1 | /* java.lang.StrictMath -- common mathematical functions, strict Java
|
---|
2 | Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of GNU Classpath.
|
---|
5 |
|
---|
6 | GNU Classpath is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2, or (at your option)
|
---|
9 | any later version.
|
---|
10 |
|
---|
11 | GNU Classpath is distributed in the hope that it will be useful, but
|
---|
12 | WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with GNU Classpath; see the file COPYING. If not, write to the
|
---|
18 | Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
19 | 02111-1307 USA.
|
---|
20 |
|
---|
21 | Linking this library statically or dynamically with other modules is
|
---|
22 | making a combined work based on this library. Thus, the terms and
|
---|
23 | conditions of the GNU General Public License cover the whole
|
---|
24 | combination.
|
---|
25 |
|
---|
26 | As a special exception, the copyright holders of this library give you
|
---|
27 | permission to link this library with independent modules to produce an
|
---|
28 | executable, regardless of the license terms of these independent
|
---|
29 | modules, and to copy and distribute the resulting executable under
|
---|
30 | terms of your choice, provided that you also meet, for each linked
|
---|
31 | independent module, the terms and conditions of the license of that
|
---|
32 | module. An independent module is a module which is not derived from
|
---|
33 | or based on this library. If you modify this library, you may extend
|
---|
34 | this exception to your version of the library, but you are not
|
---|
35 | obligated to do so. If you do not wish to do so, delete this
|
---|
36 | exception statement from your version. */
|
---|
37 |
|
---|
38 | /*
|
---|
39 | * Some of the algorithms in this class are in the public domain, as part
|
---|
40 | * of fdlibm (freely-distributable math library), available at
|
---|
41 | * http://www.netlib.org/fdlibm/, and carry the following copyright:
|
---|
42 | * ====================================================
|
---|
43 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
44 | *
|
---|
45 | * Developed at SunSoft, a Sun Microsystems, Inc. business.
|
---|
46 | * Permission to use, copy, modify, and distribute this
|
---|
47 | * software is freely granted, provided that this notice
|
---|
48 | * is preserved.
|
---|
49 | * ====================================================
|
---|
50 | */
|
---|
51 |
|
---|
52 | package java.lang;
|
---|
53 |
|
---|
54 | import java.util.Random;
|
---|
55 | import gnu.classpath.Configuration;
|
---|
56 |
|
---|
57 | /**
|
---|
58 | * Helper class containing useful mathematical functions and constants.
|
---|
59 | * This class mirrors {@link Math}, but is 100% portable, because it uses
|
---|
60 | * no native methods whatsoever. Also, these algorithms are all accurate
|
---|
61 | * to less than 1 ulp, and execute in <code>strictfp</code> mode, while
|
---|
62 | * Math is allowed to vary in its results for some functions. Unfortunately,
|
---|
63 | * this usually means StrictMath has less efficiency and speed, as Math can
|
---|
64 | * use native methods.
|
---|
65 | *
|
---|
66 | * <p>The source of the various algorithms used is the fdlibm library, at:<br>
|
---|
67 | * <a href="http://www.netlib.org/fdlibm/">http://www.netlib.org/fdlibm/</a>
|
---|
68 | *
|
---|
69 | * Note that angles are specified in radians. Conversion functions are
|
---|
70 | * provided for your convenience.
|
---|
71 | *
|
---|
72 | * @author Eric Blake <ebb9@email.byu.edu>
|
---|
73 | * @since 1.3
|
---|
74 | */
|
---|
75 | public final strictfp class StrictMath
|
---|
76 | {
|
---|
77 | /**
|
---|
78 | * StrictMath is non-instantiable.
|
---|
79 | */
|
---|
80 | private StrictMath()
|
---|
81 | {
|
---|
82 | }
|
---|
83 |
|
---|
84 | /**
|
---|
85 | * A random number generator, initialized on first use.
|
---|
86 | *
|
---|
87 | * @see #random()
|
---|
88 | */
|
---|
89 | private static Random rand;
|
---|
90 |
|
---|
91 | /**
|
---|
92 | * The most accurate approximation to the mathematical constant <em>e</em>:
|
---|
93 | * <code>2.718281828459045</code>. Used in natural log and exp.
|
---|
94 | *
|
---|
95 | * @see #log(double)
|
---|
96 | * @see #exp(double)
|
---|
97 | */
|
---|
98 | public static final double E
|
---|
99 | = 2.718281828459045; // Long bits 0x4005bf0z8b145769L.
|
---|
100 |
|
---|
101 | /**
|
---|
102 | * The most accurate approximation to the mathematical constant <em>pi</em>:
|
---|
103 | * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
|
---|
104 | * to its circumference.
|
---|
105 | */
|
---|
106 | public static final double PI
|
---|
107 | = 3.141592653589793; // Long bits 0x400921fb54442d18L.
|
---|
108 |
|
---|
109 | /**
|
---|
110 | * Take the absolute value of the argument. (Absolute value means make
|
---|
111 | * it positive.)
|
---|
112 | *
|
---|
113 | * <p>Note that the the largest negative value (Integer.MIN_VALUE) cannot
|
---|
114 | * be made positive. In this case, because of the rules of negation in
|
---|
115 | * a computer, MIN_VALUE is what will be returned.
|
---|
116 | * This is a <em>negative</em> value. You have been warned.
|
---|
117 | *
|
---|
118 | * @param i the number to take the absolute value of
|
---|
119 | * @return the absolute value
|
---|
120 | * @see Integer#MIN_VALUE
|
---|
121 | */
|
---|
122 | public static int abs(int i)
|
---|
123 | {
|
---|
124 | return (i < 0) ? -i : i;
|
---|
125 | }
|
---|
126 |
|
---|
127 | /**
|
---|
128 | * Take the absolute value of the argument. (Absolute value means make
|
---|
129 | * it positive.)
|
---|
130 | *
|
---|
131 | * <p>Note that the the largest negative value (Long.MIN_VALUE) cannot
|
---|
132 | * be made positive. In this case, because of the rules of negation in
|
---|
133 | * a computer, MIN_VALUE is what will be returned.
|
---|
134 | * This is a <em>negative</em> value. You have been warned.
|
---|
135 | *
|
---|
136 | * @param l the number to take the absolute value of
|
---|
137 | * @return the absolute value
|
---|
138 | * @see Long#MIN_VALUE
|
---|
139 | */
|
---|
140 | public static long abs(long l)
|
---|
141 | {
|
---|
142 | return (l < 0) ? -l : l;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /**
|
---|
146 | * Take the absolute value of the argument. (Absolute value means make
|
---|
147 | * it positive.)
|
---|
148 | *
|
---|
149 | * @param f the number to take the absolute value of
|
---|
150 | * @return the absolute value
|
---|
151 | */
|
---|
152 | public static float abs(float f)
|
---|
153 | {
|
---|
154 | return (f <= 0) ? 0 - f : f;
|
---|
155 | }
|
---|
156 |
|
---|
157 | /**
|
---|
158 | * Take the absolute value of the argument. (Absolute value means make
|
---|
159 | * it positive.)
|
---|
160 | *
|
---|
161 | * @param d the number to take the absolute value of
|
---|
162 | * @return the absolute value
|
---|
163 | */
|
---|
164 | public static double abs(double d)
|
---|
165 | {
|
---|
166 | return (d <= 0) ? 0 - d : d;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /**
|
---|
170 | * Return whichever argument is smaller.
|
---|
171 | *
|
---|
172 | * @param a the first number
|
---|
173 | * @param b a second number
|
---|
174 | * @return the smaller of the two numbers
|
---|
175 | */
|
---|
176 | public static int min(int a, int b)
|
---|
177 | {
|
---|
178 | return (a < b) ? a : b;
|
---|
179 | }
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Return whichever argument is smaller.
|
---|
183 | *
|
---|
184 | * @param a the first number
|
---|
185 | * @param b a second number
|
---|
186 | * @return the smaller of the two numbers
|
---|
187 | */
|
---|
188 | public static long min(long a, long b)
|
---|
189 | {
|
---|
190 | return (a < b) ? a : b;
|
---|
191 | }
|
---|
192 |
|
---|
193 | /**
|
---|
194 | * Return whichever argument is smaller. If either argument is NaN, the
|
---|
195 | * result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
---|
196 | *
|
---|
197 | * @param a the first number
|
---|
198 | * @param b a second number
|
---|
199 | * @return the smaller of the two numbers
|
---|
200 | */
|
---|
201 | public static float min(float a, float b)
|
---|
202 | {
|
---|
203 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
204 | if (a != a)
|
---|
205 | return a;
|
---|
206 | // no need to check if b is NaN; < will work correctly
|
---|
207 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
208 | if (a == 0 && b == 0)
|
---|
209 | return -(-a - b);
|
---|
210 | return (a < b) ? a : b;
|
---|
211 | }
|
---|
212 |
|
---|
213 | /**
|
---|
214 | * Return whichever argument is smaller. If either argument is NaN, the
|
---|
215 | * result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
---|
216 | *
|
---|
217 | * @param a the first number
|
---|
218 | * @param b a second number
|
---|
219 | * @return the smaller of the two numbers
|
---|
220 | */
|
---|
221 | public static double min(double a, double b)
|
---|
222 | {
|
---|
223 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
224 | if (a != a)
|
---|
225 | return a;
|
---|
226 | // no need to check if b is NaN; < will work correctly
|
---|
227 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
228 | if (a == 0 && b == 0)
|
---|
229 | return -(-a - b);
|
---|
230 | return (a < b) ? a : b;
|
---|
231 | }
|
---|
232 |
|
---|
233 | /**
|
---|
234 | * Return whichever argument is larger.
|
---|
235 | *
|
---|
236 | * @param a the first number
|
---|
237 | * @param b a second number
|
---|
238 | * @return the larger of the two numbers
|
---|
239 | */
|
---|
240 | public static int max(int a, int b)
|
---|
241 | {
|
---|
242 | return (a > b) ? a : b;
|
---|
243 | }
|
---|
244 |
|
---|
245 | /**
|
---|
246 | * Return whichever argument is larger.
|
---|
247 | *
|
---|
248 | * @param a the first number
|
---|
249 | * @param b a second number
|
---|
250 | * @return the larger of the two numbers
|
---|
251 | */
|
---|
252 | public static long max(long a, long b)
|
---|
253 | {
|
---|
254 | return (a > b) ? a : b;
|
---|
255 | }
|
---|
256 |
|
---|
257 | /**
|
---|
258 | * Return whichever argument is larger. If either argument is NaN, the
|
---|
259 | * result is NaN, and when comparing 0 and -0, 0 is always larger.
|
---|
260 | *
|
---|
261 | * @param a the first number
|
---|
262 | * @param b a second number
|
---|
263 | * @return the larger of the two numbers
|
---|
264 | */
|
---|
265 | public static float max(float a, float b)
|
---|
266 | {
|
---|
267 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
268 | if (a != a)
|
---|
269 | return a;
|
---|
270 | // no need to check if b is NaN; > will work correctly
|
---|
271 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
272 | if (a == 0 && b == 0)
|
---|
273 | return a - -b;
|
---|
274 | return (a > b) ? a : b;
|
---|
275 | }
|
---|
276 |
|
---|
277 | /**
|
---|
278 | * Return whichever argument is larger. If either argument is NaN, the
|
---|
279 | * result is NaN, and when comparing 0 and -0, 0 is always larger.
|
---|
280 | *
|
---|
281 | * @param a the first number
|
---|
282 | * @param b a second number
|
---|
283 | * @return the larger of the two numbers
|
---|
284 | */
|
---|
285 | public static double max(double a, double b)
|
---|
286 | {
|
---|
287 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
288 | if (a != a)
|
---|
289 | return a;
|
---|
290 | // no need to check if b is NaN; > will work correctly
|
---|
291 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
292 | if (a == 0 && b == 0)
|
---|
293 | return a - -b;
|
---|
294 | return (a > b) ? a : b;
|
---|
295 | }
|
---|
296 |
|
---|
297 | /**
|
---|
298 | * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
|
---|
299 | * NaN, and the sine of 0 retains its sign.
