1 |
|
---|
2 | /* @(#)e_asin.c 5.1 93/09/24 */
|
---|
3 | /*
|
---|
4 | * ====================================================
|
---|
5 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
6 | *
|
---|
7 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
---|
8 | * Permission to use, copy, modify, and distribute this
|
---|
9 | * software is freely granted, provided that this notice
|
---|
10 | * is preserved.
|
---|
11 | * ====================================================
|
---|
12 | */
|
---|
13 |
|
---|
14 | /* __ieee754_asin(x)
|
---|
15 | * Method :
|
---|
16 | * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
---|
17 | * we approximate asin(x) on [0,0.5] by
|
---|
18 | * asin(x) = x + x*x^2*R(x^2)
|
---|
19 | * where
|
---|
20 | * R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
---|
21 | * and its remez error is bounded by
|
---|
22 | * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
---|
23 | *
|
---|
24 | * For x in [0.5,1]
|
---|
25 | * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
---|
26 | * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
---|
27 | * then for x>0.98
|
---|
28 | * asin(x) = pi/2 - 2*(s+s*z*R(z))
|
---|
29 | * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
---|
30 | * For x<=0.98, let pio4_hi = pio2_hi/2, then
|
---|
31 | * f = hi part of s;
|
---|
32 | * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
---|
33 | * and
|
---|
34 | * asin(x) = pi/2 - 2*(s+s*z*R(z))
|
---|
35 | * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
---|
36 | * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
---|
37 | *
|
---|
38 | * Special cases:
|
---|
39 | * if x is NaN, return x itself;
|
---|
40 | * if |x|>1, return NaN with invalid signal.
|
---|
41 | *
|
---|
42 | */
|
---|
43 |
|
---|
44 |
|
---|
45 | #include "fdlibm.h"
|
---|
46 |
|
---|
47 | #ifndef _DOUBLE_IS_32BITS
|
---|
48 |
|
---|
49 | #ifdef __STDC__
|
---|
50 | static const double
|
---|
51 | #else
|
---|
52 | static double
|
---|
53 | #endif
|
---|
54 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
---|
55 | huge = 1.000e+300,
|
---|
56 | pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
---|
57 | pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
---|
58 | pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
---|
59 | /* coefficient for R(x^2) */
|
---|
60 | pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
---|
61 | pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
---|
62 | pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
---|
63 | pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
---|
64 | pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
---|
65 | pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
---|
66 | qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
---|
67 | qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
---|
68 | qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
---|
69 | qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
---|
70 |
|
---|
71 | #ifdef __STDC__
|
---|
72 | double __ieee754_asin(double x)
|
---|
73 | #else
|
---|
74 | double __ieee754_asin(x)
|
---|
75 | double x;
|
---|
76 | #endif
|
---|
77 | {
|
---|
78 | double t,w,p,q,c,r,s;
|
---|
79 | int32_t hx,ix;
|
---|
80 | GET_HIGH_WORD(hx,x);
|
---|
81 | ix = hx&0x7fffffff;
|
---|
82 | if(ix>= 0x3ff00000) { /* |x|>= 1 */
|
---|
83 | uint32_t lx;
|
---|
84 | GET_LOW_WORD(lx,x);
|
---|
85 | if(((ix-0x3ff00000)|lx)==0)
|
---|
86 | /* asin(1)=+-pi/2 with inexact */
|
---|
87 | return x*pio2_hi+x*pio2_lo;
|
---|
88 | return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
---|
89 | } else if (ix<0x3fe00000) { /* |x|<0.5 */
|
---|
90 | if(ix<0x3e400000) { /* if |x| < 2**-27 */
|
---|
91 | if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
---|
92 | } else
|
---|
93 | t = x*x;
|
---|
94 | p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
---|
95 | q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
---|
96 | w = p/q;
|
---|
97 | return x+x*w;
|
---|
98 | }
|
---|
99 | /* 1> |x|>= 0.5 */
|
---|
100 | w = one-fabs(x);
|
---|
101 | t = w*0.5;
|
---|
102 | p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
---|
103 | q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
---|
104 | s = __ieee754_sqrt(t);
|
---|
105 | if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
|
---|
106 | w = p/q;
|
---|
107 | t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
---|
108 | } else {
|
---|
109 | w = s;
|
---|
110 | SET_LOW_WORD(w,0);
|
---|
111 | c = (t-w*w)/(s+w);
|
---|
112 | r = p/q;
|
---|
113 | p = 2.0*s*r-(pio2_lo-2.0*c);
|
---|
114 | q = pio4_hi-2.0*w;
|
---|
115 | t = pio4_hi-(p-q);
|
---|
116 | }
|
---|
117 | if(hx>0) return t; else return -t;
|
---|
118 | }
|
---|
119 |
|
---|
120 | #endif /* defined(_DOUBLE_IS_32BITS) */
|
---|