1 | /* java.lang.Math -- common mathematical functions, native allowed
|
---|
2 | Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of GNU Classpath.
|
---|
5 |
|
---|
6 | GNU Classpath is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2, or (at your option)
|
---|
9 | any later version.
|
---|
10 |
|
---|
11 | GNU Classpath is distributed in the hope that it will be useful, but
|
---|
12 | WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with GNU Classpath; see the file COPYING. If not, write to the
|
---|
18 | Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
19 | 02111-1307 USA.
|
---|
20 |
|
---|
21 | Linking this library statically or dynamically with other modules is
|
---|
22 | making a combined work based on this library. Thus, the terms and
|
---|
23 | conditions of the GNU General Public License cover the whole
|
---|
24 | combination.
|
---|
25 |
|
---|
26 | As a special exception, the copyright holders of this library give you
|
---|
27 | permission to link this library with independent modules to produce an
|
---|
28 | executable, regardless of the license terms of these independent
|
---|
29 | modules, and to copy and distribute the resulting executable under
|
---|
30 | terms of your choice, provided that you also meet, for each linked
|
---|
31 | independent module, the terms and conditions of the license of that
|
---|
32 | module. An independent module is a module which is not derived from
|
---|
33 | or based on this library. If you modify this library, you may extend
|
---|
34 | this exception to your version of the library, but you are not
|
---|
35 | obligated to do so. If you do not wish to do so, delete this
|
---|
36 | exception statement from your version. */
|
---|
37 |
|
---|
38 |
|
---|
39 | package java.lang;
|
---|
40 |
|
---|
41 | import java.util.Random;
|
---|
42 | import gnu.classpath.Configuration;
|
---|
43 |
|
---|
44 | /**
|
---|
45 | * Helper class containing useful mathematical functions and constants.
|
---|
46 | * <P>
|
---|
47 | *
|
---|
48 | * Note that angles are specified in radians. Conversion functions are
|
---|
49 | * provided for your convenience.
|
---|
50 | *
|
---|
51 | * @author Paul Fisher
|
---|
52 | * @author John Keiser
|
---|
53 | * @author Eric Blake <ebb9@email.byu.edu>
|
---|
54 | * @since 1.0
|
---|
55 | */
|
---|
56 | public final class Math
|
---|
57 | {
|
---|
58 | /**
|
---|
59 | * Math is non-instantiable
|
---|
60 | */
|
---|
61 | private Math()
|
---|
62 | {
|
---|
63 | }
|
---|
64 |
|
---|
65 | static
|
---|
66 | {
|
---|
67 | if (Configuration.INIT_LOAD_LIBRARY)
|
---|
68 | {
|
---|
69 | System.loadLibrary("javalang");
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | /**
|
---|
74 | * A random number generator, initialized on first use.
|
---|
75 | */
|
---|
76 | private static Random rand;
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * The most accurate approximation to the mathematical constant <em>e</em>:
|
---|
80 | * <code>2.718281828459045</code>. Used in natural log and exp.
|
---|
81 | *
|
---|
82 | * @see #log(double)
|
---|
83 | * @see #exp(double)
|
---|
84 | */
|
---|
85 | public static final double E = 2.718281828459045;
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * The most accurate approximation to the mathematical constant <em>pi</em>:
|
---|
89 | * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
|
---|
90 | * to its circumference.
|
---|
91 | */
|
---|
92 | public static final double PI = 3.141592653589793;
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * Take the absolute value of the argument.
|
---|
96 | * (Absolute value means make it positive.)
|
---|
97 | * <P>
|
---|
98 | *
|
---|
99 | * Note that the the largest negative value (Integer.MIN_VALUE) cannot
|
---|
100 | * be made positive. In this case, because of the rules of negation in
|
---|
101 | * a computer, MIN_VALUE is what will be returned.
|
---|
102 | * This is a <em>negative</em> value. You have been warned.
|
---|
103 | *
|
---|
104 | * @param i the number to take the absolute value of
|
---|
105 | * @return the absolute value
|
---|
106 | * @see Integer#MIN_VALUE
|
---|
107 | */
|
---|
108 | public static int abs(int i)
|
---|
109 | {
|
---|
110 | return (i < 0) ? -i : i;
|
---|
111 | }
|
---|
112 |
|
---|
113 | /**
|
---|
114 | * Take the absolute value of the argument.