|
---|
300 | *
|
---|
301 | * @param a the angle (in radians)
|
---|
302 | * @return sin(a)
|
---|
303 | */
|
---|
304 | public static double sin(double a)
|
---|
305 | {
|
---|
306 | if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
|
---|
307 | return Double.NaN;
|
---|
308 |
|
---|
309 | if (abs(a) <= PI / 4)
|
---|
310 | return sin(a, 0);
|
---|
311 |
|
---|
312 | // Argument reduction needed.
|
---|
313 | double[] y = new double[2];
|
---|
314 | int n = remPiOver2(a, y);
|
---|
315 | switch (n & 3)
|
---|
316 | {
|
---|
317 | case 0:
|
---|
318 | return sin(y[0], y[1]);
|
---|
319 | case 1:
|
---|
320 | return cos(y[0], y[1]);
|
---|
321 | case 2:
|
---|
322 | return -sin(y[0], y[1]);
|
---|
323 | default:
|
---|
324 | return -cos(y[0], y[1]);
|
---|
325 | }
|
---|
326 | }
|
---|
327 |
|
---|
328 | /**
|
---|
329 | * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
|
---|
330 | * NaN.
|
---|
331 | *
|
---|
332 | * @param a the angle (in radians).
|
---|
333 | * @return cos(a).
|
---|
334 | */
|
---|
335 | public static double cos(double a)
|
---|
336 | {
|
---|
337 | if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
|
---|
338 | return Double.NaN;
|
---|
339 |
|
---|
340 | if (abs(a) <= PI / 4)
|
---|
341 | return cos(a, 0);
|
---|
342 |
|
---|
343 | // Argument reduction needed.
|
---|
344 | double[] y = new double[2];
|
---|
345 | int n = remPiOver2(a, y);
|
---|
346 | switch (n & 3)
|
---|
347 | {
|
---|
348 | case 0:
|
---|
349 | return cos(y[0], y[1]);
|
---|
350 | case 1:
|
---|
351 | return -sin(y[0], y[1]);
|
---|
352 | case 2:
|
---|
353 | return -cos(y[0], y[1]);
|
---|
354 | default:
|
---|
355 | return sin(y[0], y[1]);
|
---|
356 | }
|
---|
357 | }
|
---|
358 |
|
---|
359 | /**
|
---|
360 | * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
|
---|
361 | * is NaN, and the tangent of 0 retains its sign.
|
---|
362 | *
|
---|
363 | * @param a the angle (in radians)
|
---|
364 | * @return tan(a)
|
---|
365 | */
|
---|
366 | public static double tan(double a)
|
---|
367 | {
|
---|
368 | if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
|
---|
369 | return Double.NaN;
|
---|
370 |
|
---|
371 | if (abs(a) <= PI / 4)
|
---|
372 | return tan(a, 0, false);
|
---|
373 |
|
---|
374 | // Argument reduction needed.
|
---|
375 | double[] y = new double[2];
|
---|
376 | int n = remPiOver2(a, y);
|
---|
377 | return tan(y[0], y[1], (n & 1) == 1);
|
---|
378 | }
|
---|
379 |
|
---|
380 | /**
|
---|
381 | * The trigonometric function <em>arcsin</em>. The range of angles returned
|
---|
382 | * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
|
---|
383 | * its absolute value is beyond 1, the result is NaN; and the arcsine of
|
---|
384 | * 0 retains its sign.
|
---|
385 | *
|
---|
386 | * @param x the sin to turn back into an angle
|
---|
387 | * @return arcsin(x)
|
---|
388 | */
|
---|
389 | public static double asin(double x)
|
---|
390 | {
|
---|
391 | boolean negative = x < 0;
|
---|
392 | if (negative)
|
---|
393 | x = -x;
|
---|
394 | if (! (x <= 1))
|
---|
395 | return Double.NaN;
|
---|
396 | if (x == 1)
|
---|
397 | return negative ? -PI / 2 : PI / 2;
|
---|
398 | if (x < 0.5)
|
---|
399 | {
|
---|
400 | if (x < 1 / TWO_27)
|
---|
401 | return negative ? -x : x;
|
---|
402 | double t = x * x;
|
---|
403 | double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
|
---|
404 | * (PS4 + t * PS5)))));
|
---|
405 | double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
|
---|
406 | return negative ? -x - x * (p / q) : x + x * (p / q);
|
---|
407 | }
|
---|
408 | double w = 1 - x; // 1>|x|>=0.5.
|
---|
409 | double t = w * 0.5;
|
---|
410 | double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
|
---|
411 | * (PS4 + t * PS5)))));
|
---|
412 | double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
|
---|
413 | double s = sqrt(t);
|
---|
414 | if (x >= 0.975)
|
---|
415 | {
|
---|
416 | w = p / q;
|
---|
417 | t = PI / 2 - (2 * (s + s * w) - PI_L / 2);
|
---|
418 | }
|
---|
419 | else
|
---|
420 | {
|
---|
421 | w = (float) s;
|
---|
422 | double c = (t - w * w) / (s + w);
|
---|
423 | p = 2 * s * (p / q) - (PI_L / 2 - 2 * c);
|
---|
424 | q = PI / 4 - 2 * w;
|
---|
425 | t = PI / 4 - (p - q);
|
---|
426 | }
|
---|
427 | return negative ? -t : t;
|
---|
428 | }
|
---|
429 |
|
---|
430 | /**
|
---|
431 | * The trigonometric function <em>arccos</em>. The range of angles returned
|
---|
432 | * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
|
---|
433 | * its absolute value is beyond 1, the result is NaN.
|
---|
434 | *
|
---|
435 | * @param x the cos to turn back into an angle
|
---|
436 | * @return arccos(x)
|
---|
437 | */
|
---|
438 | public static double acos(double x)
|
---|
439 | {
|
---|
440 | boolean negative = x < 0;
|
---|
441 | if (negative)
|
---|
442 | x = -x;
|
---|
443 | if (! (x <= 1))
|
---|
444 | return Double.NaN;
|
---|
445 | if (x == 1)
|
---|
446 | return negative ? PI : 0;
|
---|
447 | if (x < 0.5)
|
---|
448 | {
|
---|
449 | if (x < 1 / TWO_57)
|
---|
450 | return PI / 2;
|
---|
451 | double z = x * x;
|
---|
452 | double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
|
---|
453 | * (PS4 + z * PS5)))));
|
---|
454 | double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
|
---|
455 | double r = x - (PI_L / 2 - x * (p / q));
|
---|
456 | return negative ? PI / 2 + r : PI / 2 - r;
|
---|
457 | }
|
---|
458 | if (negative) // x<=-0.5.
|
---|
459 | {
|
---|
460 | double z = (1 + x) * 0.5;
|
---|
461 | double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
|
---|
462 | * (PS4 + z * PS5)))));
|
---|
463 | double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
|
---|
464 | double s = sqrt(z);
|
---|
465 | double w = p / q * s - PI_L / 2;
|
---|
466 | return PI - 2 * (s + w);
|
---|
467 | }
|
---|
468 | double z = (1 - x) * 0.5; // x>0.5.
|
---|
469 | double s = sqrt(z);
|
---|
470 | double df = (float) s;
|
---|
471 | double c = (z - df * df) / (s + df);
|
---|
472 | double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
|
---|
473 | * (PS4 + z * PS5)))));
|
---|
474 | double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
|
---|
475 | double w = p / q * s + c;
|
---|
476 | return 2 * (df + w);
|
---|
477 | }
|
---|
478 |
|
---|
479 | /**
|
---|
480 | * The trigonometric function <em>arcsin</em>. The range of angles returned
|
---|
481 | * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
|
---|
482 | * result is NaN; and the arctangent of 0 retains its sign.
|
---|
483 | *
|
---|
484 | * @param x the tan to turn back into an angle
|
---|
485 | * @return arcsin(x)
|
---|
486 | * @see #atan2(double, double)
|
---|
487 | */
|
---|
488 | public static double atan(double x)
|
---|
489 | {
|
---|
490 | double lo;
|
---|
491 | double hi;
|
---|
492 | boolean negative = x < 0;
|
---|
493 | if (negative)
|
---|
494 | x = -x;
|
---|
495 | if (x >= TWO_66)
|
---|
496 | return negative ? -PI / 2 : PI / 2;
|
---|
497 | if (! (x >= 0.4375)) // |x|<7/16, or NaN.
|
---|
498 | {
|
---|
499 | if (! (x >= 1 / TWO_29)) // Small, or NaN.
|
---|
500 | return negative ? -x : x;
|
---|
501 | lo = hi = 0;
|
---|
502 | }
|
---|
503 | else if (x < 1.1875)
|
---|
504 | {
|
---|
505 | if (x < 0.6875) // 7/16<=|x|<11/16.
|
---|
506 | {
|
---|
507 | x = (2 * x - 1) / (2 + x);
|
---|
508 | hi = ATAN_0_5H;
|
---|
509 | lo = ATAN_0_5L;
|
---|
510 | }
|
---|
511 | else // 11/16<=|x|<19/16.
|
---|
512 | {
|
---|
513 | x = (x - 1) / (x + 1);
|
---|
514 | hi = PI / 4;
|
---|
515 | lo = PI_L / 4;
|
---|
516 | }
|
---|
517 | }
|
---|
518 | else if (x < 2.4375) // 19/16<=|x|<39/16.
|
---|
519 | {
|
---|
520 | x = (x - 1.5) / (1 + 1.5 * x);
|
---|
521 | hi = ATAN_1_5H;
|
---|
522 | lo = ATAN_1_5L;
|
---|
523 | }
|
---|
524 | else // 39/16<=|x|<2**66.
|
---|
525 | {
|
---|
526 | x = -1 / x;
|
---|
527 | hi = PI / 2;
|
---|
528 | lo = PI_L / 2;
|
---|
529 | }
|
---|
530 |
|
---|
531 | // Break sum from i=0 to 10 ATi*z**(i+1) into odd and even poly.
