1 | /****************************************************************
|
---|
2 | *
|
---|
3 | * The author of this software is David M. Gay.
|
---|
4 | *
|
---|
5 | * Copyright (c) 1991 by AT&T.
|
---|
6 | *
|
---|
7 | * Permission to use, copy, modify, and distribute this software for any
|
---|
8 | * purpose without fee is hereby granted, provided that this entire notice
|
---|
9 | * is included in all copies of any software which is or includes a copy
|
---|
10 | * or modification of this software and in all copies of the supporting
|
---|
11 | * documentation for such software.
|
---|
12 | *
|
---|
13 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
---|
14 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
|
---|
15 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
---|
16 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
---|
17 | *
|
---|
18 | ***************************************************************/
|
---|
19 |
|
---|
20 | /* Please send bug reports to
|
---|
21 | David M. Gay
|
---|
22 | AT&T Bell Laboratories, Room 2C-463
|
---|
23 | 600 Mountain Avenue
|
---|
24 | Murray Hill, NJ 07974-2070
|
---|
25 | U.S.A.
|
---|
26 | dmg@research.att.com or research!dmg
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include "mprec.h"
|
---|
30 | #include <string.h>
|
---|
31 |
|
---|
32 | static int
|
---|
33 | _DEFUN (quorem,
|
---|
34 | (b, S),
|
---|
35 | _Jv_Bigint * b _AND _Jv_Bigint * S)
|
---|
36 | {
|
---|
37 | int n;
|
---|
38 | long borrow, y;
|
---|
39 | unsigned long carry, q, ys;
|
---|
40 | unsigned long *bx, *bxe, *sx, *sxe;
|
---|
41 | #ifdef Pack_32
|
---|
42 | long z;
|
---|
43 | unsigned long si, zs;
|
---|
44 | #endif
|
---|
45 |
|
---|
46 | n = S->_wds;
|
---|
47 | #ifdef DEBUG
|
---|
48 | /*debug*/ if (b->_wds > n)
|
---|
49 | /*debug*/ Bug ("oversize b in quorem");
|
---|
50 | #endif
|
---|
51 | if (b->_wds < n)
|
---|
52 | return 0;
|
---|
53 | sx = S->_x;
|
---|
54 | sxe = sx + --n;
|
---|
55 | bx = b->_x;
|
---|
56 | bxe = bx + n;
|
---|
57 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
|
---|
58 | #ifdef DEBUG
|
---|
59 | /*debug*/ if (q > 9)
|
---|
60 | /*debug*/ Bug ("oversized quotient in quorem");
|
---|
61 | #endif
|
---|
62 | if (q)
|
---|
63 | {
|
---|
64 | borrow = 0;
|
---|
65 | carry = 0;
|
---|
66 | do
|
---|
67 | {
|
---|
68 | #ifdef Pack_32
|
---|
69 | si = *sx++;
|
---|
70 | ys = (si & 0xffff) * q + carry;
|
---|
71 | zs = (si >> 16) * q + (ys >> 16);
|
---|
72 | carry = zs >> 16;
|
---|
73 | y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
|
---|
74 | borrow = y >> 16;
|
---|
75 | Sign_Extend (borrow, y);
|
---|
76 | z = (*bx >> 16) - (zs & 0xffff) + borrow;
|
---|
77 | borrow = z >> 16;
|
---|
78 | Sign_Extend (borrow, z);
|
---|
79 | Storeinc (bx, z, y);
|
---|
80 | #else
|
---|
81 | ys = *sx++ * q + carry;
|
---|
82 | carry = ys >> 16;
|
---|
83 | y = *bx - (ys & 0xffff) + borrow;
|
---|
84 | borrow = y >> 16;
|
---|
85 | Sign_Extend (borrow, y);
|
---|
86 | *bx++ = y & 0xffff;
|
---|
87 | #endif
|
---|
88 | }
|
---|
89 | while (sx <= sxe);
|
---|
90 | if (!*bxe)
|
---|
91 | {
|
---|
92 | bx = b->_x;
|
---|
93 | while (--bxe > bx && !*bxe)
|
---|
94 | --n;
|
---|
95 | b->_wds = n;
|
---|
96 | }
|
---|
97 | }
|
---|
98 | if (cmp (b, S) >= 0)
|
---|
99 | {
|
---|
100 | q++;
|
---|
101 | borrow = 0;
|
---|
102 | carry = 0;
|
---|
103 | bx = b->_x;
|
---|
104 | sx = S->_x;
|
---|
105 | do
|
---|
106 | {
|
---|
107 | #ifdef Pack_32
|
---|
108 | si = *sx++;
|
---|
109 | ys = (si & 0xffff) + carry;
|
---|
110 | zs = (si >> 16) + (ys >> 16);
|
---|
111 | carry = zs >> 16;
|
---|
112 | y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
|
---|
113 | borrow = y >> 16;
|
---|
114 | Sign_Extend (borrow, y);
|
---|
115 | z = (*bx >> 16) - (zs & 0xffff) + borrow;
|
---|
116 | borrow = z >> 16;
|
---|
117 | Sign_Extend (borrow, z);