|
---|
115 | * (Absolute value means make it positive.)
|
---|
116 | * <P>
|
---|
117 | *
|
---|
118 | * Note that the the largest negative value (Long.MIN_VALUE) cannot
|
---|
119 | * be made positive. In this case, because of the rules of negation in
|
---|
120 | * a computer, MIN_VALUE is what will be returned.
|
---|
121 | * This is a <em>negative</em> value. You have been warned.
|
---|
122 | *
|
---|
123 | * @param l the number to take the absolute value of
|
---|
124 | * @return the absolute value
|
---|
125 | * @see Long#MIN_VALUE
|
---|
126 | */
|
---|
127 | public static long abs(long l)
|
---|
128 | {
|
---|
129 | return (l < 0) ? -l : l;
|
---|
130 | }
|
---|
131 |
|
---|
132 | /**
|
---|
133 | * Take the absolute value of the argument.
|
---|
134 | * (Absolute value means make it positive.)
|
---|
135 | * <P>
|
---|
136 | *
|
---|
137 | * This is equivalent, but faster than, calling
|
---|
138 | * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
|
---|
139 | *
|
---|
140 | * @param f the number to take the absolute value of
|
---|
141 | * @return the absolute value
|
---|
142 | */
|
---|
143 | public static float abs(float f)
|
---|
144 | {
|
---|
145 | return (f <= 0) ? 0 - f : f;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /**
|
---|
149 | * Take the absolute value of the argument.
|
---|
150 | * (Absolute value means make it positive.)
|
---|
151 | *
|
---|
152 | * This is equivalent, but faster than, calling
|
---|
153 | * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
|
---|
154 | * << 1) >>> 1);</code>.
|
---|
155 | *
|
---|
156 | * @param d the number to take the absolute value of
|
---|
157 | * @return the absolute value
|
---|
158 | */
|
---|
159 | public static double abs(double d)
|
---|
160 | {
|
---|
161 | return (d <= 0) ? 0 - d : d;
|
---|
162 | }
|
---|
163 |
|
---|
164 | /**
|
---|
165 | * Return whichever argument is smaller.
|
---|
166 | *
|
---|
167 | * @param a the first number
|
---|
168 | * @param b a second number
|
---|
169 | * @return the smaller of the two numbers
|
---|
170 | */
|
---|
171 | public static int min(int a, int b)
|
---|
172 | {
|
---|
173 | return (a < b) ? a : b;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /**
|
---|
177 | * Return whichever argument is smaller.
|
---|
178 | *
|
---|
179 | * @param a the first number
|
---|
180 | * @param b a second number
|
---|
181 | * @return the smaller of the two numbers
|
---|
182 | */
|
---|
183 | public static long min(long a, long b)
|
---|
184 | {
|
---|
185 | return (a < b) ? a : b;
|
---|
186 | }
|
---|
187 |
|
---|
188 | /**
|
---|
189 | * Return whichever argument is smaller. If either argument is NaN, the
|
---|
190 | * result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
---|
191 | *
|
---|
192 | * @param a the first number
|
---|
193 | * @param b a second number
|
---|
194 | * @return the smaller of the two numbers
|
---|
195 | */
|
---|
196 | public static float min(float a, float b)
|
---|
197 | {
|
---|
198 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
199 | if (a != a)
|
---|
200 | return a;
|
---|
201 | // no need to check if b is NaN; < will work correctly
|
---|
202 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
203 | if (a == 0 && b == 0)
|
---|
204 | return -(-a - b);
|
---|
205 | return (a < b) ? a : b;
|
---|
206 | }
|
---|
207 |
|
---|
208 | /**
|
---|
209 | * Return whichever argument is smaller. If either argument is NaN, the
|
---|
210 | * result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
---|
211 | *
|
---|
212 | * @param a the first number
|
---|
213 | * @param b a second number
|
---|
214 | * @return the smaller of the two numbers
|
---|
215 | */
|
---|
216 | public static double min(double a, double b)
|
---|
217 | {
|
---|
218 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
219 | if (a != a)
|
---|
220 | return a;
|
---|
221 | // no need to check if b is NaN; < will work correctly
|
---|
222 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
223 | if (a == 0 && b == 0)
|
---|
224 | return -(-a - b);
|
---|
225 | return (a < b) ? a : b;
|
---|
226 | }
|
---|
227 |
|
---|
228 | /**
|
---|
229 | * Return whichever argument is larger.