|
---|
532 | double z = x * x;
|
---|
533 | double w = z * z;
|
---|
534 | double s1 = z * (AT0 + w * (AT2 + w * (AT4 + w * (AT6 + w
|
---|
535 | * (AT8 + w * AT10)))));
|
---|
536 | double s2 = w * (AT1 + w * (AT3 + w * (AT5 + w * (AT7 + w * AT9))));
|
---|
537 | if (hi == 0)
|
---|
538 | return negative ? x * (s1 + s2) - x : x - x * (s1 + s2);
|
---|
539 | z = hi - ((x * (s1 + s2) - lo) - x);
|
---|
540 | return negative ? -z : z;
|
---|
541 | }
|
---|
542 |
|
---|
543 | /**
|
---|
544 | * A special version of the trigonometric function <em>arctan</em>, for
|
---|
545 | * converting rectangular coordinates <em>(x, y)</em> to polar
|
---|
546 | * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
|
---|
547 | * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
|
---|
548 | * <li>If either argument is NaN, the result is NaN.</li>
|
---|
549 | * <li>If the first argument is positive zero and the second argument is
|
---|
550 | * positive, or the first argument is positive and finite and the second
|
---|
551 | * argument is positive infinity, then the result is positive zero.</li>
|
---|
552 | * <li>If the first argument is negative zero and the second argument is
|
---|
553 | * positive, or the first argument is negative and finite and the second
|
---|
554 | * argument is positive infinity, then the result is negative zero.</li>
|
---|
555 | * <li>If the first argument is positive zero and the second argument is
|
---|
556 | * negative, or the first argument is positive and finite and the second
|
---|
557 | * argument is negative infinity, then the result is the double value
|
---|
558 | * closest to pi.</li>
|
---|
559 | * <li>If the first argument is negative zero and the second argument is
|
---|
560 | * negative, or the first argument is negative and finite and the second
|
---|
561 | * argument is negative infinity, then the result is the double value
|
---|
562 | * closest to -pi.</li>
|
---|
563 | * <li>If the first argument is positive and the second argument is
|
---|
564 | * positive zero or negative zero, or the first argument is positive
|
---|
565 | * infinity and the second argument is finite, then the result is the
|
---|
566 | * double value closest to pi/2.</li>
|
---|
567 | * <li>If the first argument is negative and the second argument is
|
---|
568 | * positive zero or negative zero, or the first argument is negative
|
---|
569 | * infinity and the second argument is finite, then the result is the
|
---|
570 | * double value closest to -pi/2.</li>
|
---|
571 | * <li>If both arguments are positive infinity, then the result is the
|
---|
572 | * double value closest to pi/4.</li>
|
---|
573 | * <li>If the first argument is positive infinity and the second argument
|
---|
574 | * is negative infinity, then the result is the double value closest to
|
---|
575 | * 3*pi/4.</li>
|
---|
576 | * <li>If the first argument is negative infinity and the second argument
|
---|
577 | * is positive infinity, then the result is the double value closest to
|
---|
578 | * -pi/4.</li>
|
---|
579 | * <li>If both arguments are negative infinity, then the result is the
|
---|
580 | * double value closest to -3*pi/4.</li>
|
---|
581 | *
|
---|
582 | * </ul><p>This returns theta, the angle of the point. To get r, albeit
|
---|
583 | * slightly inaccurately, use sqrt(x*x+y*y).
|
---|
584 | *
|
---|
585 | * @param y the y position
|
---|
586 | * @param x the x position
|
---|
587 | * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
|
---|
588 | * @see #atan(double)
|
---|
589 | */
|
---|
590 | public static double atan2(double y, double x)
|
---|
591 | {
|
---|
592 | if (x != x || y != y)
|
---|
593 | return Double.NaN;
|
---|
594 | if (x == 1)
|
---|
595 | return atan(y);
|
---|
596 | if (x == Double.POSITIVE_INFINITY)
|
---|
597 | {
|
---|
598 | if (y == Double.POSITIVE_INFINITY)
|
---|
599 | return PI / 4;
|
---|
600 | if (y == Double.NEGATIVE_INFINITY)
|
---|
601 | return -PI / 4;
|
---|
602 | return 0 * y;
|
---|
603 | }
|
---|
604 | if (x == Double.NEGATIVE_INFINITY)
|
---|
605 | {
|
---|
606 | if (y == Double.POSITIVE_INFINITY)
|
---|
607 | return 3 * PI / 4;
|
---|
608 | if (y == Double.NEGATIVE_INFINITY)
|
---|
609 | return -3 * PI / 4;
|
---|
610 | return (1 / (0 * y) == Double.POSITIVE_INFINITY) ? PI : -PI;
|
---|
611 | }
|
---|
612 | if (y == 0)
|
---|
613 | {
|
---|
614 | if (1 / (0 * x) == Double.POSITIVE_INFINITY)
|
---|
615 | return y;
|
---|
616 | return (1 / y == Double.POSITIVE_INFINITY) ? PI : -PI;
|
---|
617 | }
|
---|
618 | if (y == Double.POSITIVE_INFINITY || y == Double.NEGATIVE_INFINITY
|
---|
619 | || x == 0)
|
---|
620 | return y < 0 ? -PI / 2 : PI / 2;
|
---|
621 |
|
---|
622 | double z = abs(y / x); // Safe to do y/x.
|
---|
623 | if (z > TWO_60)
|
---|
624 | z = PI / 2 + 0.5 * PI_L;
|
---|
625 | else if (x < 0 && z < 1 / TWO_60)
|
---|
626 | z = 0;
|
---|
627 | else
|
---|
628 | z = atan(z);
|
---|
629 | if (x > 0)
|
---|
630 | return y > 0 ? z : -z;
|
---|
631 | return y > 0 ? PI - (z - PI_L) : z - PI_L - PI;
|
---|
632 | }
|
---|
633 |
|
---|
634 | /**
|
---|
635 | * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
|
---|
636 | * argument is NaN, the result is NaN; if the argument is positive infinity,
|
---|
637 | * the result is positive infinity; and if the argument is negative
|
---|
638 | * infinity, the result is positive zero.
|
---|
639 | *
|
---|
640 | * @param x the number to raise to the power
|
---|
641 | * @return the number raised to the power of <em>e</em>
|
---|
642 | * @see #log(double)
|
---|
643 | * @see #pow(double, double)
|
---|
644 | */
|
---|
645 | public static double exp(double x)
|
---|
646 | {
|
---|
647 | if (x != x)
|
---|
648 | return x;
|
---|
649 | if (x > EXP_LIMIT_H)
|
---|
650 | return Double.POSITIVE_INFINITY;
|
---|
651 | if (x < EXP_LIMIT_L)
|
---|
652 | return 0;
|
---|
653 |
|
---|
654 | // Argument reduction.
|
---|
655 | double hi;
|
---|
656 | double lo;
|
---|
657 | int k;
|
---|
658 | double t = abs(x);
|
---|
659 | if (t > 0.5 * LN2)
|
---|
660 | {
|
---|
661 | if (t < 1.5 * LN2)
|
---|
662 | {
|
---|
663 | hi = t - LN2_H;
|
---|
664 | lo = LN2_L;
|
---|
665 | k = 1;
|
---|
666 | }
|
---|
667 | else
|
---|
668 | {
|
---|
669 | k = (int) (INV_LN2 * t + 0.5);
|
---|
670 | hi = t - k * LN2_H;
|
---|
671 | lo = k * LN2_L;
|
---|
672 | }
|
---|
673 | if (x < 0)
|
---|
674 | {
|
---|
675 | hi = -hi;
|
---|
676 | lo = -lo;
|
---|
677 | k = -k;
|
---|
678 | }
|
---|
679 | x = hi - lo;
|
---|
680 | }
|
---|
681 | else if (t < 1 / TWO_28)
|
---|
682 | return 1;
|
---|
683 | else
|
---|
684 | lo = hi = k = 0;
|
---|
685 |
|
---|
686 | // Now x is in primary range.
|
---|
687 | t = x * x;
|
---|
688 | double c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
|
---|
689 | if (k == 0)
|
---|
690 | return 1 - (x * c / (c - 2) - x);
|
---|
691 | double y = 1 - (lo - x * c / (2 - c) - hi);
|
---|
692 | return scale(y, k);
|
---|
693 | }
|
---|
694 |
|
---|
695 | /**
|
---|
696 | * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
|
---|
697 | * argument is NaN or negative, the result is NaN; if the argument is
|
---|
698 | * positive infinity, the result is positive infinity; and if the argument
|
---|
699 | * is either zero, the result is negative infinity.
|
---|
700 | *
|
---|
701 | * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
|
---|
702 | * <code>ln(a) / ln(b)</code>.
|
---|
703 | *
|
---|
704 | * @param x the number to take the natural log of
|
---|
705 | * @return the natural log of <code>a</code>
|
---|
706 | * @see #exp(double)
|
---|
707 | */
|
---|
708 | public static double log(double x)
|
---|
709 | {
|
---|
710 | if (x == 0)
|
---|
711 | return Double.NEGATIVE_INFINITY;
|
---|
712 | if (x < 0)
|
---|
713 | return Double.NaN;
|
---|
714 | if (! (x < Double.POSITIVE_INFINITY))
|
---|
715 | return x;
|
---|
716 |
|
---|
717 | // Normalize x.
|
---|
718 | long bits = Double.doubleToLongBits(x);
|
---|
719 | int exp = (int) (bits >> 52);
|
---|
720 | if (exp == 0) // Subnormal x.
|
---|
721 | {
|
---|
722 | x *= TWO_54;
|
---|
723 | bits = Double.doubleToLongBits(x);
|
---|
724 | exp = (int) (bits >> 52) - 54;
|
---|
725 | }
|
---|
726 | exp -= 1023; // Unbias exponent.
|
---|
727 | bits = (bits & 0x000fffffffffffffL) | 0x3ff0000000000000L;
|
---|
728 | x = Double.longBitsToDouble(bits);
|
---|
729 | if (x >= SQRT_2)
|
---|
730 | {
|
---|
731 | x *= 0.5;
|
---|
732 | exp++;
|
---|
733 | }
|
---|
734 | x--;
|
---|
735 | if (abs(x) < 1 / TWO_20)
|
---|
736 | {
|
---|
737 | if (x == 0)
|
---|
738 | return exp * LN2_H + exp * LN2_L;
|
---|
739 | double r = x * x * (0.5 - 1 / 3.0 * x);
|
---|
740 | if (exp == 0)
|
---|
741 | return x - r;
|
---|
742 | return exp * LN2_H - ((r - exp * LN2_L) - x);
|
---|
743 | }
|
---|
744 | double s = x / (2 + x);
|
---|
745 | double z = s * s;
|
---|
746 | double w = z * z;
|
---|
747 | double t1 = w * (LG2 + w * (LG4 + w * LG6));
|
---|
748 | double t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
---|
749 | double r = t2 + t1;
|
---|
750 | if (bits >= 0x3ff6174a00000000L && bits < 0x3ff6b85200000000L)
|
---|
751 | {
|
---|
752 | double h = 0.5 * x * x; // Need more accuracy for x near sqrt(2).
|
---|
753 | if (exp == 0)
|
---|
754 | return x - (h - s * (h + r));
|
---|
755 | return exp * LN2_H - ((h - (s * (h + r) + exp * LN2_L)) - x);
|
---|
756 | }
|
---|
757 | if (exp == 0)
|
---|
758 | return x - s * (x - r);
|
---|
759 | return exp * LN2_H - ((s * (x - r) - exp * LN2_L) - x);
|
---|
760 | }
|
---|
761 |
|
---|
762 | /**
|
---|
763 | * Take a square root. If the argument is NaN or negative, the result is
|
---|
764 | * NaN; if the argument is positive infinity, the result is positive
|
---|
765 | * infinity; and if the result is either zero, the result is the same.
|
---|
766 | *
|
---|
767 | * <p>For other roots, use pow(x, 1/rootNumber).
|
---|
768 | *
|
---|
769 | * @param x the numeric argument
|
---|
770 | * @return the square root of the argument
|
---|
771 | * @see #pow(double, double)
|
---|
772 | */
|
---|
773 | public static double sqrt(double x)
|
---|
774 | {
|
---|
775 | if (x < 0)
|
---|
776 | return Double.NaN;
|
---|
777 | if (x == 0 || ! (x < Double.POSITIVE_INFINITY))
|
---|
778 | return x;
|
---|
779 |
|
---|
780 | // Normalize x.
|
---|
781 | long bits = Double.doubleToLongBits(x);
|
---|
782 | int exp = (int) (bits >> 52);
|
---|
783 | if (exp == 0) // Subnormal x.
|
---|
784 | {
|
---|
785 | x *= TWO_54;
|
---|
786 | bits = Double.doubleToLongBits(x);
|
---|
787 | exp = (int) (bits >> 52) - 54;
|
---|
788 | }
|
---|
789 | exp -= 1023; // Unbias exponent.
|
---|
790 | bits = (bits & 0x000fffffffffffffL) | 0x0010000000000000L;
|
---|
791 | if ((exp & 1) == 1) // Odd exp, double x to make it even.