|
---|
118 | Storeinc (bx, z, y);
|
---|
119 | #else
|
---|
120 | ys = *sx++ + carry;
|
---|
121 | carry = ys >> 16;
|
---|
122 | y = *bx - (ys & 0xffff) + borrow;
|
---|
123 | borrow = y >> 16;
|
---|
124 | Sign_Extend (borrow, y);
|
---|
125 | *bx++ = y & 0xffff;
|
---|
126 | #endif
|
---|
127 | }
|
---|
128 | while (sx <= sxe);
|
---|
129 | bx = b->_x;
|
---|
130 | bxe = bx + n;
|
---|
131 | if (!*bxe)
|
---|
132 | {
|
---|
133 | while (--bxe > bx && !*bxe)
|
---|
134 | --n;
|
---|
135 | b->_wds = n;
|
---|
136 | }
|
---|
137 | }
|
---|
138 | return q;
|
---|
139 | }
|
---|
140 |
|
---|
141 | #ifdef DEBUG
|
---|
142 | #include <stdio.h>
|
---|
143 |
|
---|
144 | void
|
---|
145 | print (_Jv_Bigint * b)
|
---|
146 | {
|
---|
147 | int i, wds;
|
---|
148 | unsigned long *x, y;
|
---|
149 | wds = b->_wds;
|
---|
150 | x = b->_x+wds;
|
---|
151 | i = 0;
|
---|
152 | do
|
---|
153 | {
|
---|
154 | x--;
|
---|
155 | fprintf (stderr, "%08x", *x);
|
---|
156 | }
|
---|
157 | while (++i < wds);
|
---|
158 | fprintf (stderr, "\n");
|
---|
159 | }
|
---|
160 | #endif
|
---|
161 |
|
---|
162 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
---|
163 | *
|
---|
164 | * Inspired by "How to Print Floating-Point Numbers Accurately" by
|
---|
165 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
|
---|
166 | *
|
---|
167 | * Modifications:
|
---|
168 | * 1. Rather than iterating, we use a simple numeric overestimate
|
---|
169 | * to determine k = floor(log10(d)). We scale relevant
|
---|
170 | * quantities using O(log2(k)) rather than O(k) multiplications.
|
---|
171 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
---|
172 | * try to generate digits strictly left to right. Instead, we
|
---|
173 | * compute with fewer bits and propagate the carry if necessary
|
---|
174 | * when rounding the final digit up. This is often faster.
|
---|
175 | * 3. Under the assumption that input will be rounded nearest,
|
---|
176 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
---|
177 | * That is, we allow equality in stopping tests when the
|
---|
178 | * round-nearest rule will give the same floating-point value
|
---|
179 | * as would satisfaction of the stopping test with strict
|
---|
180 | * inequality.
|
---|
181 | * 4. We remove common factors of powers of 2 from relevant
|
---|
182 | * quantities.
|
---|
183 | * 5. When converting floating-point integers less than 1e16,
|
---|
184 | * we use floating-point arithmetic rather than resorting
|
---|
185 | * to multiple-precision integers.
|
---|
186 | * 6. When asked to produce fewer than 15 digits, we first try
|
---|
187 | * to get by with floating-point arithmetic; we resort to
|
---|
188 | * multiple-precision integer arithmetic only if we cannot
|
---|
189 | * guarantee that the floating-point calculation has given
|
---|
190 | * the correctly rounded result. For k requested digits and
|
---|
191 | * "uniformly" distributed input, the probability is
|
---|
192 | * something like 10^(k-15) that we must resort to the long
|
---|
193 | * calculation.
|
---|
194 | */
|
---|
195 |
|
---|
196 |
|
---|
197 | char *
|
---|
198 | _DEFUN (_dtoa_r,
|
---|
199 | (ptr, _d, mode, ndigits, decpt, sign, rve, float_type),
|
---|
200 | struct _Jv_reent *ptr _AND
|
---|
201 | double _d _AND
|
---|
202 | int mode _AND
|
---|
203 | int ndigits _AND
|
---|
204 | int *decpt _AND
|
---|
205 | int *sign _AND
|
---|
206 | char **rve _AND
|
---|
207 | int float_type)
|
---|
208 | {
|
---|
209 | /*
|
---|
210 | float_type == 0 for double precision, 1 for float.
|
---|
211 |
|
---|
212 | Arguments ndigits, decpt, sign are similar to those
|
---|
213 | of ecvt and fcvt; trailing zeros are suppressed from
|
---|
214 | the returned string. If not null, *rve is set to point
|
---|
215 | to the end of the return value. If d is +-Infinity or NaN,
|
---|
216 | then *decpt is set to 9999.