|
---|
230 | *
|
---|
231 | * @param a the first number
|
---|
232 | * @param b a second number
|
---|
233 | * @return the larger of the two numbers
|
---|
234 | */
|
---|
235 | public static int max(int a, int b)
|
---|
236 | {
|
---|
237 | return (a > b) ? a : b;
|
---|
238 | }
|
---|
239 |
|
---|
240 | /**
|
---|
241 | * Return whichever argument is larger.
|
---|
242 | *
|
---|
243 | * @param a the first number
|
---|
244 | * @param b a second number
|
---|
245 | * @return the larger of the two numbers
|
---|
246 | */
|
---|
247 | public static long max(long a, long b)
|
---|
248 | {
|
---|
249 | return (a > b) ? a : b;
|
---|
250 | }
|
---|
251 |
|
---|
252 | /**
|
---|
253 | * Return whichever argument is larger. If either argument is NaN, the
|
---|
254 | * result is NaN, and when comparing 0 and -0, 0 is always larger.
|
---|
255 | *
|
---|
256 | * @param a the first number
|
---|
257 | * @param b a second number
|
---|
258 | * @return the larger of the two numbers
|
---|
259 | */
|
---|
260 | public static float max(float a, float b)
|
---|
261 | {
|
---|
262 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
263 | if (a != a)
|
---|
264 | return a;
|
---|
265 | // no need to check if b is NaN; > will work correctly
|
---|
266 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
267 | if (a == 0 && b == 0)
|
---|
268 | return a - -b;
|
---|
269 | return (a > b) ? a : b;
|
---|
270 | }
|
---|
271 |
|
---|
272 | /**
|
---|
273 | * Return whichever argument is larger. If either argument is NaN, the
|
---|
274 | * result is NaN, and when comparing 0 and -0, 0 is always larger.
|
---|
275 | *
|
---|
276 | * @param a the first number
|
---|
277 | * @param b a second number
|
---|
278 | * @return the larger of the two numbers
|
---|
279 | */
|
---|
280 | public static double max(double a, double b)
|
---|
281 | {
|
---|
282 | // this check for NaN, from JLS 15.21.1, saves a method call
|
---|
283 | if (a != a)
|
---|
284 | return a;
|
---|
285 | // no need to check if b is NaN; > will work correctly
|
---|
286 | // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
---|
287 | if (a == 0 && b == 0)
|
---|
288 | return a - -b;
|
---|
289 | return (a > b) ? a : b;
|
---|
290 | }
|
---|
291 |
|
---|
292 | /**
|
---|
293 | * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
|
---|
294 | * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
|
---|
295 | * and is semi-monotonic.
|
---|
296 | *
|
---|
297 | * @param a the angle (in radians)
|
---|
298 | * @return sin(a)
|
---|
299 | */
|
---|
300 | public native static double sin(double a);
|
---|
301 |
|
---|
302 | /**
|
---|
303 | * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
|
---|
304 | * NaN. This is accurate within 1 ulp, and is semi-monotonic.
|
---|
305 | *
|
---|
306 | * @param a the angle (in radians)
|
---|
307 | * @return cos(a)
|
---|
308 | */
|
---|
309 | public native static double cos(double a);
|
---|
310 |
|
---|
311 | /**
|
---|
312 | * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
|
---|
313 | * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
|
---|
314 | * ulp, and is semi-monotonic.