|
---|
792 | bits <<= 1;
|
---|
793 | exp >>= 1;
|
---|
794 |
|
---|
795 | // Generate sqrt(x) bit by bit.
|
---|
796 | bits <<= 1;
|
---|
797 | long q = 0;
|
---|
798 | long s = 0;
|
---|
799 | long r = 0x0020000000000000L; // Move r right to left.
|
---|
800 | while (r != 0)
|
---|
801 | {
|
---|
802 | long t = s + r;
|
---|
803 | if (t <= bits)
|
---|
804 | {
|
---|
805 | s = t + r;
|
---|
806 | bits -= t;
|
---|
807 | q += r;
|
---|
808 | }
|
---|
809 | bits <<= 1;
|
---|
810 | r >>= 1;
|
---|
811 | }
|
---|
812 |
|
---|
813 | // Use floating add to round correctly.
|
---|
814 | if (bits != 0)
|
---|
815 | q += q & 1;
|
---|
816 | return Double.longBitsToDouble((q >> 1) + ((exp + 1022L) << 52));
|
---|
817 | }
|
---|
818 |
|
---|
819 | /**
|
---|
820 | * Raise a number to a power. Special cases:<ul>
|
---|
821 | * <li>If the second argument is positive or negative zero, then the result
|
---|
822 | * is 1.0.</li>
|
---|
823 | * <li>If the second argument is 1.0, then the result is the same as the
|
---|
824 | * first argument.</li>
|
---|
825 | * <li>If the second argument is NaN, then the result is NaN.</li>
|
---|
826 | * <li>If the first argument is NaN and the second argument is nonzero,
|
---|
827 | * then the result is NaN.</li>
|
---|
828 | * <li>If the absolute value of the first argument is greater than 1 and
|
---|
829 | * the second argument is positive infinity, or the absolute value of the
|
---|
830 | * first argument is less than 1 and the second argument is negative
|
---|
831 | * infinity, then the result is positive infinity.</li>
|
---|
832 | * <li>If the absolute value of the first argument is greater than 1 and
|
---|
833 | * the second argument is negative infinity, or the absolute value of the
|
---|
834 | * first argument is less than 1 and the second argument is positive
|
---|
835 | * infinity, then the result is positive zero.</li>
|
---|
836 | * <li>If the absolute value of the first argument equals 1 and the second
|
---|
837 | * argument is infinite, then the result is NaN.</li>
|
---|
838 | * <li>If the first argument is positive zero and the second argument is
|
---|
839 | * greater than zero, or the first argument is positive infinity and the
|
---|
840 | * second argument is less than zero, then the result is positive zero.</li>
|
---|
841 | * <li>If the first argument is positive zero and the second argument is
|
---|
842 | * less than zero, or the first argument is positive infinity and the
|
---|
843 | * second argument is greater than zero, then the result is positive
|
---|
844 | * infinity.</li>
|
---|
845 | * <li>If the first argument is negative zero and the second argument is
|
---|
846 | * greater than zero but not a finite odd integer, or the first argument is
|
---|
847 | * negative infinity and the second argument is less than zero but not a
|
---|
848 | * finite odd integer, then the result is positive zero.</li>
|
---|
849 | * <li>If the first argument is negative zero and the second argument is a
|
---|
850 | * positive finite odd integer, or the first argument is negative infinity
|
---|
851 | * and the second argument is a negative finite odd integer, then the result
|
---|
852 | * is negative zero.</li>
|
---|
853 | * <li>If the first argument is negative zero and the second argument is
|
---|
854 | * less than zero but not a finite odd integer, or the first argument is
|
---|
855 | * negative infinity and the second argument is greater than zero but not a
|
---|
856 | * finite odd integer, then the result is positive infinity.</li>
|
---|
857 | * <li>If the first argument is negative zero and the second argument is a
|
---|
858 | * negative finite odd integer, or the first argument is negative infinity
|
---|
859 | * and the second argument is a positive finite odd integer, then the result
|
---|
860 | * is negative infinity.</li>
|
---|
861 | * <li>If the first argument is less than zero and the second argument is a
|
---|
862 | * finite even integer, then the result is equal to the result of raising
|
---|
863 | * the absolute value of the first argument to the power of the second
|
---|
864 | * argument.</li>
|
---|
865 | * <li>If the first argument is less than zero and the second argument is a
|
---|
866 | * finite odd integer, then the result is equal to the negative of the
|
---|
867 | * result of raising the absolute value of the first argument to the power
|
---|
868 | * of the second argument.</li>
|
---|
869 | * <li>If the first argument is finite and less than zero and the second
|
---|
870 | * argument is finite and not an integer, then the result is NaN.</li>
|
---|
871 | * <li>If both arguments are integers, then the result is exactly equal to
|
---|
872 | * the mathematical result of raising the first argument to the power of
|
---|
873 | * the second argument if that result can in fact be represented exactly as
|
---|
874 | * a double value.</li>
|
---|
875 | *
|
---|
876 | * </ul><p>(In the foregoing descriptions, a floating-point value is
|
---|
877 | * considered to be an integer if and only if it is a fixed point of the
|
---|
878 | * method {@link #ceil(double)} or, equivalently, a fixed point of the
|
---|
879 | * method {@link #floor(double)}. A value is a fixed point of a one-argument
|
---|
880 | * method if and only if the result of applying the method to the value is
|
---|
881 | * equal to the value.)
|
---|
882 | *
|
---|
883 | * @param x the number to raise
|
---|
884 | * @param y the power to raise it to
|
---|
885 | * @return x<sup>y</sup>
|
---|
886 | */
|
---|
887 | public static double pow(double x, double y)
|
---|
888 | {
|
---|
889 | // Special cases first.
|
---|
890 | if (y == 0)
|
---|
891 | return 1;
|
---|
892 | if (y == 1)
|
---|
893 | return x;
|
---|
894 | if (y == -1)
|
---|
895 | return 1 / x;
|
---|
896 | if (x != x || y != y)
|
---|
897 | return Double.NaN;
|
---|
898 |
|
---|
899 | // When x < 0, yisint tells if y is not an integer (0), even(1),
|
---|
900 | // or odd (2).
|
---|
901 | int yisint = 0;
|
---|
902 | if (x < 0 && floor(y) == y)
|
---|
903 | yisint = (y % 2 == 0) ? 2 : 1;
|
---|
904 | double ax = abs(x);
|
---|
905 | double ay = abs(y);
|
---|
906 |
|
---|
907 | // More special cases, of y.
|
---|
908 | if (ay == Double.POSITIVE_INFINITY)
|
---|
909 | {
|
---|
910 | if (ax == 1)
|
---|
911 | return Double.NaN;
|
---|
912 | if (ax > 1)
|
---|
913 | return y > 0 ? y : 0;
|
---|
914 | return y < 0 ? -y : 0;
|
---|
915 | }
|
---|
916 | if (y == 2)
|
---|
917 | return x * x;
|
---|
918 | if (y == 0.5)
|
---|
919 | return sqrt(x);
|
---|
920 |
|
---|
921 | // More special cases, of x.
|
---|
922 | if (x == 0 || ax == Double.POSITIVE_INFINITY || ax == 1)
|
---|
923 | {
|
---|
924 | if (y < 0)
|
---|
925 | ax = 1 / ax;
|
---|
926 | if (x < 0)
|
---|
927 | {
|
---|
928 | if (x == -1 && yisint == 0)
|
---|
929 | ax = Double.NaN;
|
---|
930 | else if (yisint == 1)
|
---|
931 | ax = -ax;
|
---|
932 | }
|
---|
933 | return ax;
|
---|
934 | }
|
---|
935 | if (x < 0 && yisint == 0)
|
---|
936 | return Double.NaN;
|
---|
937 |
|
---|
938 | // Now we can start!
|
---|
939 | double t;
|
---|
940 | double t1;
|
---|
941 | double t2;
|
---|
942 | double u;
|
---|
943 | double v;
|
---|
944 | double w;
|
---|
945 | if (ay > TWO_31)
|
---|
946 | {
|
---|
947 | if (ay > TWO_64) // Automatic over/underflow.
|
---|
948 | return ((ax < 1) ? y < 0 : y > 0) ? Double.POSITIVE_INFINITY : 0;
|
---|
949 | // Over/underflow if x is not close to one.
|
---|
950 | if (ax < 0.9999995231628418)
|
---|
951 | return y < 0 ? Double.POSITIVE_INFINITY : 0;
|
---|
952 | if (ax >= 1.0000009536743164)
|
---|
953 | return y > 0 ? Double.POSITIVE_INFINITY : 0;
|
---|
954 | // Now |1-x| is <= 2**-20, sufficient to compute
|
---|
955 | // log(x) by x-x^2/2+x^3/3-x^4/4.
|
---|
956 | t = x - 1;
|
---|
957 | w = t * t * (0.5 - t * (1 / 3.0 - t * 0.25));
|
---|
958 | u = INV_LN2_H * t;
|
---|
959 | v = t * INV_LN2_L - w * INV_LN2;
|
---|
960 | t1 = (float) (u + v);
|
---|
961 | t2 = v - (t1 - u);
|
---|
962 | }
|
---|
963 | else
|
---|
964 | {
|
---|
965 | long bits = Double.doubleToLongBits(ax);
|
---|
966 | int exp = (int) (bits >> 52);
|
---|
967 | if (exp == 0) // Subnormal x.
|
---|
968 | {
|
---|
969 | ax *= TWO_54;
|
---|
970 | bits = Double.doubleToLongBits(ax);
|
---|
971 | exp = (int) (bits >> 52) - 54;
|
---|
972 | }
|
---|
973 | exp -= 1023; // Unbias exponent.
|
---|
974 | ax = Double.longBitsToDouble((bits & 0x000fffffffffffffL)
|
---|
975 | | 0x3ff0000000000000L);
|
---|
976 | boolean k;
|
---|
977 | if (ax < SQRT_1_5) // |x|<sqrt(3/2).
|
---|
978 | k = false;
|
---|
979 | else if (ax < SQRT_3) // |x|<sqrt(3).
|
---|
980 | k = true;
|
---|
981 | else
|
---|
982 | {
|
---|
983 | k = false;
|
---|
984 | ax *= 0.5;
|
---|
985 | exp++;
|
---|
986 | }
|
---|
987 |
|
---|
988 | // Compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5).
|
---|
989 | u = ax - (k ? 1.5 : 1);
|
---|
990 | v = 1 / (ax + (k ? 1.5 : 1));
|
---|
991 | double s = u * v;
|
---|
992 | double s_h = (float) s;
|
---|
993 | double t_h = (float) (ax + (k ? 1.5 : 1));
|
---|
994 | double t_l = ax - (t_h - (k ? 1.5 : 1));
|
---|
995 | double s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
---|
996 | // Compute log(ax).
|
---|
997 | double s2 = s * s;
|
---|
998 | double r = s_l * (s_h + s) + s2 * s2
|
---|
999 | * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
|
---|
1000 | s2 = s_h * s_h;
|
---|
1001 | t_h = (float) (3.0 + s2 + r);
|
---|
1002 | t_l = r - (t_h - 3.0 - s2);
|
---|
1003 | // u+v = s*(1+...).
|
---|
1004 | u = s_h * t_h;
|
---|
1005 | v = s_l * t_h + t_l * s;
|
---|
1006 | // 2/(3log2)*(s+...).
|
---|
1007 | double p_h = (float) (u + v);
|
---|
1008 | double p_l = v - (p_h - u);
|
---|
1009 | double z_h = CP_H * p_h;
|
---|
1010 | double z_l = CP_L * p_h + p_l * CP + (k ? DP_L : 0);
|
---|
1011 | // log2(ax) = (s+..)*2/(3*log2) = exp + dp_h + z_h + z_l.