|
---|
217 |
|
---|
218 | mode:
|
---|
219 | 0 ==> shortest string that yields d when read in
|
---|
220 | and rounded to nearest.
|
---|
221 | 1 ==> like 0, but with Steele & White stopping rule;
|
---|
222 | e.g. with IEEE P754 arithmetic , mode 0 gives
|
---|
223 | 1e23 whereas mode 1 gives 9.999999999999999e22.
|
---|
224 | 2 ==> max(1,ndigits) significant digits. This gives a
|
---|
225 | return value similar to that of ecvt, except
|
---|
226 | that trailing zeros are suppressed.
|
---|
227 | 3 ==> through ndigits past the decimal point. This
|
---|
228 | gives a return value similar to that from fcvt,
|
---|
229 | except that trailing zeros are suppressed, and
|
---|
230 | ndigits can be negative.
|
---|
231 | 4-9 should give the same return values as 2-3, i.e.,
|
---|
232 | 4 <= mode <= 9 ==> same return as mode
|
---|
233 | 2 + (mode & 1). These modes are mainly for
|
---|
234 | debugging; often they run slower but sometimes
|
---|
235 | faster than modes 2-3.
|
---|
236 | 4,5,8,9 ==> left-to-right digit generation.
|
---|
237 | 6-9 ==> don't try fast floating-point estimate
|
---|
238 | (if applicable).
|
---|
239 |
|
---|
240 | > 16 ==> Floating-point arg is treated as single precision.
|
---|
241 |
|
---|
242 | Values of mode other than 0-9 are treated as mode 0.
|
---|
243 |
|
---|
244 | Sufficient space is allocated to the return value
|
---|
245 | to hold the suppressed trailing zeros.
|
---|
246 | */
|
---|
247 |
|
---|
248 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0,
|
---|
249 | k_check, leftright, m2, m5, s2, s5, spec_case, try_quick;
|
---|
250 | union double_union d, d2, eps;
|
---|
251 | long L;
|
---|
252 | #ifndef Sudden_Underflow
|
---|
253 | int denorm;
|
---|
254 | unsigned long x;
|
---|
255 | #endif
|
---|
256 | _Jv_Bigint *b, *b1, *delta, *mlo, *mhi, *S;
|
---|
257 | double ds;
|
---|
258 | char *s, *s0;
|
---|
259 |
|
---|
260 | d.d = _d;
|
---|
261 |
|
---|
262 | if (ptr->_result)
|
---|
263 | {
|
---|
264 | ptr->_result->_k = ptr->_result_k;
|
---|
265 | ptr->_result->_maxwds = 1 << ptr->_result_k;
|
---|
266 | Bfree (ptr, ptr->_result);
|
---|
267 | ptr->_result = 0;
|
---|
268 | }
|
---|
269 |
|
---|
270 | if (word0 (d) & Sign_bit)
|
---|
271 | {
|
---|
272 | /* set sign for everything, including 0's and NaNs */
|
---|
273 | *sign = 1;
|
---|
274 | word0 (d) &= ~Sign_bit; /* clear sign bit */
|
---|
275 | }
|
---|
276 | else
|
---|
277 | *sign = 0;
|
---|
278 |
|
---|
279 | #if defined(IEEE_Arith) + defined(VAX)
|
---|
280 | #ifdef IEEE_Arith
|
---|
281 | if ((word0 (d) & Exp_mask) == Exp_mask)
|
---|
282 | #else
|
---|
283 | if (word0 (d) == 0x8000)
|
---|
284 | #endif
|
---|
285 | {
|
---|
286 | /* Infinity or NaN */
|
---|
287 | *decpt = 9999;
|
---|
288 | s =
|
---|
289 | #ifdef IEEE_Arith
|
---|
290 | !word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" :
|
---|
291 | #endif
|
---|
292 | "NaN";
|
---|
293 | if (rve)
|
---|
294 | *rve =
|
---|
295 | #ifdef IEEE_Arith
|
---|
296 | s[3] ? s + 8 :
|
---|
297 | #endif
|
---|
298 | s + 3;
|
---|
299 | return s;
|
---|
300 | }
|
---|
301 | #endif
|
---|
302 | #ifdef IBM
|
---|
303 | d.d += 0; /* normalize */
|
---|
304 | #endif
|
---|
305 | if (!d.d)
|
---|
306 | {
|
---|
307 | *decpt = 1;
|
---|
308 | s = "0";
|
---|
309 | if (rve)
|
---|
310 | *rve = s + 1;
|
---|
311 | return s;
|
---|
312 | }
|
---|
313 |
|
---|
314 | b = d2b (ptr, d.d, &be, &bbits);
|
---|
315 | #ifdef Sudden_Underflow
|
---|
316 | i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));
|
---|
317 | #else
|
---|
318 | if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1))))
|
---|
319 | {
|
---|
320 | #endif
|
---|
321 | d2.d = d.d;
|
---|
322 | word0 (d2) &= Frac_mask1;
|
---|
323 | word0 (d2) |= Exp_11;
|
---|
324 | #ifdef IBM
|
---|
325 | if (j = 11 - hi0bits (word0 (d2) & Frac_mask))
|
---|
326 | d2.d /= 1 << j;
|
---|
327 | #endif
|
---|
328 |
|
---|
329 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
---|
330 | * log10(x) = log(x) / log(10)
|
---|
331 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
---|
332 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
---|
333 | *
|
---|
334 | * This suggests computing an approximation k to log10(d) by
|
---|
335 | *
|
---|
336 | * k = (i - Bias)*0.301029995663981
|
---|
337 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
---|
338 | *
|
---|
339 | * We want k to be too large rather than too small.
