
52 | * 3. Scale back to obtain exp(x):
|
---|
53 | * From step 1, we have
|
---|
54 | * exp(x) = 2^k * exp(r)
|
---|
55 | *
|
---|
56 | * Special cases:
|
---|
57 | * exp(INF) is INF, exp(NaN) is NaN;
|
---|
58 | * exp(-INF) is 0, and
|
---|
59 | * for finite argument, only exp(0)=1 is exact.
|
---|
60 | *
|
---|
61 | * Accuracy:
|
---|
62 | * according to an error analysis, the error is always less than
|
---|
63 | * 1 ulp (unit in the last place).
|
---|
64 | *
|
---|
65 | * Misc. info.
|
---|
66 | * For IEEE double
|
---|
67 | * if x > 7.09782712893383973096e+02 then exp(x) overflow
|
---|
68 | * if x < -7.45133219101941108420e+02 then exp(x) underflow
|
---|
69 | *
|
---|
70 | * Constants:
|
---|
71 | * The hexadecimal values are the intended ones for the following
|
---|
72 | * constants. The decimal values may be used, provided that the
|
---|
73 | * compiler will convert from decimal to binary accurately enough
|
---|
74 | * to produce the hexadecimal values shown.
|
---|
75 | */
|
---|
76 |
|
---|
77 | #include "fdlibm.h"
|
---|
78 |
|
---|
79 | #ifndef _DOUBLE_IS_32BITS
|
---|
80 |
|
---|
81 | #ifdef __STDC__
|
---|
82 | static const double
|
---|
83 | #else
|
---|
84 | static double
|
---|
85 | #endif
|
---|
86 | one = 1.0,
|
---|
87 | halF[2] = {0.5,-0.5,},
|
---|
88 | huge = 1.0e+300,
|
---|
89 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
|
---|
90 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
---|
91 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
---|
92 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
---|
93 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
|
---|
94 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
---|
95 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
|
---|
96 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
---|
97 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
---|
98 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
---|
99 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
---|
100 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
---|
101 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
---|
102 |
|
---|
103 |
|
---|
104 | #ifdef __STDC__
|
---|
105 | double __ieee754_exp(double x) /* default IEEE double exp */
|
---|
106 | #else
|
---|
107 | double __ieee754_exp(x) /* default IEEE double exp */
|
---|
108 | double x;
|
---|
109 | #endif
|
---|
110 | {
|
---|
111 | double y,hi,lo,c,t;
|
---|
112 | int32_t k,xsb;
|
---|
113 | uint32_t hx;
|
---|
114 |
|
---|
115 | GET_HIGH_WORD(hx,x);
|
---|
116 | xsb = (hx>>31)&1; /* sign bit of x */
|
---|
117 | hx &= 0x7fffffff; /* high word of |x| */
|
---|
118 |
|
---|
119 | /* filter out non-finite argument */
|
---|
120 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
---|
121 | if(hx>=0x7ff00000) {
|
---|
122 | uint32_t lx;
|
---|
123 | GET_LOW_WORD(lx,x);
|
---|
124 | if(((hx&0xfffff)|lx)!=0)
|
---|
125 | return x+x; /* NaN */
|
---|
126 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
---|
127 | }
|
---|
128 | if(x > o_threshold) return huge*huge; /* overflow */
|
---|
129 | if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* argument reduction */
|
---|
133 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
---|
134 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
---|
135 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
---|
136 | } else {
|
---|
137 | k = invln2*x+halF[xsb];
|
---|
138 | t = k;
|
---|
139 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
---|
140 | lo = t*ln2LO[0];
|
---|
141 | }
|
---|
142 | x = hi - lo;
|
---|
143 | }
|
---|
144 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
---|
145 | if(huge+x>one) return one+x;/* trigger inexact */
|
---|
146 | }
|
---|
147 | else k = 0;
|
---|
148 |
|
---|
149 | /* x is now in primary range */
|
---|
150 | t = x*x;
|
---|
151 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
---|
152 | if(k==0) return one-((x*c)/(c-2.0)-x);
|
---|
153 | else y = one-((lo-(x*c)/(2.0-c))-hi);
|
---|
154 | if(k >= -1021) {
|
---|
155 | uint32_t hy;
|
---|
156 | GET_HIGH_WORD(hy,y);
|
---|
157 | SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
|
---|
158 | return y;
|
---|
159 | } else {
|
---|
160 | uint32_t hy;
|
---|
161 | GET_HIGH_WORD(hy,y);
|
---|
162 | SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
|
---|
163 | return y*twom1000;
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | #endif /* defined(_DOUBLE_IS_32BITS) */
|
---|