|
---|
1012 | t = exp;
|
---|
1013 | t1 = (float) (z_h + z_l + (k ? DP_H : 0) + t);
|
---|
1014 | t2 = z_l - (t1 - t - (k ? DP_H : 0) - z_h);
|
---|
1015 | }
|
---|
1016 |
|
---|
1017 | // Split up y into y1+y2 and compute (y1+y2)*(t1+t2).
|
---|
1018 | boolean negative = x < 0 && yisint == 1;
|
---|
1019 | double y1 = (float) y;
|
---|
1020 | double p_l = (y - y1) * t1 + y * t2;
|
---|
1021 | double p_h = y1 * t1;
|
---|
1022 | double z = p_l + p_h;
|
---|
1023 | if (z >= 1024) // Detect overflow.
|
---|
1024 | {
|
---|
1025 | if (z > 1024 || p_l + OVT > z - p_h)
|
---|
1026 | return negative ? Double.NEGATIVE_INFINITY
|
---|
1027 | : Double.POSITIVE_INFINITY;
|
---|
1028 | }
|
---|
1029 | else if (z <= -1075) // Detect underflow.
|
---|
1030 | {
|
---|
1031 | if (z < -1075 || p_l <= z - p_h)
|
---|
1032 | return negative ? -0.0 : 0;
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | // Compute 2**(p_h+p_l).
|
---|
1036 | int n = round((float) z);
|
---|
1037 | p_h -= n;
|
---|
1038 | t = (float) (p_l + p_h);
|
---|
1039 | u = t * LN2_H;
|
---|
1040 | v = (p_l - (t - p_h)) * LN2 + t * LN2_L;
|
---|
1041 | z = u + v;
|
---|
1042 | w = v - (z - u);
|
---|
1043 | t = z * z;
|
---|
1044 | t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
|
---|
1045 | double r = (z * t1) / (t1 - 2) - (w + z * w);
|
---|
1046 | z = scale(1 - (r - z), n);
|
---|
1047 | return negative ? -z : z;
|
---|
1048 | }
|
---|
1049 |
|
---|
1050 | /**
|
---|
1051 | * Get the IEEE 754 floating point remainder on two numbers. This is the
|
---|
1052 | * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
|
---|
1053 | * double to <code>x / y</code> (ties go to the even n); for a zero
|
---|
1054 | * remainder, the sign is that of <code>x</code>. If either argument is NaN,
|
---|
1055 | * the first argument is infinite, or the second argument is zero, the result
|
---|
1056 | * is NaN; if x is finite but y is infinte, the result is x.
|
---|
1057 | *
|
---|
1058 | * @param x the dividend (the top half)
|
---|
1059 | * @param y the divisor (the bottom half)
|
---|
1060 | * @return the IEEE 754-defined floating point remainder of x/y
|
---|
1061 | * @see #rint(double)
|
---|
1062 | */
|
---|
1063 | public static double IEEEremainder(double x, double y)
|
---|
1064 | {
|
---|
1065 | // Purge off exception values.
|
---|
1066 | if (x == Double.NEGATIVE_INFINITY || ! (x < Double.POSITIVE_INFINITY)
|
---|
1067 | || y == 0 || y != y)
|
---|
1068 | return Double.NaN;
|
---|
1069 |
|
---|
1070 | boolean negative = x < 0;
|
---|
1071 | x = abs(x);
|
---|
1072 | y = abs(y);
|
---|
1073 | if (x == y || x == 0)
|
---|
1074 | return 0 * x; // Get correct sign.
|
---|
1075 |
|
---|
1076 | // Achieve x < 2y, then take first shot at remainder.
|
---|
1077 | if (y < TWO_1023)
|
---|
1078 | x %= y + y;
|
---|
1079 |
|
---|
1080 | // Now adjust x to get correct precision.
|
---|
1081 | if (y < 4 / TWO_1023)
|
---|
1082 | {
|
---|
1083 | if (x + x > y)
|
---|
1084 | {
|
---|
1085 | x -= y;
|
---|
1086 | if (x + x >= y)
|
---|
1087 | x -= y;
|
---|
1088 | }
|
---|
1089 | }
|
---|
1090 | else
|
---|
1091 | {
|
---|
1092 | y *= 0.5;
|
---|
1093 | if (x > y)
|
---|
1094 | {
|
---|
1095 | x -= y;
|
---|
1096 | if (x >= y)
|
---|
1097 | x -= y;
|
---|
1098 | }
|
---|
1099 | }
|
---|
1100 | return negative ? -x : x;
|
---|
1101 | }
|
---|
1102 |
|
---|
1103 | /**
|
---|
1104 | * Take the nearest integer that is that is greater than or equal to the
|
---|
1105 | * argument. If the argument is NaN, infinite, or zero, the result is the
|
---|
1106 | * same; if the argument is between -1 and 0, the result is negative zero.
|
---|
1107 | * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
---|
1108 | *
|
---|
1109 | * @param a the value to act upon
|
---|
1110 | * @return the nearest integer >= <code>a</code>
|
---|
1111 | */
|
---|
1112 | public static double ceil(double a)
|
---|
1113 | {
|
---|
1114 | return -floor(-a);
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | /**
|
---|
1118 | * Take the nearest integer that is that is less than or equal to the
|
---|
1119 | * argument. If the argument is NaN, infinite, or zero, the result is the
|
---|
1120 | * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
---|
1121 | *
|
---|
1122 | * @param a the value to act upon
|
---|
1123 | * @return the nearest integer <= <code>a</code>
|
---|
1124 | */
|
---|
1125 | public static double floor(double a)
|
---|
1126 | {
|
---|
1127 | double x = abs(a);
|
---|
1128 | if (! (x < TWO_52) || (long) a == a)
|
---|
1129 | return a; // No fraction bits; includes NaN and infinity.
|
---|
1130 | if (x < 1)
|
---|
1131 | return a >= 0 ? 0 * a : -1; // Worry about signed zero.
|
---|
1132 | return a < 0 ? (long) a - 1.0 : (long) a; // Cast to long truncates.
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | /**
|
---|
1136 | * Take the nearest integer to the argument. If it is exactly between
|
---|
1137 | * two integers, the even integer is taken. If the argument is NaN,
|
---|
1138 | * infinite, or zero, the result is the same.
|
---|
1139 | *
|
---|
1140 | * @param a the value to act upon
|
---|
1141 | * @return the nearest integer to <code>a</code>
|
---|
1142 | */
|
---|
1143 | public static double rint(double a)
|
---|
1144 | {
|
---|
1145 | double x = abs(a);
|
---|
1146 | if (! (x < TWO_52))
|
---|
1147 | return a; // No fraction bits; includes NaN and infinity.
|
---|
1148 | if (x <= 0.5)
|
---|
1149 | return 0 * a; // Worry about signed zero.
|
---|
1150 | if (x % 2 <= 0.5)
|
---|
1151 | return (long) a; // Catch round down to even.
|
---|
1152 | return (long) (a + (a < 0 ? -0.5 : 0.5)); // Cast to long truncates.
|
---|
1153 | }
|
---|
1154 |
|
---|
1155 | /**
|
---|
1156 | * Take the nearest integer to the argument. This is equivalent to
|
---|
1157 | * <code>(int) Math.floor(f + 0.5f)</code>. If the argument is NaN, the
|
---|
1158 | * result is 0; otherwise if the argument is outside the range of int, the
|
---|
1159 | * result will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
|
---|
1160 | *
|
---|
1161 | * @param f the argument to round
|
---|
1162 | * @return the nearest integer to the argument
|
---|
1163 | * @see Integer#MIN_VALUE
|
---|
1164 | * @see Integer#MAX_VALUE
|
---|
1165 | */
|
---|
1166 | public static int round(float f)
|
---|
1167 | {
|
---|
1168 | return (int) floor(f + 0.5f);
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | /**
|
---|
1172 | * Take the nearest long to the argument. This is equivalent to
|
---|
1173 | * <code>(long) Math.floor(d + 0.5)</code>. If the argument is NaN, the
|
---|
1174 | * result is 0; otherwise if the argument is outside the range of long, the
|
---|
1175 | * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
|
---|
1176 | *
|
---|
1177 | * @param d the argument to round
|
---|
1178 | * @return the nearest long to the argument
|
---|
1179 | * @see Long#MIN_VALUE
|
---|
1180 | * @see Long#MAX_VALUE
|
---|
1181 | */
|
---|
1182 | public static long round(double d)
|
---|
1183 | {
|
---|
1184 | return (long) floor(d + 0.5);
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | /**
|
---|
1188 | * Get a random number. This behaves like Random.nextDouble(), seeded by
|
---|
1189 | * System.currentTimeMillis() when first called. In other words, the number
|
---|
1190 | * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
|
---|
1191 | * This random sequence is only used by this method, and is threadsafe,
|
---|
1192 | * although you may want your own random number generator if it is shared
|
---|
1193 | * among threads.
|
---|
1194 | *
|
---|
1195 | * @return a random number
|
---|
1196 | * @see Random#nextDouble()
|
---|
1197 | * @see System#currentTimeMillis()
|
---|
1198 | */
|
---|
1199 | public static synchronized double random()
|
---|
1200 | {
|
---|
1201 | if (rand == null)
|
---|
1202 | rand = new Random();
|
---|
1203 | return rand.nextDouble();
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 | /**
|
---|
1207 | * Convert from degrees to radians. The formula for this is
|
---|
1208 | * radians = degrees * (pi/180); however it is not always exact given the
|
---|
1209 | * limitations of floating point numbers.
|
---|
1210 | *
|
---|
1211 | * @param degrees an angle in degrees
|
---|
1212 | * @return the angle in radians
|
---|
1213 | */
|
---|
1214 | public static double toRadians(double degrees)
|
---|
1215 | {
|
---|
1216 | return degrees * (PI / 180);
|
---|
1217 | }
|
---|
1218 |
|
---|
1219 | /**
|
---|
1220 | * Convert from radians to degrees. The formula for this is
|
---|
1221 | * degrees = radians * (180/pi); however it is not always exact given the
|
---|
1222 | * limitations of floating point numbers.
|
---|
1223 | *
|
---|
1224 | * @param rads an angle in radians
|
---|
1225 | * @return the angle in degrees
|
---|
1226 | */
|
---|
1227 | public static double toDegrees(double rads)
|
---|
1228 | {
|
---|
1229 | return rads * (180 / PI);
|
---|
1230 | }
|
---|
1231 |
|
---|
1232 | /**
|
---|
1233 | * Constants for scaling and comparing doubles by powers of 2. The compiler
|
---|
1234 | * must automatically inline constructs like (1/TWO_54), so we don't list
|
---|
1235 | * negative powers of two here.
|
---|
1236 | */
|
---|
1237 | private static final double
|
---|
1238 | TWO_16 = 0x10000, // Long bits 0x40f0000000000000L.
|
---|
1239 | TWO_20 = 0x100000, // Long bits 0x4130000000000000L.
|
---|
1240 | TWO_24 = 0x1000000, // Long bits 0x4170000000000000L.
|
---|
1241 | TWO_27 = 0x8000000, // Long bits 0x41a0000000000000L.
|
---|
1242 | TWO_28 = 0x10000000, // Long bits 0x41b0000000000000L.
|
---|
1243 | TWO_29 = 0x20000000, // Long bits 0x41c0000000000000L.
|
---|
1244 | TWO_31 = 0x80000000L, // Long bits 0x41e0000000000000L.
|
---|
1245 | TWO_49 = 0x2000000000000L, // Long bits 0x4300000000000000L.
|
---|
1246 | TWO_52 = 0x10000000000000L, // Long bits 0x4330000000000000L.
|
---|
1247 | TWO_54 = 0x40000000000000L, // Long bits 0x4350000000000000L.
|
---|
1248 | TWO_57 = 0x200000000000000L, // Long bits 0x4380000000000000L.