|
---|
340 | * The error in the first-order Taylor series approximation
|
---|
341 | * is in our favor, so we just round up the constant enough
|
---|
342 | * to compensate for any error in the multiplication of
|
---|
343 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
---|
344 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
---|
345 | * adding 1e-13 to the constant term more than suffices.
|
---|
346 | * Hence we adjust the constant term to 0.1760912590558.
|
---|
347 | * (We could get a more accurate k by invoking log10,
|
---|
348 | * but this is probably not worthwhile.)
|
---|
349 | */
|
---|
350 |
|
---|
351 | i -= Bias;
|
---|
352 | #ifdef IBM
|
---|
353 | i <<= 2;
|
---|
354 | i += j;
|
---|
355 | #endif
|
---|
356 | #ifndef Sudden_Underflow
|
---|
357 | denorm = 0;
|
---|
358 | }
|
---|
359 | else
|
---|
360 | {
|
---|
361 | /* d is denormalized */
|
---|
362 |
|
---|
363 | i = bbits + be + (Bias + (P - 1) - 1);
|
---|
364 | x = i > 32 ? word0 (d) << (64 - i) | word1 (d) >> (i - 32)
|
---|
365 | : word1 (d) << (32 - i);
|
---|
366 | d2.d = x;
|
---|
367 | word0 (d2) -= 31 * Exp_msk1; /* adjust exponent */
|
---|
368 | i -= (Bias + (P - 1) - 1) + 1;
|
---|
369 | denorm = 1;
|
---|
370 | }
|
---|
371 | #endif
|
---|
372 | ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;
|
---|
373 | k = (int) ds;
|
---|
374 | if (ds < 0. && ds != k)
|
---|
375 | k--; /* want k = floor(ds) */
|
---|
376 | k_check = 1;
|
---|
377 | if (k >= 0 && k <= Ten_pmax)
|
---|
378 | {
|
---|
379 | if (d.d < tens[k])
|
---|
380 | k--;
|
---|
381 | k_check = 0;
|
---|
382 | }
|
---|
383 | j = bbits - i - 1;
|
---|
384 | if (j >= 0)
|
---|
385 | {
|
---|
386 | b2 = 0;
|
---|
387 | s2 = j;
|
---|
388 | }
|
---|
389 | else
|
---|
390 | {
|
---|
391 | b2 = -j;
|
---|
392 | s2 = 0;
|
---|
393 | }
|
---|
394 | if (k >= 0)
|
---|
395 | {
|
---|
396 | b5 = 0;
|
---|
397 | s5 = k;
|
---|
398 | s2 += k;
|
---|
399 | }
|
---|
400 | else
|
---|
401 | {
|
---|
402 | b2 -= k;
|
---|
403 | b5 = -k;
|
---|
404 | s5 = 0;
|
---|
405 | }
|
---|
406 | if (mode < 0 || mode > 9)
|
---|
407 | mode = 0;
|
---|
408 | try_quick = 1;
|
---|
409 | if (mode > 5)
|
---|
410 | {
|
---|
411 | mode -= 4;
|
---|
412 | try_quick = 0;
|
---|
413 | }
|
---|
414 | leftright = 1;
|
---|
415 | switch (mode)
|
---|
416 | {
|
---|
417 | case 0:
|
---|
418 | case 1:
|
---|
419 | ilim = ilim1 = -1;
|
---|
420 | i = 18;
|
---|
421 | ndigits = 0;
|
---|
422 | break;
|
---|
423 | case 2:
|
---|
424 | leftright = 0;
|
---|
425 | /* no break */
|
---|
426 | case 4:
|
---|
427 | if (ndigits <= 0)
|
---|
428 | ndigits = 1;
|
---|
429 | ilim = ilim1 = i = ndigits;
|
---|
430 | break;
|
---|
431 | case 3:
|
---|
432 | leftright = 0;
|
---|
433 | /* no break */
|
---|
434 | case 5:
|
---|
435 | i = ndigits + k + 1;