|
---|
315 | *
|
---|
316 | * @param a the angle (in radians)
|
---|
317 | * @return tan(a)
|
---|
318 | */
|
---|
319 | public native static double tan(double a);
|
---|
320 |
|
---|
321 | /**
|
---|
322 | * The trigonometric function <em>arcsin</em>. The range of angles returned
|
---|
323 | * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
|
---|
324 | * its absolute value is beyond 1, the result is NaN; and the arcsine of
|
---|
325 | * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
|
---|
326 | *
|
---|
327 | * @param a the sin to turn back into an angle
|
---|
328 | * @return arcsin(a)
|
---|
329 | */
|
---|
330 | public native static double asin(double a);
|
---|
331 |
|
---|
332 | /**
|
---|
333 | * The trigonometric function <em>arccos</em>. The range of angles returned
|
---|
334 | * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
|
---|
335 | * its absolute value is beyond 1, the result is NaN. This is accurate
|
---|
336 | * within 1 ulp, and is semi-monotonic.
|
---|
337 | *
|
---|
338 | * @param a the cos to turn back into an angle
|
---|
339 | * @return arccos(a)
|
---|
340 | */
|
---|
341 | public native static double acos(double a);
|
---|
342 |
|
---|
343 | /**
|
---|
344 | * The trigonometric function <em>arcsin</em>. The range of angles returned
|
---|
345 | * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
|
---|
346 | * result is NaN; and the arctangent of 0 retains its sign. This is accurate
|
---|
347 | * within 1 ulp, and is semi-monotonic.
|
---|
348 | *
|
---|
349 | * @param a the tan to turn back into an angle
|
---|
350 | * @return arcsin(a)
|
---|
351 | * @see #atan2(double, double)
|
---|
352 | */
|
---|
353 | public native static double atan(double a);
|
---|
354 |
|
---|
355 | /**
|
---|
356 | * A special version of the trigonometric function <em>arctan</em>, for
|
---|
357 | * converting rectangular coordinates <em>(x, y)</em> to polar
|
---|
358 | * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
|
---|
359 | * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
|
---|
360 | * <li>If either argument is NaN, the result is NaN.</li>
|
---|
361 | * <li>If the first argument is positive zero and the second argument is
|
---|
362 | * positive, or the first argument is positive and finite and the second
|
---|
363 | * argument is positive infinity, then the result is positive zero.</li>
|
---|
364 | * <li>If the first argument is negative zero and the second argument is
|
---|
365 | * positive, or the first argument is negative and finite and the second
|
---|
366 | * argument is positive infinity, then the result is negative zero.</li>
|
---|
367 | * <li>If the first argument is positive zero and the second argument is
|
---|
368 | * negative, or the first argument is positive and finite and the second
|
---|
369 | * argument is negative infinity, then the result is the double value
|
---|
370 | * closest to pi.</li>
|
---|
371 | * <li>If the first argument is negative zero and the second argument is
|
---|
372 | * negative, or the first argument is negative and finite and the second
|
---|
373 | * argument is negative infinity, then the result is the double value
|
---|
374 | * closest to -pi.</li>
|
---|
375 | * <li>If the first argument is positive and the second argument is
|
---|
376 | * positive zero or negative zero, or the first argument is positive
|
---|
377 | * infinity and the second argument is finite, then the result is the
|
---|
378 | * double value closest to pi/2.</li>
|
---|
379 | * <li>If the first argument is negative and the second argument is
|
---|
380 | * positive zero or negative zero, or the first argument is negative
|
---|
381 | * infinity and the second argument is finite, then the result is the
|
---|
382 | * double value closest to -pi/2.</li>
|
---|
383 | * <li>If both arguments are positive infinity, then the result is the
|
---|
384 | * double value closest to pi/4.</li>
|
---|
385 | * <li>If the first argument is positive infinity and the second argument
|
---|
386 | * is negative infinity, then the result is the double value closest to
|
---|
387 | * 3*pi/4.</li>
|
---|
388 | * <li>If the first argument is negative infinity and the second argument
|
---|
389 | * is positive infinity, then the result is the double value closest to
|
---|
390 | * -pi/4.</li>
|
---|
391 | * <li>If both arguments are negative infinity, then the result is the
|
---|
392 | * double value closest to -3*pi/4.</li>
|
---|
393 | *
|
---|
394 | * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
|
---|
395 | * use sqrt(x*x+y*y).