|
---|
1249 | TWO_60 = 0x1000000000000000L, // Long bits 0x43b0000000000000L.
|
---|
1250 | TWO_64 = 1.8446744073709552e19, // Long bits 0x43f0000000000000L.
|
---|
1251 | TWO_66 = 7.378697629483821e19, // Long bits 0x4410000000000000L.
|
---|
1252 | TWO_1023 = 8.98846567431158e307; // Long bits 0x7fe0000000000000L.
|
---|
1253 |
|
---|
1254 | /**
|
---|
1255 | * Super precision for 2/pi in 24-bit chunks, for use in
|
---|
1256 | * {@link #remPiOver2()}.
|
---|
1257 | */
|
---|
1258 | private static final int TWO_OVER_PI[] = {
|
---|
1259 | 0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
|
---|
1260 | 0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
|
---|
1261 | 0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
|
---|
1262 | 0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
|
---|
1263 | 0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
|
---|
1264 | 0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
|
---|
1265 | 0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
|
---|
1266 | 0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
|
---|
1267 | 0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
|
---|
1268 | 0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
|
---|
1269 | 0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
|
---|
1270 | };
|
---|
1271 |
|
---|
1272 | /**
|
---|
1273 | * Super precision for pi/2 in 24-bit chunks, for use in
|
---|
1274 | * {@link #remPiOver2()}.
|
---|
1275 | */
|
---|
1276 | private static final double PI_OVER_TWO[] = {
|
---|
1277 | 1.570796251296997, // Long bits 0x3ff921fb40000000L.
|
---|
1278 | 7.549789415861596e-8, // Long bits 0x3e74442d00000000L.
|
---|
1279 | 5.390302529957765e-15, // Long bits 0x3cf8469880000000L.
|
---|
1280 | 3.282003415807913e-22, // Long bits 0x3b78cc5160000000L.
|
---|
1281 | 1.270655753080676e-29, // Long bits 0x39f01b8380000000L.
|
---|
1282 | 1.2293330898111133e-36, // Long bits 0x387a252040000000L.
|
---|
1283 | 2.7337005381646456e-44, // Long bits 0x36e3822280000000L.
|
---|
1284 | 2.1674168387780482e-51, // Long bits 0x3569f31d00000000L.
|
---|
1285 | };
|
---|
1286 |
|
---|
1287 | /**
|
---|
1288 | * More constants related to pi, used in {@link #remPiOver2()} and
|
---|
1289 | * elsewhere.
|
---|
1290 | */
|
---|
1291 | private static final double
|
---|
1292 | PI_L = 1.2246467991473532e-16, // Long bits 0x3ca1a62633145c07L.
|
---|
1293 | PIO2_1 = 1.5707963267341256, // Long bits 0x3ff921fb54400000L.
|
---|
1294 | PIO2_1L = 6.077100506506192e-11, // Long bits 0x3dd0b4611a626331L.
|
---|
1295 | PIO2_2 = 6.077100506303966e-11, // Long bits 0x3dd0b4611a600000L.
|
---|
1296 | PIO2_2L = 2.0222662487959506e-21, // Long bits 0x3ba3198a2e037073L.
|
---|
1297 | PIO2_3 = 2.0222662487111665e-21, // Long bits 0x3ba3198a2e000000L.
|
---|
1298 | PIO2_3L = 8.4784276603689e-32; // Long bits 0x397b839a252049c1L.
|
---|
1299 |
|
---|
1300 | /**
|
---|
1301 | * Natural log and square root constants, for calculation of
|
---|
1302 | * {@link #exp(double)}, {@link #log(double)} and
|
---|
1303 | * {@link #power(double, double)}. CP is 2/(3*ln(2)).
|
---|
1304 | */
|
---|
1305 | private static final double
|
---|
1306 | SQRT_1_5 = 1.224744871391589, // Long bits 0x3ff3988e1409212eL.
|
---|
1307 | SQRT_2 = 1.4142135623730951, // Long bits 0x3ff6a09e667f3bcdL.
|
---|
1308 | SQRT_3 = 1.7320508075688772, // Long bits 0x3ffbb67ae8584caaL.
|
---|
1309 | EXP_LIMIT_H = 709.782712893384, // Long bits 0x40862e42fefa39efL.
|
---|
1310 | EXP_LIMIT_L = -745.1332191019411, // Long bits 0xc0874910d52d3051L.
|
---|
1311 | CP = 0.9617966939259756, // Long bits 0x3feec709dc3a03fdL.
|
---|
1312 | CP_H = 0.9617967009544373, // Long bits 0x3feec709e0000000L.
|
---|
1313 | CP_L = -7.028461650952758e-9, // Long bits 0xbe3e2fe0145b01f5L.
|
---|
1314 | LN2 = 0.6931471805599453, // Long bits 0x3fe62e42fefa39efL.
|
---|
1315 | LN2_H = 0.6931471803691238, // Long bits 0x3fe62e42fee00000L.
|
---|
1316 | LN2_L = 1.9082149292705877e-10, // Long bits 0x3dea39ef35793c76L.
|
---|
1317 | INV_LN2 = 1.4426950408889634, // Long bits 0x3ff71547652b82feL.
|
---|
1318 | INV_LN2_H = 1.4426950216293335, // Long bits 0x3ff7154760000000L.
|
---|
1319 | INV_LN2_L = 1.9259629911266175e-8; // Long bits 0x3e54ae0bf85ddf44L.
|
---|
1320 |
|
---|
1321 | /**
|
---|
1322 | * Constants for computing {@link #log(double)}.
|
---|
1323 | */
|
---|
1324 | private static final double
|
---|
1325 | LG1 = 0.6666666666666735, // Long bits 0x3fe5555555555593L.
|
---|
1326 | LG2 = 0.3999999999940942, // Long bits 0x3fd999999997fa04L.
|
---|
1327 | LG3 = 0.2857142874366239, // Long bits 0x3fd2492494229359L.
|
---|
1328 | LG4 = 0.22222198432149784, // Long bits 0x3fcc71c51d8e78afL.
|
---|
1329 | LG5 = 0.1818357216161805, // Long bits 0x3fc7466496cb03deL.
|
---|
1330 | LG6 = 0.15313837699209373, // Long bits 0x3fc39a09d078c69fL.
|
---|
1331 | LG7 = 0.14798198605116586; // Long bits 0x3fc2f112df3e5244L.
|
---|
1332 |
|
---|
1333 | /**
|
---|
1334 | * Constants for computing {@link #pow(double, double)}. L and P are
|
---|
1335 | * coefficients for series; OVT is -(1024-log2(ovfl+.5ulp)); and DP is ???.
|
---|
1336 | * The P coefficients also calculate {@link #exp(double)}.
|
---|
1337 | */
|
---|
1338 | private static final double
|
---|
1339 | L1 = 0.5999999999999946, // Long bits 0x3fe3333333333303L.
|
---|
1340 | L2 = 0.4285714285785502, // Long bits 0x3fdb6db6db6fabffL.
|
---|
1341 | L3 = 0.33333332981837743, // Long bits 0x3fd55555518f264dL.
|
---|
1342 | L4 = 0.272728123808534, // Long bits 0x3fd17460a91d4101L.
|
---|
1343 | L5 = 0.23066074577556175, // Long bits 0x3fcd864a93c9db65L.
|
---|
1344 | L6 = 0.20697501780033842, // Long bits 0x3fca7e284a454eefL.
|
---|
1345 | P1 = 0.16666666666666602, // Long bits 0x3fc555555555553eL.
|
---|
1346 | P2 = -2.7777777777015593e-3, // Long bits 0xbf66c16c16bebd93L.
|
---|
1347 | P3 = 6.613756321437934e-5, // Long bits 0x3f11566aaf25de2cL.
|
---|
1348 | P4 = -1.6533902205465252e-6, // Long bits 0xbebbbd41c5d26bf1L.
|
---|
1349 | P5 = 4.1381367970572385e-8, // Long bits 0x3e66376972bea4d0L.
|
---|
1350 | DP_H = 0.5849624872207642, // Long bits 0x3fe2b80340000000L.
|
---|
1351 | DP_L = 1.350039202129749e-8, // Long bits 0x3e4cfdeb43cfd006L.
|
---|
1352 | OVT = 8.008566259537294e-17; // Long bits 0x3c971547652b82feL.
|
---|
1353 |
|
---|
1354 | /**
|
---|
1355 | * Coefficients for computing {@link #sin(double)}.
|
---|
1356 | */
|
---|
1357 | private static final double
|
---|
1358 | S1 = -0.16666666666666632, // Long bits 0xbfc5555555555549L.
|
---|
1359 | S2 = 8.33333333332249e-3, // Long bits 0x3f8111111110f8a6L.
|
---|
1360 | S3 = -1.984126982985795e-4, // Long bits 0xbf2a01a019c161d5L.
|
---|
1361 | S4 = 2.7557313707070068e-6, // Long bits 0x3ec71de357b1fe7dL.
|
---|
1362 | S5 = -2.5050760253406863e-8, // Long bits 0xbe5ae5e68a2b9cebL.
|
---|
1363 | S6 = 1.58969099521155e-10; // Long bits 0x3de5d93a5acfd57cL.
|
---|
1364 |
|
---|
1365 | /**
|
---|
1366 | * Coefficients for computing {@link #cos(double)}.
|
---|
1367 | */
|
---|
1368 | private static final double
|
---|
1369 | C1 = 0.0416666666666666, // Long bits 0x3fa555555555554cL.
|
---|
1370 | C2 = -1.388888888887411e-3, // Long bits 0xbf56c16c16c15177L.
|
---|
1371 | C3 = 2.480158728947673e-5, // Long bits 0x3efa01a019cb1590L.
|
---|
1372 | C4 = -2.7557314351390663e-7, // Long bits 0xbe927e4f809c52adL.
|
---|
1373 | C5 = 2.087572321298175e-9, // Long bits 0x3e21ee9ebdb4b1c4L.
|
---|
1374 | C6 = -1.1359647557788195e-11; // Long bits 0xbda8fae9be8838d4L.
|
---|
1375 |
|
---|
1376 | /**
|
---|
1377 | * Coefficients for computing {@link #tan(double)}.
|
---|
1378 | */
|
---|
1379 | private static final double
|
---|
1380 | T0 = 0.3333333333333341, // Long bits 0x3fd5555555555563L.
|
---|
1381 | T1 = 0.13333333333320124, // Long bits 0x3fc111111110fe7aL.
|
---|
1382 | T2 = 0.05396825397622605, // Long bits 0x3faba1ba1bb341feL.
|
---|
1383 | T3 = 0.021869488294859542, // Long bits 0x3f9664f48406d637L.
|
---|
1384 | T4 = 8.8632398235993e-3, // Long bits 0x3f8226e3e96e8493L.
|
---|
1385 | T5 = 3.5920791075913124e-3, // Long bits 0x3f6d6d22c9560328L.
|
---|
1386 | T6 = 1.4562094543252903e-3, // Long bits 0x3f57dbc8fee08315L.
|
---|
1387 | T7 = 5.880412408202641e-4, // Long bits 0x3f4344d8f2f26501L.
|
---|
1388 | T8 = 2.464631348184699e-4, // Long bits 0x3f3026f71a8d1068L.
|
---|
1389 | T9 = 7.817944429395571e-5, // Long bits 0x3f147e88a03792a6L.
|
---|
1390 | T10 = 7.140724913826082e-5, // Long bits 0x3f12b80f32f0a7e9L.
|
---|
1391 | T11 = -1.8558637485527546e-5, // Long bits 0xbef375cbdb605373L.
|
---|
1392 | T12 = 2.590730518636337e-5; // Long bits 0x3efb2a7074bf7ad4L.