|
---|
436 | ilim = i;
|
---|
437 | ilim1 = i - 1;
|
---|
438 | if (i <= 0)
|
---|
439 | i = 1;
|
---|
440 | }
|
---|
441 | j = sizeof (unsigned long);
|
---|
442 | for (ptr->_result_k = 0; (int) (sizeof (_Jv_Bigint) - sizeof (unsigned long)) + j <= i;
|
---|
443 | j <<= 1)
|
---|
444 | ptr->_result_k++;
|
---|
445 | ptr->_result = Balloc (ptr, ptr->_result_k);
|
---|
446 | s = s0 = (char *) ptr->_result;
|
---|
447 |
|
---|
448 | if (ilim >= 0 && ilim <= Quick_max && try_quick)
|
---|
449 | {
|
---|
450 | /* Try to get by with floating-point arithmetic. */
|
---|
451 |
|
---|
452 | i = 0;
|
---|
453 | d2.d = d.d;
|
---|
454 | k0 = k;
|
---|
455 | ilim0 = ilim;
|
---|
456 | ieps = 2; /* conservative */
|
---|
457 | if (k > 0)
|
---|
458 | {
|
---|
459 | ds = tens[k & 0xf];
|
---|
460 | j = k >> 4;
|
---|
461 | if (j & Bletch)
|
---|
462 | {
|
---|
463 | /* prevent overflows */
|
---|
464 | j &= Bletch - 1;
|
---|
465 | d.d /= bigtens[n_bigtens - 1];
|
---|
466 | ieps++;
|
---|
467 | }
|
---|
468 | for (; j; j >>= 1, i++)
|
---|
469 | if (j & 1)
|
---|
470 | {
|
---|
471 | ieps++;
|
---|
472 | ds *= bigtens[i];
|
---|
473 | }
|
---|
474 | d.d /= ds;
|
---|
475 | }
|
---|
476 | else if ((j1 = -k))
|
---|
477 | {
|
---|
478 | d.d *= tens[j1 & 0xf];
|
---|
479 | for (j = j1 >> 4; j; j >>= 1, i++)
|
---|
480 | if (j & 1)
|
---|
481 | {
|
---|
482 | ieps++;
|
---|
483 | d.d *= bigtens[i];
|
---|
484 | }
|
---|
485 | }
|
---|
486 | if (k_check && d.d < 1. && ilim > 0)
|
---|
487 | {
|
---|
488 | if (ilim1 <= 0)
|
---|
489 | goto fast_failed;
|
---|
490 | ilim = ilim1;
|
---|
491 | k--;
|
---|
492 | d.d *= 10.;
|
---|
493 | ieps++;
|
---|
494 | }
|
---|
495 | eps.d = ieps * d.d + 7.;
|
---|
496 | word0 (eps) -= (P - 1) * Exp_msk1;
|
---|
497 | if (ilim == 0)
|
---|
498 | {
|
---|
499 | S = mhi = 0;
|
---|
500 | d.d -= 5.;
|
---|
501 | if (d.d > eps.d)
|
---|
502 | goto one_digit;
|
---|
503 | if (d.d < -eps.d)
|
---|
504 | goto no_digits;
|
---|
505 | goto fast_failed;
|
---|
506 | }
|
---|
507 | #ifndef No_leftright
|
---|
508 | if (leftright)
|
---|
509 | {
|
---|
510 | /* Use Steele & White method of only
|
---|
511 | * generating digits needed.
|
---|
512 | */
|
---|
513 | eps.d = 0.5 / tens[ilim - 1] - eps.d;
|
---|
514 | for (i = 0;;)
|
---|
515 | {
|
---|
516 | L = d.d;
|
---|
517 | d.d -= L;
|
---|
518 | *s++ = '0' + (int) L;
|
---|
519 | if (d.d < eps.d)
|
---|
520 | goto ret1;
|
---|
521 | if (1. - d.d < eps.d)
|
---|
522 | goto bump_up;
|
---|
523 | if (++i >= ilim)
|
---|
524 | break;
|
---|
525 | eps.d *= 10.;
|
---|
526 | d.d *= 10.;
|
---|
527 | }
|
---|
528 | }
|
---|
529 | else
|
---|
530 | {
|
---|
531 | #endif
|
---|
532 | /* Generate ilim digits, then fix them up. */
|
---|
533 | eps.d *= tens[ilim - 1];
|
---|
534 | for (i = 1;; i++, d.d *= 10.)