|
---|
396 | *
|
---|
397 | * @param y the y position
|
---|
398 | * @param x the x position
|
---|
399 | * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
|
---|
400 | * @see #atan(double)
|
---|
401 | */
|
---|
402 | public native static double atan2(double y, double x);
|
---|
403 |
|
---|
404 | /**
|
---|
405 | * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
|
---|
406 | * argument is NaN, the result is NaN; if the argument is positive infinity,
|
---|
407 | * the result is positive infinity; and if the argument is negative
|
---|
408 | * infinity, the result is positive zero. This is accurate within 1 ulp,
|
---|
409 | * and is semi-monotonic.
|
---|
410 | *
|
---|
411 | * @param a the number to raise to the power
|
---|
412 | * @return the number raised to the power of <em>e</em>
|
---|
413 | * @see #log(double)
|
---|
414 | * @see #pow(double, double)
|
---|
415 | */
|
---|
416 | public native static double exp(double a);
|
---|
417 |
|
---|
418 | /**
|
---|
419 | * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
|
---|
420 | * argument is NaN or negative, the result is NaN; if the argument is
|
---|
421 | * positive infinity, the result is positive infinity; and if the argument
|
---|
422 | * is either zero, the result is negative infinity. This is accurate within
|
---|
423 | * 1 ulp, and is semi-monotonic.
|
---|
424 | *
|
---|
425 | * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
|
---|
426 | * <code>ln(a) / ln(b)</code>.
|
---|
427 | *
|
---|
428 | * @param a the number to take the natural log of
|
---|
429 | * @return the natural log of <code>a</code>
|
---|
430 | * @see #exp(double)
|
---|
431 | */
|
---|
432 | public native static double log(double a);
|
---|
433 |
|
---|
434 | /**
|
---|
435 | * Take a square root. If the argument is NaN or negative, the result is
|
---|
436 | * NaN; if the argument is positive infinity, the result is positive
|
---|
437 | * infinity; and if the result is either zero, the result is the same.
|
---|
438 | * This is accurate within the limits of doubles.
|
---|
439 | *
|
---|
440 | * <p>For other roots, use pow(a, 1 / rootNumber).
|
---|
441 | *
|
---|
442 | * @param a the numeric argument
|
---|
443 | * @return the square root of the argument
|
---|
444 | * @see #pow(double, double)
|
---|
445 | */
|
---|
446 | public native static double sqrt(double a);
|
---|
447 |
|
---|
448 | /**
|
---|
449 | * Raise a number to a power. Special cases:<ul>
|
---|
450 | * <li>If the second argument is positive or negative zero, then the result
|
---|
451 | * is 1.0.</li>
|
---|
452 | * <li>If the second argument is 1.0, then the result is the same as the
|
---|
453 | * first argument.</li>
|
---|
454 | * <li>If the second argument is NaN, then the result is NaN.</li>
|
---|
455 | * <li>If the first argument is NaN and the second argument is nonzero,
|
---|
456 | * then the result is NaN.</li>
|
---|
457 | * <li>If the absolute value of the first argument is greater than 1 and
|
---|
458 | * the second argument is positive infinity, or the absolute value of the
|
---|
459 | * first argument is less than 1 and the second argument is negative
|
---|
460 | * infinity, then the result is positive infinity.</li>
|
---|
461 | * <li>If the absolute value of the first argument is greater than 1 and
|
---|
462 | * the second argument is negative infinity, or the absolute value of the
|
---|
463 | * first argument is less than 1 and the second argument is positive
|
---|
464 | * infinity, then the result is positive zero.</li>
|
---|
465 | * <li>If the absolute value of the first argument equals 1 and the second
|
---|
466 | * argument is infinite, then the result is NaN.</li>
|
---|
467 | * <li>If the first argument is positive zero and the second argument is
|
---|
468 | * greater than zero, or the first argument is positive infinity and the
|
---|
469 | * second argument is less than zero, then the result is positive zero.</li>
|
---|
470 | * <li>If the first argument is positive zero and the second argument is
|
---|
471 | * less than zero, or the first argument is positive infinity and the
|
---|
472 | * second argument is greater than zero, then the result is positive
|
---|
473 | * infinity.</li>
|
---|
474 | * <li>If the first argument is negative zero and the second argument is
|
---|
475 | * greater than zero but not a finite odd integer, or the first argument is
|
---|
476 | * negative infinity and the second argument is less than zero but not a
|
---|
477 | * finite odd integer, then the result is positive zero.</li>
|
---|
478 | * <li>If the first argument is negative zero and the second argument is a
|
---|
479 | * positive finite odd integer, or the first argument is negative infinity