|
---|
1393 |
|
---|
1394 | /**
|
---|
1395 | * Coefficients for computing {@link #asin(double)} and
|
---|
1396 | * {@link #acos(double)}.
|
---|
1397 | */
|
---|
1398 | private static final double
|
---|
1399 | PS0 = 0.16666666666666666, // Long bits 0x3fc5555555555555L.
|
---|
1400 | PS1 = -0.3255658186224009, // Long bits 0xbfd4d61203eb6f7dL.
|
---|
1401 | PS2 = 0.20121253213486293, // Long bits 0x3fc9c1550e884455L.
|
---|
1402 | PS3 = -0.04005553450067941, // Long bits 0xbfa48228b5688f3bL.
|
---|
1403 | PS4 = 7.915349942898145e-4, // Long bits 0x3f49efe07501b288L.
|
---|
1404 | PS5 = 3.479331075960212e-5, // Long bits 0x3f023de10dfdf709L.
|
---|
1405 | QS1 = -2.403394911734414, // Long bits 0xc0033a271c8a2d4bL.
|
---|
1406 | QS2 = 2.0209457602335057, // Long bits 0x40002ae59c598ac8L.
|
---|
1407 | QS3 = -0.6882839716054533, // Long bits 0xbfe6066c1b8d0159L.
|
---|
1408 | QS4 = 0.07703815055590194; // Long bits 0x3fb3b8c5b12e9282L.
|
---|
1409 |
|
---|
1410 | /**
|
---|
1411 | * Coefficients for computing {@link #atan(double)}.
|
---|
1412 | */
|
---|
1413 | private static final double
|
---|
1414 | ATAN_0_5H = 0.4636476090008061, // Long bits 0x3fddac670561bb4fL.
|
---|
1415 | ATAN_0_5L = 2.2698777452961687e-17, // Long bits 0x3c7a2b7f222f65e2L.
|
---|
1416 | ATAN_1_5H = 0.982793723247329, // Long bits 0x3fef730bd281f69bL.
|
---|
1417 | ATAN_1_5L = 1.3903311031230998e-17, // Long bits 0x3c7007887af0cbbdL.
|
---|
1418 | AT0 = 0.3333333333333293, // Long bits 0x3fd555555555550dL.
|
---|
1419 | AT1 = -0.19999999999876483, // Long bits 0xbfc999999998ebc4L.
|
---|
1420 | AT2 = 0.14285714272503466, // Long bits 0x3fc24924920083ffL.
|
---|
1421 | AT3 = -0.11111110405462356, // Long bits 0xbfbc71c6fe231671L.
|
---|
1422 | AT4 = 0.09090887133436507, // Long bits 0x3fb745cdc54c206eL.
|
---|
1423 | AT5 = -0.0769187620504483, // Long bits 0xbfb3b0f2af749a6dL.
|
---|
1424 | AT6 = 0.06661073137387531, // Long bits 0x3fb10d66a0d03d51L.
|
---|
1425 | AT7 = -0.058335701337905735, // Long bits 0xbfadde2d52defd9aL.
|
---|
1426 | AT8 = 0.049768779946159324, // Long bits 0x3fa97b4b24760debL.
|
---|
1427 | AT9 = -0.036531572744216916, // Long bits 0xbfa2b4442c6a6c2fL.
|
---|
1428 | AT10 = 0.016285820115365782; // Long bits 0x3f90ad3ae322da11L.
|
---|
1429 |
|
---|
1430 | /**
|
---|
1431 | * Helper function for reducing an angle to a multiple of pi/2 within
|
---|
1432 | * [-pi/4, pi/4].
|
---|
1433 | *
|
---|
1434 | * @param x the angle; not infinity or NaN, and outside pi/4
|
---|
1435 | * @param y an array of 2 doubles modified to hold the remander x % pi/2
|
---|
1436 | * @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
|
---|
1437 | * 1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
|
---|
1438 | */
|
---|
1439 | private static int remPiOver2(double x, double[] y)
|
---|
1440 | {
|
---|
1441 | boolean negative = x < 0;
|
---|
1442 | x = abs(x);
|
---|
1443 | double z;
|
---|
1444 | int n;
|
---|
1445 | if (Configuration.DEBUG && (x <= PI / 4 || x != x
|
---|
1446 | || x == Double.POSITIVE_INFINITY))
|
---|
1447 | throw new InternalError("Assertion failure");
|
---|
1448 | if (x < 3 * PI / 4) // If |x| is small.
|
---|
1449 | {
|
---|
1450 | z = x - PIO2_1;
|
---|
1451 | if ((float) x != (float) (PI / 2)) // 33+53 bit pi is good enough.
|
---|
1452 | {
|
---|
1453 | y[0] = z - PIO2_1L;
|
---|
1454 | y[1] = z - y[0] - PIO2_1L;
|
---|
1455 | }
|
---|
1456 | else // Near pi/2, use 33+33+53 bit pi.
|
---|
1457 | {
|
---|
1458 | z -= PIO2_2;
|
---|
1459 | y[0] = z - PIO2_2L;
|
---|
1460 | y[1] = z - y[0] - PIO2_2L;
|
---|
1461 | }
|
---|
1462 | n = 1;
|
---|
1463 | }
|
---|
1464 | else if (x <= TWO_20 * PI / 2) // Medium size.
|
---|
1465 | {
|
---|
1466 | n = (int) (2 / PI * x + 0.5);
|
---|
1467 | z = x - n * PIO2_1;
|
---|
1468 | double w = n * PIO2_1L; // First round good to 85 bits.
|
---|
1469 | y[0] = z - w;
|
---|
1470 | if (n >= 32 || (float) x == (float) (w))
|
---|
1471 | {
|
---|
1472 | if (x / y[0] >= TWO_16) // Second iteration, good to 118 bits.
|
---|
1473 | {
|
---|
1474 | double t = z;
|
---|
1475 | w = n * PIO2_2;
|
---|
1476 | z = t - w;
|
---|
1477 | w = n * PIO2_2L - (t - z - w);
|
---|
1478 | y[0] = z - w;
|
---|
1479 | if (x / y[0] >= TWO_49) // Third iteration, 151 bits accuracy.
|
---|
1480 | {
|
---|
1481 | t = z;
|
---|
1482 | w = n * PIO2_3;
|
---|
1483 | z = t - w;
|
---|
1484 | w = n * PIO2_3L - (t - z - w);
|
---|
1485 | y[0] = z - w;
|
---|
1486 | }
|
---|
1487 | }
|
---|
1488 | }
|
---|
1489 | y[1] = z - y[0] - w;
|
---|
1490 | }
|
---|
1491 | else
|
---|
1492 | {
|
---|
1493 | // All other (large) arguments.
|
---|
1494 | int e0 = (int) (Double.doubleToLongBits(x) >> 52) - 1046;
|
---|
1495 | z = scale(x, -e0); // e0 = ilogb(z) - 23.
|
---|
1496 | double[] tx = new double[3];
|
---|
1497 | for (int i = 0; i < 2; i++)
|
---|
1498 | {
|
---|
1499 | tx[i] = (int) z;
|
---|
1500 | z = (z - tx[i]) * TWO_24;
|
---|
1501 | }
|
---|
1502 | tx[2] = z;
|
---|
1503 | int nx = 2;
|
---|
1504 | while (tx[nx] == 0)
|
---|
1505 | nx--;
|
---|
1506 | n = remPiOver2(tx, y, e0, nx);
|
---|
1507 | }
|
---|
1508 | if (negative)
|
---|
1509 | {
|
---|
1510 | y[0] = -y[0];
|
---|
1511 | y[1] = -y[1];
|
---|
1512 | return -n;
|
---|
1513 | }
|
---|
1514 | return n;
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | /**
|
---|
1518 | * Helper function for reducing an angle to a multiple of pi/2 within
|
---|
1519 | * [-pi/4, pi/4].
|
---|
1520 | *
|
---|
1521 | * @param x the positive angle, broken into 24-bit chunks
|
---|
1522 | * @param y an array of 2 doubles modified to hold the remander x % pi/2
|
---|
1523 | * @param e0 the exponent of x[0]
|
---|
1524 | * @param nx the last index used in x
|
---|
1525 | * @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
|
---|
1526 | * 1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
|
---|
1527 | */
|
---|
1528 | private static int remPiOver2(double[] x, double[] y, int e0, int nx)
|
---|
1529 | {
|
---|
1530 | int i;
|
---|
1531 | int ih;
|
---|
1532 | int n;
|
---|
1533 | double fw;
|
---|
1534 | double z;
|
---|
1535 | int[] iq = new int[20];
|
---|
1536 | double[] f = new double[20];
|
---|
1537 | double[] q = new double[20];
|
---|
1538 | boolean recompute = false;
|
---|
1539 |
|
---|
1540 | // Initialize jk, jz, jv, q0; note that 3>q0.
|
---|
1541 | int jk = 4;
|
---|
1542 | int jz = jk;
|
---|
1543 | int jv = max((e0 - 3) / 24, 0);
|
---|
1544 | int q0 = e0 - 24 * (jv + 1);
|
---|
1545 |
|
---|
1546 | // Set up f[0] to f[nx+jk] where f[nx+jk] = TWO_OVER_PI[jv+jk].
|
---|
1547 | int j = jv - nx;
|
---|
1548 | int m = nx + jk;
|
---|
1549 | for (i = 0; i <= m; i++, j++)
|
---|
1550 | f[i] = (j < 0) ? 0 : TWO_OVER_PI[j];
|
---|
1551 |
|
---|
1552 | // Compute q[0],q[1],...q[jk].
|
---|
1553 | for (i = 0; i <= jk; i++)
|
---|
1554 | {
|
---|
1555 | for (j = 0, fw = 0; j <= nx; j++)
|
---|
1556 | fw += x[j] * f[nx + i - j];
|
---|
1557 | q[i] = fw;
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | do
|
---|
1561 | {
|
---|
1562 | // Distill q[] into iq[] reversingly.
|
---|
1563 | for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
|
---|
1564 | {
|
---|
1565 | fw = (int) (1 / TWO_24 * z);
|
---|
1566 | iq[i] = (int) (z - TWO_24 * fw);
|
---|
1567 | z = q[j - 1] + fw;
|
---|
1568 | }
|
---|
1569 |
|
---|
1570 | // Compute n.
|
---|
1571 | z = scale(z, q0);
|
---|
1572 | z -= 8 * floor(z * 0.125); // Trim off integer >= 8.
|
---|
1573 | n = (int) z;
|
---|
1574 | z -= n;
|
---|
1575 | ih = 0;
|
---|
1576 | if (q0 > 0) // Need iq[jz-1] to determine n.
|
---|
1577 | {
|
---|
1578 | i = iq[jz - 1] >> (24 - q0);
|
---|
1579 | n += i;
|
---|
1580 | iq[jz - 1] -= i << (24 - q0);
|
---|
1581 | ih = iq[jz - 1] >> (23 - q0);
|
---|
1582 | }
|
---|
1583 | else if (q0 == 0)
|
---|
1584 | ih = iq[jz - 1] >> 23;
|
---|
1585 | else if (z >= 0.5)
|
---|
1586 | ih = 2;
|
---|
1587 |
|
---|
1588 | if (ih > 0) // If q > 0.5.
|
---|
1589 | {
|
---|
1590 | n += 1;
|
---|
1591 | int carry = 0;
|
---|
1592 | for (i = 0; i < jz; i++) // Compute 1-q.
|
---|
1593 | {
|
---|
1594 | j = iq[i];
|
---|
1595 | if (carry == 0)
|
---|
1596 | {
|
---|
1597 | if (j != 0)
|
---|
1598 | {
|
---|
1599 | carry = 1;
|
---|
1600 | iq[i] = 0x1000000 - j;
|
---|
1601 | }
|
---|
1602 | }
|
---|
1603 | else
|
---|
1604 | iq[i] = 0xffffff - j;
|
---|
1605 | }
|
---|
1606 | switch (q0)
|
---|
1607 | {
|
---|
1608 | case 1: // Rare case: chance is 1 in 12 for non-default.