|
---|
535 | {
|
---|
536 | L = d.d;
|
---|
537 | d.d -= L;
|
---|
538 | *s++ = '0' + (int) L;
|
---|
539 | if (i == ilim)
|
---|
540 | {
|
---|
541 | if (d.d > 0.5 + eps.d)
|
---|
542 | goto bump_up;
|
---|
543 | else if (d.d < 0.5 - eps.d)
|
---|
544 | {
|
---|
545 | while (*--s == '0');
|
---|
546 | s++;
|
---|
547 | goto ret1;
|
---|
548 | }
|
---|
549 | break;
|
---|
550 | }
|
---|
551 | }
|
---|
552 | #ifndef No_leftright
|
---|
553 | }
|
---|
554 | #endif
|
---|
555 | fast_failed:
|
---|
556 | s = s0;
|
---|
557 | d.d = d2.d;
|
---|
558 | k = k0;
|
---|
559 | ilim = ilim0;
|
---|
560 | }
|
---|
561 |
|
---|
562 | /* Do we have a "small" integer? */
|
---|
563 |
|
---|
564 | if (be >= 0 && k <= Int_max)
|
---|
565 | {
|
---|
566 | /* Yes. */
|
---|
567 | ds = tens[k];
|
---|
568 | if (ndigits < 0 && ilim <= 0)
|
---|
569 | {
|
---|
570 | S = mhi = 0;
|
---|
571 | if (ilim < 0 || d.d <= 5 * ds)
|
---|
572 | goto no_digits;
|
---|
573 | goto one_digit;
|
---|
574 | }
|
---|
575 | for (i = 1;; i++)
|
---|
576 | {
|
---|
577 | L = d.d / ds;
|
---|
578 | d.d -= L * ds;
|
---|
579 | #ifdef Check_FLT_ROUNDS
|
---|
580 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
---|
581 | if (d.d < 0)
|
---|
582 | {
|
---|
583 | L--;
|
---|
584 | d.d += ds;
|
---|
585 | }
|
---|
586 | #endif
|
---|
587 | *s++ = '0' + (int) L;
|
---|
588 | if (i == ilim)
|
---|
589 | {
|
---|
590 | d.d += d.d;
|
---|
591 | if (d.d > ds || (d.d == ds && L & 1))
|
---|
592 | {
|
---|
593 | bump_up:
|
---|
594 | while (*--s == '9')
|
---|
595 | if (s == s0)
|
---|
596 | {
|
---|
597 | k++;
|
---|
598 | *s = '0';
|
---|
599 | break;
|
---|
600 | }
|
---|
601 | ++*s++;
|
---|
602 | }
|
---|
603 | break;
|
---|
604 | }
|
---|
605 | if (!(d.d *= 10.))
|
---|
606 | break;
|
---|
607 | }
|
---|
608 | goto ret1;
|
---|
609 | }
|
---|
610 |
|
---|
611 | m2 = b2;
|
---|
612 | m5 = b5;
|
---|
613 | mhi = mlo = 0;
|
---|
614 | if (leftright)
|
---|
615 | {
|
---|
616 | if (mode < 2)
|
---|
617 | {
|
---|
618 | i =
|
---|
619 | #ifndef Sudden_Underflow
|
---|
620 | denorm ? be + (Bias + (P - 1) - 1 + 1) :
|
---|
621 | #endif
|
---|
622 | #ifdef IBM
|
---|
623 | 1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3);
|
---|
624 | #else
|
---|
625 | 1 + P - bbits;
|
---|
626 | #endif
|
---|
627 | }
|
---|
628 | else
|
---|
629 | {
|
---|
630 | j = ilim - 1;
|
---|
631 | if (m5 >= j)
|
---|
632 | m5 -= j;
|
---|
633 | else
|
---|
634 | {
|
---|
635 | s5 += j -= m5;
|
---|
636 | b5 += j;
|
---|
637 | m5 = 0;
|
---|
638 | }
|
---|
639 | if ((i = ilim) < 0)
|
---|
640 | {
|
---|
641 | m2 -= i;
|
---|
642 | i = 0;
|
---|
643 | }
|
---|
644 | }
|
---|
645 | b2 += i;
|
---|
646 | s2 += i;
|
---|
647 | mhi = i2b (ptr, 1);
|
---|
648 | }
|
---|
649 | if (m2 > 0 && s2 > 0)
|
---|
650 | {
|
---|
651 | i = m2 < s2 ? m2 : s2;
|
---|
652 | b2 -= i;
|
---|
653 | m2 -= i;
|
---|
654 | s2 -= i;
|
---|
655 | }
|
---|
656 | if (b5 > 0)
|
---|
657 | {
|
---|
658 | if (leftright)
|
---|
659 | {
|
---|
660 | if (m5 > 0)
|
---|
661 | {
|
---|
662 | mhi = pow5mult (ptr, mhi, m5);
|
---|
663 | b1 = mult (ptr, mhi, b);
|
---|
664 | Bfree (ptr, b);
|
---|
665 | b = b1;
|
---|
666 | }
|
---|
667 | if ((j = b5 - m5))
|
---|
668 | b = pow5mult (ptr, b, j);
|
---|
669 | }
|
---|
670 | else
|
---|
671 | b = pow5mult (ptr, b, b5);
|
---|
672 | }
|
---|
673 | S = i2b (ptr, 1);
|
---|
674 | if (s5 > 0)
|
---|
675 | S = pow5mult (ptr, S, s5);
|
---|
676 |
|
---|
677 | /* Check for special case that d is a normalized power of 2. */
|
---|
678 |
|
---|
679 | if (mode < 2)
|
---|
680 | {
|
---|
681 | if (!word1 (d) && !(word0 (d) & Bndry_mask)
|
---|
682 | #ifndef Sudden_Underflow
|
---|
683 | && word0(d) & Exp_mask
|
---|
684 | #endif
|
---|
685 | )
|
---|
686 | {
|
---|
687 | /* The special case */
|
---|
688 | b2 += Log2P;
|
---|
689 | s2 += Log2P;
|
---|
690 | spec_case = 1;
|
---|
691 | }
|
---|
692 | else
|
---|
693 | spec_case = 0;
|
---|
694 | }
|
---|
695 |
|
---|
696 | /* Arrange for convenient computation of quotients:
|
---|
697 | * shift left if necessary so divisor has 4 leading 0 bits.