|
---|
480 | * and the second argument is a negative finite odd integer, then the result
|
---|
481 | * is negative zero.</li>
|
---|
482 | * <li>If the first argument is negative zero and the second argument is
|
---|
483 | * less than zero but not a finite odd integer, or the first argument is
|
---|
484 | * negative infinity and the second argument is greater than zero but not a
|
---|
485 | * finite odd integer, then the result is positive infinity.</li>
|
---|
486 | * <li>If the first argument is negative zero and the second argument is a
|
---|
487 | * negative finite odd integer, or the first argument is negative infinity
|
---|
488 | * and the second argument is a positive finite odd integer, then the result
|
---|
489 | * is negative infinity.</li>
|
---|
490 | * <li>If the first argument is less than zero and the second argument is a
|
---|
491 | * finite even integer, then the result is equal to the result of raising
|
---|
492 | * the absolute value of the first argument to the power of the second
|
---|
493 | * argument.</li>
|
---|
494 | * <li>If the first argument is less than zero and the second argument is a
|
---|
495 | * finite odd integer, then the result is equal to the negative of the
|
---|
496 | * result of raising the absolute value of the first argument to the power
|
---|
497 | * of the second argument.</li>
|
---|
498 | * <li>If the first argument is finite and less than zero and the second
|
---|
499 | * argument is finite and not an integer, then the result is NaN.</li>
|
---|
500 | * <li>If both arguments are integers, then the result is exactly equal to
|
---|
501 | * the mathematical result of raising the first argument to the power of
|
---|
502 | * the second argument if that result can in fact be represented exactly as
|
---|
503 | * a double value.</li>
|
---|
504 | *
|
---|
505 | * </ul><p>(In the foregoing descriptions, a floating-point value is
|
---|
506 | * considered to be an integer if and only if it is a fixed point of the
|
---|
507 | * method {@link #ceil(double)} or, equivalently, a fixed point of the
|
---|
508 | * method {@link #floor(double)}. A value is a fixed point of a one-argument
|
---|
509 | * method if and only if the result of applying the method to the value is
|
---|
510 | * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
|
---|
511 | *
|
---|
512 | * @param a the number to raise
|
---|
513 | * @param b the power to raise it to
|
---|
514 | * @return a<sup>b</sup>
|
---|
515 | */
|
---|
516 | public native static double pow(double a, double b);
|
---|
517 |
|
---|
518 | /**
|
---|
519 | * Get the IEEE 754 floating point remainder on two numbers. This is the
|
---|
520 | * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
|
---|
521 | * double to <code>x / y</code> (ties go to the even n); for a zero
|
---|
522 | * remainder, the sign is that of <code>x</code>. If either argument is NaN,
|
---|
523 | * the first argument is infinite, or the second argument is zero, the result
|
---|
524 | * is NaN; if x is finite but y is infinte, the result is x. This is
|
---|
525 | * accurate within the limits of doubles.
|
---|
526 | *
|
---|
527 | * @param x the dividend (the top half)
|
---|
528 | * @param y the divisor (the bottom half)
|
---|
529 | * @return the IEEE 754-defined floating point remainder of x/y
|
---|
530 | * @see #rint(double)
|
---|
531 | */
|
---|
532 | public native static double IEEEremainder(double x, double y);
|
---|
533 |
|
---|
534 | /**
|
---|
535 | * Take the nearest integer that is that is greater than or equal to the
|
---|
536 | * argument. If the argument is NaN, infinite, or zero, the result is the
|
---|
537 | * same; if the argument is between -1 and 0, the result is negative zero.
|
---|
538 | * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
---|
539 | *
|
---|
540 | * @param a the value to act upon
|
---|
541 | * @return the nearest integer >= <code>a</code>
|
---|
542 | */
|
---|
543 | public native static double ceil(double a);
|
---|
544 |
|
---|
545 | /**
|
---|
546 | * Take the nearest integer that is that is less than or equal to the
|
---|
547 | * argument. If the argument is NaN, infinite, or zero, the result is the
|
---|
548 | * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
---|
549 | *
|
---|
550 | * @param a the value to act upon
|
---|
551 | * @return the nearest integer <= <code>a</code>
|
---|
552 | */
|
---|
553 | public native static double floor(double a);
|
---|
554 |
|
---|
555 | /**
|
---|
556 | * Take the nearest integer to the argument. If it is exactly between
|
---|
557 | * two integers, the even integer is taken. If the argument is NaN,
|
---|
558 | * infinite, or zero, the result is the same.