|
---|
1609 | iq[jz - 1] &= 0x7fffff;
|
---|
1610 | break;
|
---|
1611 | case 2:
|
---|
1612 | iq[jz - 1] &= 0x3fffff;
|
---|
1613 | }
|
---|
1614 | if (ih == 2)
|
---|
1615 | {
|
---|
1616 | z = 1 - z;
|
---|
1617 | if (carry != 0)
|
---|
1618 | z -= scale(1, q0);
|
---|
1619 | }
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | // Check if recomputation is needed.
|
---|
1623 | if (z == 0)
|
---|
1624 | {
|
---|
1625 | j = 0;
|
---|
1626 | for (i = jz - 1; i >= jk; i--)
|
---|
1627 | j |= iq[i];
|
---|
1628 | if (j == 0) // Need recomputation.
|
---|
1629 | {
|
---|
1630 | int k;
|
---|
1631 | for (k = 1; iq[jk - k] == 0; k++); // k = no. of terms needed.
|
---|
1632 |
|
---|
1633 | for (i = jz + 1; i <= jz + k; i++) // Add q[jz+1] to q[jz+k].
|
---|
1634 | {
|
---|
1635 | f[nx + i] = TWO_OVER_PI[jv + i];
|
---|
1636 | for (j = 0, fw = 0; j <= nx; j++)
|
---|
1637 | fw += x[j] * f[nx + i - j];
|
---|
1638 | q[i] = fw;
|
---|
1639 | }
|
---|
1640 | jz += k;
|
---|
1641 | recompute = true;
|
---|
1642 | }
|
---|
1643 | }
|
---|
1644 | }
|
---|
1645 | while (recompute);
|
---|
1646 |
|
---|
1647 | // Chop off zero terms.
|
---|
1648 | if (z == 0)
|
---|
1649 | {
|
---|
1650 | jz--;
|
---|
1651 | q0 -= 24;
|
---|
1652 | while (iq[jz] == 0)
|
---|
1653 | {
|
---|
1654 | jz--;
|
---|
1655 | q0 -= 24;
|
---|
1656 | }
|
---|
1657 | }
|
---|
1658 | else // Break z into 24-bit if necessary.
|
---|
1659 | {
|
---|
1660 | z = scale(z, -q0);
|
---|
1661 | if (z >= TWO_24)
|
---|
1662 | {
|
---|
1663 | fw = (int) (1 / TWO_24 * z);
|
---|
1664 | iq[jz] = (int) (z - TWO_24 * fw);
|
---|
1665 | jz++;
|
---|
1666 | q0 += 24;
|
---|
1667 | iq[jz] = (int) fw;
|
---|
1668 | }
|
---|
1669 | else
|
---|
1670 | iq[jz] = (int) z;
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 | // Convert integer "bit" chunk to floating-point value.
|
---|
1674 | fw = scale(1, q0);
|
---|
1675 | for (i = jz; i >= 0; i--)
|
---|
1676 | {
|
---|
1677 | q[i] = fw * iq[i];
|
---|
1678 | fw *= 1 / TWO_24;
|
---|
1679 | }
|
---|
1680 |
|
---|
1681 | // Compute PI_OVER_TWO[0,...,jk]*q[jz,...,0].
|
---|
1682 | double[] fq = new double[20];
|
---|
1683 | for (i = jz; i >= 0; i--)
|
---|
1684 | {
|
---|
1685 | fw = 0;
|
---|
1686 | for (int k = 0; k <= jk && k <= jz - i; k++)
|
---|
1687 | fw += PI_OVER_TWO[k] * q[i + k];
|
---|
1688 | fq[jz - i] = fw;
|
---|
1689 | }
|
---|
1690 |
|
---|
1691 | // Compress fq[] into y[].
|
---|
1692 | fw = 0;
|
---|
1693 | for (i = jz; i >= 0; i--)
|
---|
1694 | fw += fq[i];
|
---|
1695 | y[0] = (ih == 0) ? fw : -fw;
|
---|
1696 | fw = fq[0] - fw;
|
---|
1697 | for (i = 1; i <= jz; i++)
|
---|
1698 | fw += fq[i];
|
---|
1699 | y[1] = (ih == 0) ? fw : -fw;
|
---|
1700 | return n;
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 | /**
|
---|
1704 | * Helper method for scaling a double by a power of 2.
|
---|
1705 | *
|
---|
1706 | * @param x the double
|
---|
1707 | * @param n the scale; |n| < 2048
|
---|
1708 | * @return x * 2**n
|
---|
1709 | */
|
---|
1710 | private static double scale(double x, int n)
|
---|
1711 | {
|
---|
1712 | if (Configuration.DEBUG && abs(n) >= 2048)
|
---|
1713 | throw new InternalError("Assertion failure");
|
---|
1714 | if (x == 0 || x == Double.NEGATIVE_INFINITY
|
---|
1715 | || ! (x < Double.POSITIVE_INFINITY) || n == 0)
|
---|
1716 | return x;
|
---|
1717 | long bits = Double.doubleToLongBits(x);
|
---|
1718 | int exp = (int) (bits >> 52) & 0x7ff;
|
---|
1719 | if (exp == 0) // Subnormal x.
|
---|
1720 | {
|
---|
1721 | x *= TWO_54;
|
---|
1722 | exp = ((int) (Double.doubleToLongBits(x) >> 52) & 0x7ff) - 54;
|
---|
1723 | }
|
---|
1724 | exp += n;
|
---|
1725 | if (exp > 0x7fe) // Overflow.
|
---|
1726 | return Double.POSITIVE_INFINITY * x;
|
---|
1727 | if (exp > 0) // Normal.
|
---|
1728 | return Double.longBitsToDouble((bits & 0x800fffffffffffffL)
|
---|
1729 | | ((long) exp << 52));
|
---|
1730 | if (exp <= -54)
|
---|
1731 | return 0 * x; // Underflow.
|
---|
1732 | exp += 54; // Subnormal result.
|
---|
1733 | x = Double.longBitsToDouble((bits & 0x800fffffffffffffL)
|
---|
1734 | | ((long) exp << 52));
|
---|
1735 | return x * (1 / TWO_54);
|
---|
1736 | }
|
---|
1737 |
|
---|
1738 | /**
|
---|
1739 | * Helper trig function; computes sin in range [-pi/4, pi/4].
|
---|
1740 | *
|
---|
1741 | * @param x angle within about pi/4
|
---|
1742 | * @param y tail of x, created by remPiOver2
|
---|
1743 | * @return sin(x+y)
|
---|
1744 | */
|
---|
1745 | private static double sin(double x, double y)
|
---|
1746 | {
|
---|
1747 | if (Configuration.DEBUG && abs(x + y) > 0.7854)
|
---|
1748 | throw new InternalError("Assertion failure");
|
---|
1749 | if (abs(x) < 1 / TWO_27)
|
---|
1750 | return x; // If |x| ~< 2**-27, already know answer.
|
---|
1751 |
|
---|
1752 | double z = x * x;
|
---|
1753 | double v = z * x;
|
---|
1754 | double r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
|
---|
1755 | if (y == 0)
|
---|
1756 | return x + v * (S1 + z * r);
|
---|
1757 | return x - ((z * (0.5 * y - v * r) - y) - v * S1);
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 | /**
|
---|
1761 | * Helper trig function; computes cos in range [-pi/4, pi/4].
|
---|
1762 | *
|
---|
1763 | * @param x angle within about pi/4
|
---|
1764 | * @param y tail of x, created by remPiOver2
|
---|
1765 | * @return cos(x+y)
|
---|
1766 | */
|
---|
1767 | private static double cos(double x, double y)
|
---|
1768 | {
|
---|
1769 | if (Configuration.DEBUG && abs(x + y) > 0.7854)
|
---|
1770 | throw new InternalError("Assertion failure");
|
---|
1771 | x = abs(x);
|
---|
1772 | if (x < 1 / TWO_27)
|
---|
1773 | return 1; // If |x| ~< 2**-27, already know answer.
|
---|
1774 |
|
---|
1775 | double z = x * x;
|
---|
1776 | double r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
|
---|
1777 |
|
---|
1778 | if (x < 0.3)
|
---|
1779 | return 1 - (0.5 * z - (z * r - x * y));
|
---|
1780 |
|
---|
1781 | double qx = (x > 0.78125) ? 0.28125 : (x * 0.25);
|
---|
1782 | return 1 - qx - ((0.5 * z - qx) - (z * r - x * y));
|
---|
1783 | }
|
---|
1784 |
|
---|
1785 | /**
|
---|
1786 | * Helper trig function; computes tan in range [-pi/4, pi/4].
|
---|
1787 | *
|
---|
1788 | * @param x angle within about pi/4
|
---|
1789 | * @param y tail of x, created by remPiOver2
|
---|
1790 | * @param invert true iff -1/tan should be returned instead
|
---|
1791 | * @return tan(x+y)
|
---|
1792 | */
|
---|
1793 | private static double tan(double x, double y, boolean invert)
|
---|
1794 | {
|
---|
1795 | // PI/2 is irrational, so no double is a perfect multiple of it.
|
---|
1796 | if (Configuration.DEBUG && (abs(x + y) > 0.7854 || (x == 0 && invert)))
|
---|
1797 | throw new InternalError("Assertion failure");
|
---|
1798 | boolean negative = x < 0;
|
---|
1799 | if (negative)
|
---|
1800 | {
|
---|
1801 | x = -x;
|
---|
1802 | y = -y;
|
---|
1803 | }
|
---|
1804 | if (x < 1 / TWO_28) // If |x| ~< 2**-28, already know answer.
|
---|
1805 | return (negative ? -1 : 1) * (invert ? -1 / x : x);
|
---|
1806 |
|
---|
1807 | double z;
|
---|
1808 | double w;
|
---|
1809 | boolean large = x >= 0.6744;
|
---|
1810 | if (large)
|
---|
1811 | {
|
---|
1812 | z = PI / 4 - x;
|
---|
1813 | w = PI_L / 4 - y;
|
---|
1814 | x = z + w;
|
---|
1815 | y = 0;
|
---|
1816 | }
|
---|
1817 | z = x * x;
|
---|
1818 | w = z * z;
|
---|
1819 | // Break x**5*(T1+x**2*T2+...) into
|
---|
1820 | // x**5(T1+x**4*T3+...+x**20*T11)
|
---|
1821 | // + x**5(x**2*(T2+x**4*T4+...+x**22*T12)).
|
---|
1822 | double r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 + w * T11))));
|
---|
1823 | double v = z * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 + w * T12)))));
|
---|
1824 | double s = z * x;
|
---|
1825 | r = y + z * (s * (r + v) + y);
|
---|
1826 | r += T0 * s;
|
---|
1827 | w = x + r;
|
---|
1828 | if (large)
|
---|
1829 | {
|
---|
1830 | v = invert ? -1 : 1;
|
---|
1831 | return (negative ? -1 : 1) * (v - 2 * (x - (w * w / (w + v) - r)));
|
---|
1832 | }
|
---|
1833 | if (! invert)
|
---|
1834 | return w;
|
---|
1835 |
|
---|
1836 | // Compute -1.0/(x+r) accurately.
|
---|
1837 | z = (float) w;
|
---|
1838 | v = r - (z - x);
|
---|
1839 | double a = -1 / w;
|
---|
1840 | double t = (float) a;
|
---|
1841 | return t + a * (1 + t * z + t * v);
|
---|
1842 | }
|
---|
1843 | }
|
---|