|
---|
698 | *
|
---|
699 | * Perhaps we should just compute leading 28 bits of S once
|
---|
700 | * and for all and pass them and a shift to quorem, so it
|
---|
701 | * can do shifts and ors to compute the numerator for q.
|
---|
702 | */
|
---|
703 |
|
---|
704 | #ifdef Pack_32
|
---|
705 | if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0x1f))
|
---|
706 | i = 32 - i;
|
---|
707 | #else
|
---|
708 | if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0xf))
|
---|
709 | i = 16 - i;
|
---|
710 | #endif
|
---|
711 | if (i > 4)
|
---|
712 | {
|
---|
713 | i -= 4;
|
---|
714 | b2 += i;
|
---|
715 | m2 += i;
|
---|
716 | s2 += i;
|
---|
717 | }
|
---|
718 | else if (i < 4)
|
---|
719 | {
|
---|
720 | i += 28;
|
---|
721 | b2 += i;
|
---|
722 | m2 += i;
|
---|
723 | s2 += i;
|
---|
724 | }
|
---|
725 | if (b2 > 0)
|
---|
726 | b = lshift (ptr, b, b2);
|
---|
727 | if (s2 > 0)
|
---|
728 | S = lshift (ptr, S, s2);
|
---|
729 | if (k_check)
|
---|
730 | {
|
---|
731 | if (cmp (b, S) < 0)
|
---|
732 | {
|
---|
733 | k--;
|
---|
734 | b = multadd (ptr, b, 10, 0); /* we botched the k estimate */
|
---|
735 | if (leftright)
|
---|
736 | mhi = multadd (ptr, mhi, 10, 0);
|
---|
737 | ilim = ilim1;
|
---|
738 | }
|
---|
739 | }
|
---|
740 | if (ilim <= 0 && mode > 2)
|
---|
741 | {
|
---|
742 | if (ilim < 0 || cmp (b, S = multadd (ptr, S, 5, 0)) <= 0)
|
---|
743 | {
|
---|
744 | /* no digits, fcvt style */
|
---|
745 | no_digits:
|
---|
746 | k = -1 - ndigits;
|
---|
747 | goto ret;
|
---|
748 | }
|
---|
749 | one_digit:
|
---|
750 | *s++ = '1';
|
---|
751 | k++;
|
---|
752 | goto ret;
|
---|
753 | }
|
---|
754 | if (leftright)
|
---|
755 | {
|
---|
756 | if (m2 > 0)
|
---|
757 | mhi = lshift (ptr, mhi, m2);
|
---|
758 |
|
---|
759 | /* Single precision case, */
|
---|
760 | if (float_type)
|
---|
761 | mhi = lshift (ptr, mhi, 29);
|
---|
762 |
|
---|
763 | /* Compute mlo -- check for special case
|
---|
764 | * that d is a normalized power of 2.
|
---|
765 | */
|
---|
766 |
|
---|
767 | mlo = mhi;
|
---|
768 | if (spec_case)
|
---|
769 | {
|
---|
770 | mhi = Balloc (ptr, mhi->_k);
|
---|
771 | Bcopy (mhi, mlo);
|
---|
772 | mhi = lshift (ptr, mhi, Log2P);
|
---|
773 | }
|
---|
774 |
|
---|
775 | for (i = 1;; i++)
|
---|
776 | {
|
---|
777 | dig = quorem (b, S) + '0';
|
---|
778 | /* Do we yet have the shortest decimal string
|
---|
779 | * that will round to d?