|
---|
559 | *
|
---|
560 | * @param a the value to act upon
|
---|
561 | * @return the nearest integer to <code>a</code>
|
---|
562 | */
|
---|
563 | public native static double rint(double a);
|
---|
564 |
|
---|
565 | /**
|
---|
566 | * Take the nearest integer to the argument. This is equivalent to
|
---|
567 | * <code>(int) Math.floor(a + 0.5f). If the argument is NaN, the result
|
---|
568 | * is 0; otherwise if the argument is outside the range of int, the result
|
---|
569 | * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
|
---|
570 | *
|
---|
571 | * @param a the argument to round
|
---|
572 | * @return the nearest integer to the argument
|
---|
573 | * @see Integer#MIN_VALUE
|
---|
574 | * @see Integer#MAX_VALUE
|
---|
575 | */
|
---|
576 | public static int round(float a)
|
---|
577 | {
|
---|
578 | return (int) floor(a + 0.5f);
|
---|
579 | }
|
---|
580 |
|
---|
581 | /**
|
---|
582 | * Take the nearest long to the argument. This is equivalent to
|
---|
583 | * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
|
---|
584 | * result is 0; otherwise if the argument is outside the range of long, the
|
---|
585 | * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
|
---|
586 | *
|
---|
587 | * @param a the argument to round
|
---|
588 | * @return the nearest long to the argument
|
---|
589 | * @see Long#MIN_VALUE
|
---|
590 | * @see Long#MAX_VALUE
|
---|
591 | */
|
---|
592 | public static long round(double a)
|
---|
593 | {
|
---|
594 | return (long) floor(a + 0.5d);
|
---|
595 | }
|
---|
596 |
|
---|
597 | /**
|
---|
598 | * Get a random number. This behaves like Random.nextDouble(), seeded by
|
---|
599 | * System.currentTimeMillis() when first called. In other words, the number
|
---|
600 | * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
|
---|
601 | * This random sequence is only used by this method, and is threadsafe,
|
---|
602 | * although you may want your own random number generator if it is shared
|
---|
603 | * among threads.
|
---|
604 | *
|
---|
605 | * @return a random number
|
---|
606 | * @see Random#nextDouble()
|
---|
607 | * @see System#currentTimeMillis()
|
---|
608 | */
|
---|
609 | public static synchronized double random()
|
---|
610 | {
|
---|
611 | if (rand == null)
|
---|
612 | rand = new Random();
|
---|
613 | return rand.nextDouble();
|
---|
614 | }
|
---|
615 |
|
---|
616 | /**
|
---|
617 | * Convert from degrees to radians. The formula for this is
|
---|
618 | * radians = degrees * (pi/180); however it is not always exact given the
|
---|
619 | * limitations of floating point numbers.
|
---|
620 | *
|
---|
621 | * @param degrees an angle in degrees
|
---|
622 | * @return the angle in radians
|
---|
623 | * @since 1.2
|
---|
624 | */
|
---|
625 | public static double toRadians(double degrees)
|
---|
626 | {
|
---|
627 | return degrees * (PI / 180);
|
---|
628 | }
|
---|
629 |
|
---|
630 | /**
|
---|
631 | * Convert from radians to degrees. The formula for this is
|
---|
632 | * degrees = radians * (180/pi); however it is not always exact given the
|
---|
633 | * limitations of floating point numbers.
|
---|
634 | *
|
---|
635 | * @param rads an angle in radians
|
---|
636 | * @return the angle in degrees
|
---|
637 | * @since 1.2
|
---|
638 | */
|
---|
639 | public static double toDegrees(double rads)
|
---|
640 | {
|
---|
641 | return rads * (180 / PI);
|
---|
642 | }
|
---|
643 | }
|
---|