|
---|
780 | */
|
---|
781 | j = cmp (b, mlo);
|
---|
782 | delta = diff (ptr, S, mhi);
|
---|
783 | j1 = delta->_sign ? 1 : cmp (b, delta);
|
---|
784 | Bfree (ptr, delta);
|
---|
785 | #ifndef ROUND_BIASED
|
---|
786 | if (j1 == 0 && !mode && !(word1 (d) & 1))
|
---|
787 | {
|
---|
788 | if (dig == '9')
|
---|
789 | goto round_9_up;
|
---|
790 | if (j > 0)
|
---|
791 | dig++;
|
---|
792 | *s++ = dig;
|
---|
793 | goto ret;
|
---|
794 | }
|
---|
795 | #endif
|
---|
796 | if (j < 0 || (j == 0 && !mode
|
---|
797 | #ifndef ROUND_BIASED
|
---|
798 | && !(word1 (d) & 1)
|
---|
799 | #endif
|
---|
800 | ))
|
---|
801 | {
|
---|
802 | if (j1 > 0)
|
---|
803 | {
|
---|
804 | b = lshift (ptr, b, 1);
|
---|
805 | j1 = cmp (b, S);
|
---|
806 | if ((j1 > 0 || (j1 == 0 && dig & 1))
|
---|
807 | && dig++ == '9')
|
---|
808 | goto round_9_up;
|
---|
809 | }
|
---|
810 | *s++ = dig;
|
---|
811 | goto ret;
|
---|
812 | }
|
---|
813 | if (j1 > 0)
|
---|
814 | {
|
---|
815 | if (dig == '9')
|
---|
816 | { /* possible if i == 1 */
|
---|
817 | round_9_up:
|
---|
818 | *s++ = '9';
|
---|
819 | goto roundoff;
|
---|
820 | }
|
---|
821 | *s++ = dig + 1;
|
---|
822 | goto ret;
|
---|
823 | }
|
---|
824 | *s++ = dig;
|
---|
825 | if (i == ilim)
|
---|
826 | break;
|
---|
827 | b = multadd (ptr, b, 10, 0);
|
---|
828 | if (mlo == mhi)
|
---|
829 | mlo = mhi = multadd (ptr, mhi, 10, 0);
|
---|
830 | else
|
---|
831 | {
|
---|
832 | mlo = multadd (ptr, mlo, 10, 0);
|
---|
833 | mhi = multadd (ptr, mhi, 10, 0);
|
---|
834 | }
|
---|
835 | }
|
---|
836 | }
|
---|
837 | else
|
---|
838 | for (i = 1;; i++)
|
---|
839 | {
|
---|
840 | *s++ = dig = quorem (b, S) + '0';
|
---|
841 | if (i >= ilim)
|
---|
842 | break;
|
---|
843 | b = multadd (ptr, b, 10, 0);
|
---|
844 | }
|
---|
845 |
|
---|
846 | /* Round off last digit */
|
---|
847 |
|
---|
848 | b = lshift (ptr, b, 1);
|
---|
849 | j = cmp (b, S);
|
---|
850 | if (j > 0 || (j == 0 && dig & 1))
|
---|
851 | {
|
---|
852 | roundoff:
|
---|
853 | while (*--s == '9')
|
---|
854 | if (s == s0)
|
---|
855 | {
|
---|
856 | k++;
|
---|
857 | *s++ = '1';
|
---|
858 | goto ret;
|
---|
859 | }
|
---|
860 | ++*s++;
|
---|
861 | }
|
---|
862 | else
|
---|
863 | {
|
---|
864 | while (*--s == '0');
|
---|
865 | s++;
|
---|
866 | }
|
---|
867 | ret:
|
---|
868 | Bfree (ptr, S);
|
---|
869 | if (mhi)
|
---|
870 | {
|
---|
871 | if (mlo && mlo != mhi)
|
---|
872 | Bfree (ptr, mlo);
|
---|
873 | Bfree (ptr, mhi);
|
---|
874 | }
|
---|
875 | ret1:
|
---|
876 | Bfree (ptr, b);
|
---|
877 | *s = 0;
|
---|
878 | *decpt = k + 1;
|
---|
879 | if (rve)
|
---|
880 | *rve = s;
|
---|
881 | return s0;
|
---|
882 | }
|
---|
883 |
|
---|
884 |
|
---|
885 | _VOID
|
---|
886 | _DEFUN (_dtoa,
|
---|
887 | (_d, mode, ndigits, decpt, sign, rve, buf, float_type),
|
---|
888 | double _d _AND
|
---|
889 | int mode _AND
|
---|
890 | int ndigits _AND
|
---|
891 | int *decpt _AND
|
---|
892 | int *sign _AND
|
---|
893 | char **rve _AND
|
---|
894 | char *buf _AND
|
---|
895 | int float_type)
|
---|
896 | {
|
---|
897 | struct _Jv_reent reent;
|
---|
898 | char *p;
|
---|
899 | memset (&reent, 0, sizeof reent);
|
---|
900 |
|
---|
901 | p = _dtoa_r (&reent, _d, mode, ndigits, decpt, sign, rve, float_type);
|
---|
902 | strcpy (buf, p);
|
---|
903 |
|
---|
904 | return;
|
---|
905 | }
|
---|